Shallow-Water Gravity Waves
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Fluid Mechanics
FLUID MECHANICS PROF. DR. METİN GÜNER COMPILER ANKARA UNIVERSITY FACULTY OF AGRICULTURE DEPARTMENT OF AGRICULTURAL MACHINERY AND TECHNOLOGIES ENGINEERING 1 1. INTRODUCTION Mechanics is the oldest physical science that deals with both stationary and moving bodies under the influence of forces. Mechanics is divided into three groups: a) Mechanics of rigid bodies, b) Mechanics of deformable bodies, c) Fluid mechanics Fluid mechanics deals with the behavior of fluids at rest (fluid statics) or in motion (fluid dynamics), and the interaction of fluids with solids or other fluids at the boundaries (Fig.1.1.). Fluid mechanics is the branch of physics which involves the study of fluids (liquids, gases, and plasmas) and the forces on them. Fluid mechanics can be divided into two. a)Fluid Statics b)Fluid Dynamics Fluid statics or hydrostatics is the branch of fluid mechanics that studies fluids at rest. It embraces the study of the conditions under which fluids are at rest in stable equilibrium Hydrostatics is fundamental to hydraulics, the engineering of equipment for storing, transporting and using fluids. Hydrostatics offers physical explanations for many phenomena of everyday life, such as why atmospheric pressure changes with altitude, why wood and oil float on water, and why the surface of water is always flat and horizontal whatever the shape of its container. Fluid dynamics is a subdiscipline of fluid mechanics that deals with fluid flow— the natural science of fluids (liquids and gases) in motion. It has several subdisciplines itself, including aerodynamics (the study of air and other gases in motion) and hydrodynamics (the study of liquids in motion). -
Fluid Viscosity and the Attenuation of Surface Waves: a Derivation Based on Conservation of Energy
INSTITUTE OF PHYSICS PUBLISHING EUROPEAN JOURNAL OF PHYSICS Eur. J. Phys. 25 (2004) 115–122 PII: S0143-0807(04)64480-1 Fluid viscosity and the attenuation of surface waves: a derivation based on conservation of energy FBehroozi Department of Physics, University of Northern Iowa, Cedar Falls, IA 50614, USA Received 9 June 2003 Published 25 November 2003 Online at stacks.iop.org/EJP/25/115 (DOI: 10.1088/0143-0807/25/1/014) Abstract More than a century ago, Stokes (1819–1903)pointed out that the attenuation of surface waves could be exploited to measure viscosity. This paper provides the link between fluid viscosity and the attenuation of surface waves by invoking the conservation of energy. First we calculate the power loss per unit area due to viscous dissipation. Next we calculate the power loss per unit area as manifested in the decay of the wave amplitude. By equating these two quantities, we derive the relationship between the fluid viscosity and the decay coefficient of the surface waves in a transparent way. 1. Introduction Surface tension and gravity govern the propagation of surface waves on fluids while viscosity determines the wave attenuation. In this paper we focus on the relation between viscosity and attenuation of surface waves. More than a century ago, Stokes (1819–1903) pointed out that the attenuation of surface waves could be exploited to measure viscosity [1]. Since then, the determination of viscosity from the damping of surface waves has receivedmuch attention [2–10], particularly because the method presents the possibility of measuring viscosity noninvasively. In his attempt to obtain the functionalrelationship between viscosity and wave attenuation, Stokes observed that the harmonic solutions obtained by solving the Laplace equation for the velocity potential in the absence of viscosity also satisfy the linearized Navier–Stokes equation [11]. -
Fourth-Order Nonlinear Evolution Equations for Surface Gravity Waves in the Presence of a Thin Thermocline
J. Austral. Math. Soc. Ser. B 39(1997), 214-229 FOURTH-ORDER NONLINEAR EVOLUTION EQUATIONS FOR SURFACE GRAVITY WAVES IN THE PRESENCE OF A THIN THERMOCLINE SUDEBI BHATTACHARYYA1 and K. P. DAS1 (Received 14 August 1995; revised 21 December 1995) Abstract Two coupled nonlinear evolution equations correct to fourth order in wave steepness are derived for a three-dimensional wave packet in the presence of a thin thermocline. These two coupled equations are reduced to a single equation on the assumption that the space variation of the amplitudes takes place along a line making an arbitrary fixed angle with the direction of propagation of the wave. This single equation is used to study the stability of a uniform wave train. Expressions for maximum growth rate of instability and wave number at marginal stability are obtained. Some of the results are shown graphically. It is found that a thin thermocline has a stabilizing influence and the maximum growth rate of instability decreases with the increase of thermocline depth. 1. Introduction There exist a number of papers on nonlinear interaction between surface gravity waves and internal waves. Most of these are concerned with the mechanism of generation of internal waves through nonlinear interaction of surface gravity waves. Coherent three wave interactions of two surface waves and one internal wave have been investigated by Ball [1], Thorpe [22], Watson, West and Cohen [23] and others. Using the theoretical model of Hasselman [12] for incoherent three-wave interaction, Olber and Hertrich [18] have reported a mechanism of generation of internal waves by coupling with surface waves using a three-layer model of the ocean. -
Lecture 18 Ocean General Circulation Modeling
Lecture 18 Ocean General Circulation Modeling 9.1 The equations of motion: Navier-Stokes The governing equations for a real fluid are the Navier-Stokes equations (con servation of linear momentum and mass mass) along with conservation of salt, conservation of heat (the first law of thermodynamics) and an equation of state. However, these equations support fast acoustic modes and involve nonlinearities in many terms that makes solving them both difficult and ex pensive and particularly ill suited for long time scale calculations. Instead we make a series of approximations to simplify the Navier-Stokes equations to yield the “primitive equations” which are the basis of most general circu lations models. In a rotating frame of reference and in the absence of sources and sinks of mass or salt the Navier-Stokes equations are @ �~v + �~v~v + 2�~ �~v + g�kˆ + p = ~ρ (9.1) t r · ^ r r · @ � + �~v = 0 (9.2) t r · @ �S + �S~v = 0 (9.3) t r · 1 @t �ζ + �ζ~v = ω (9.4) r · cpS r · F � = �(ζ; S; p) (9.5) Where � is the fluid density, ~v is the velocity, p is the pressure, S is the salinity and ζ is the potential temperature which add up to seven dependent variables. 115 12.950 Atmospheric and Oceanic Modeling, Spring '04 116 The constants are �~ the rotation vector of the sphere, g the gravitational acceleration and cp the specific heat capacity at constant pressure. ~ρ is the stress tensor and ω are non-advective heat fluxes (such as heat exchange across the sea-surface).F 9.2 Acoustic modes Notice that there is no prognostic equation for pressure, p, but there are two equations for density, �; one prognostic and one diagnostic. -
Modelling Viscous Free Surface Flow
Chapter 8 Modelling Viscous Free Surface Flow Free surface flows, where a boundary of a fluid body is free to move constrained only by forces across the surface, are possibly the most commonly observed flow phenomenon, with the motion of the free surface readily allowing the observation of flow of the fluid. Flows that are commonly encountered by the layperson include the motion of the surface of a river, the waves on the surface of the ocean, and the more personal flow of that in a cup of tea. From an engineering perspective, flows of interest include the open channel flow of rivers and canals, the erosive forces of waves on the shoreline, and the wakes generated by ships when under way. When modelling these flows, the problems associated with the solution of the Navier–Stokes equations are compounded by the free motion of the surface of the fluid, with the boundaries of the flow domain being a function of the flow structure, and thus an unknown which must be calculated along with the flow field. The movement of the free surface therefore both aids the observation of the flow, and hinders it’s modelling. In this chapter an attempt is made to model the steady flow around a ships hull. The modelling of such a flow is of great interest to Naval Architects, with the ability to predict the resistance of ships allowing the design of more efficient hull forms, whilst the accurate modelling of the ships wake allows the design of hulls that create a smaller disturbance in confined waterways. -
Internal Gravity Waves: from Instabilities to Turbulence Chantal Staquet, Joël Sommeria
Internal gravity waves: from instabilities to turbulence Chantal Staquet, Joël Sommeria To cite this version: Chantal Staquet, Joël Sommeria. Internal gravity waves: from instabilities to turbulence. Annual Review of Fluid Mechanics, Annual Reviews, 2002, 34, pp.559-593. 10.1146/an- nurev.fluid.34.090601.130953. hal-00264617 HAL Id: hal-00264617 https://hal.archives-ouvertes.fr/hal-00264617 Submitted on 4 Feb 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License INTERNAL GRAVITY WAVES: From Instabilities to Turbulence C. Staquet and J. Sommeria Laboratoire des Ecoulements Geophysiques´ et Industriels, BP 53, 38041 Grenoble Cedex 9, France; e-mail: [email protected], [email protected] Key Words geophysical fluid dynamics, stratified fluids, wave interactions, wave breaking Abstract We review the mechanisms of steepening and breaking for internal gravity waves in a continuous density stratification. After discussing the instability of a plane wave of arbitrary amplitude in an infinite medium at rest, we consider the steep- ening effects of wave reflection on a sloping boundary and propagation in a shear flow. The final process of breaking into small-scale turbulence is then presented. -
The Internal Gravity Wave Spectrum: a New Frontier in Global Ocean Modeling
The internal gravity wave spectrum: A new frontier in global ocean modeling Brian K. Arbic Department of Earth and Environmental Sciences University of Michigan Supported by funding from: Office of Naval Research (ONR) National Aeronautics and Space Administration (NASA) National Science Foundation (NSF) Brian K. Arbic Internal wave spectrum in global ocean models Collaborators • Naval Research Laboratory Stennis Space Center: Joe Metzger, Jim Richman, Jay Shriver, Alan Wallcraft, Luis Zamudio • University of Southern Mississippi: Maarten Buijsman • University of Michigan: Joseph Ansong, Steve Bassette, Conrad Luecke, Anna Savage • McGill University: David Trossman • Bangor University: Patrick Timko • Norwegian Meteorological Institute: Malte M¨uller • University of Brest and The University of Texas at Austin: Rob Scott • NASA Goddard: Richard Ray • Florida State University: Eric Chassignet • Others including many members of the NSF-funded Climate Process Team led by Jennifer MacKinnon of Scripps Brian K. Arbic Internal wave spectrum in global ocean models Motivation • Breaking internal gravity waves drive most of the mixing in the subsurface ocean. • The internal gravity wave spectrum is just starting to be resolved in global ocean models. • Somewhat analogous to resolution of mesoscale eddies in basin- and global-scale models in 1990s and early 2000s. • Builds on global internal tide modeling, which began with 2004 Arbic et al. and Simmons et al. papers utilizing Hallberg Isopycnal Model (HIM) run with tidal foricng only and employing a horizontally uniform stratification. Brian K. Arbic Internal wave spectrum in global ocean models Motivation continued... • Here we utilize simulations of the HYbrid Coordinate Ocean Model (HYCOM) with both atmospheric and tidal forcing. • Near-inertial waves and tides are put into a model with a realistically varying background stratification. -
Gravity Waves Are Just Waves As Pressure He Was Observing
FLIGHTOPS Nearly impossible to predict and difficult to detect, this weather phenomenon presents Gravitya hidden risk, especially close to the ground. regory Bean, an experienced pi- National Weather Service observer re- around and land back at Burlington. lot and flight instructor, says he ferred to this as a “gravity wave.” Neither The wind had now swung around to wasn’t expecting any problems the controller nor Bean knew what the 270 degrees at 25 kt. At this point, he while preparing for his flight weather observer was talking about. recalled, his rate of descent became fromG Burlington, Vermont, to Platts- Deciding he could deal with the “alarming.” The VSI now pegged at the burgh, New York, U.S. His Piper Seneca wind, Bean was cleared for takeoff. The bottom of the scale. Despite the control checked out fine. The weather that April takeoff and initial climb were normal difficulty, he landed the aircraft without evening seemed benign. While waiting but he soon encountered turbulence “as further incident. Bean may not have for clearance, he was taken aback by a rough as I have ever encountered.” He known what a gravity wave was, but report of winds gusting to 35 kt from wanted to climb to 2,600 ft. With the he now knew what it could do to an 140 degrees. The air traffic control- vertical speed indicator (VSI) “pegged,” airplane.1 ler commented on rapid changes in he shot up to 3,600 ft. Finally control- Gravity waves are just waves as pressure he was observing. He said the ling the airplane, Bean opted to turn most people normally think of them. -
Gravity Wave and Tidal Influences On
Ann. Geophys., 26, 3235–3252, 2008 www.ann-geophys.net/26/3235/2008/ Annales © European Geosciences Union 2008 Geophysicae Gravity wave and tidal influences on equatorial spread F based on observations during the Spread F Experiment (SpreadFEx) D. C. Fritts1, S. L. Vadas1, D. M. Riggin1, M. A. Abdu2, I. S. Batista2, H. Takahashi2, A. Medeiros3, F. Kamalabadi4, H.-L. Liu5, B. G. Fejer6, and M. J. Taylor6 1NorthWest Research Associates, CoRA Division, Boulder, CO, USA 2Instituto Nacional de Pesquisas Espaciais (INPE), San Jose dos Campos, Brazil 3Universidade Federal de Campina Grande. Campina Grande. Paraiba. Brazil 4University of Illinois, Champaign, IL, USA 5National Center for Atmospheric research, Boulder, CO, USA 6Utah State University, Logan, UT, USA Received: 15 April 2008 – Revised: 7 August 2008 – Accepted: 7 August 2008 – Published: 21 October 2008 Abstract. The Spread F Experiment, or SpreadFEx, was per- Keywords. Ionosphere (Equatorial ionosphere; Ionosphere- formed from September to November 2005 to define the po- atmosphere interactions; Plasma convection) – Meteorology tential role of neutral atmosphere dynamics, primarily grav- and atmospheric dynamics (Middle atmosphere dynamics; ity waves propagating upward from the lower atmosphere, in Thermospheric dynamics; Waves and tides) seeding equatorial spread F (ESF) and plasma bubbles ex- tending to higher altitudes. A description of the SpreadFEx campaign motivations, goals, instrumentation, and structure, 1 Introduction and an overview of the results presented in this special issue, are provided by Fritts et al. (2008a). The various analyses of The primary goal of the Spread F Experiment (SpreadFEx) neutral atmosphere and ionosphere dynamics and structure was to test the theory that gravity waves (GWs) play a key described in this special issue provide enticing evidence of role in the seeding of equatorial spread F (ESF), Rayleigh- gravity waves arising from deep convection in plasma bub- Taylor instability (RTI), and plasma bubbles extending to ble seeding at the bottomside F layer. -
Inertia-Gravity Wave Generation: a WKB Approach
Inertia-gravity wave generation: a WKB approach Jonathan Maclean Aspden Doctor of Philosophy University of Edinburgh 2010 Declaration I declare that this thesis was composed by myself and that the work contained therein is my own, except where explicitly stated otherwise in the text. (Jonathan Maclean Aspden) iii iv Abstract The dynamics of the atmosphere and ocean are dominated by slowly evolving, large-scale motions. However, fast, small-scale motions in the form of inertia-gravity waves are ubiquitous. These waves are of great importance for the circulation of the atmosphere and oceans, mainly because of the momentum and energy they transport and because of the mixing they create upon breaking. So far the study of inertia-gravity waves has answered a number of questions about their propagation and dissipation, but many aspects of their generation remain poorly understood. The interactions that take place between the slow motion, termed balanced or vortical motion, and the fast inertia-gravity wave modes provide mechanisms for inertia-gravity wave generation. One of these is the instability of balanced flows to gravity-wave-like perturbations; another is the so-called spontaneous generation in which a slowly evolving solution has a small gravity-wave component intrinsically coupled to it. In this thesis, we derive and study a simple model of inertia-gravity wave generation which considers the evolution of a small-scale, small amplitude perturbation superimposed on a large-scale, possibly time-dependent flow. The assumed spatial-scale separation makes it possible to apply a WKB approach which models the perturbation to the flow as a wavepacket. -
A Simple and Unified Linear Solver for Free-Surface and Pressurized
water Technical Note A Simple and Unified Linear Solver for Free-Surface and Pressurized Mixed Flows in Hydraulic Systems Dechao Hu 1 , Songping Li 1, Shiming Yao 2 and Zhongwu Jin 2,* 1 School of Hydropower and Information Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; [email protected] (D.H.); [email protected] (S.L.) 2 Yangtze River Scientific Research Institute, Wuhan 430010, China; [email protected] * Correspondence: [email protected]; Tel.: +86-027-8282-9873 Received: 19 August 2019; Accepted: 19 September 2019; Published: 23 September 2019 Abstract: A semi–implicit numerical model with a linear solver is proposed for the free-surface and pressurized mixed flows in hydraulic systems. It solves the two flow regimes within a unified formulation, and is much simpler than existing similar models for mixed flows. Using a local linearization and an Eulerian–Lagrangian method, the new model only needs to solve a tridiagonal linear system (arising from velocity-pressure coupling) and is free of iterations. The model is tested using various types of mixed flows, where the simulation results agree with analytical solutions, experiment data and the results reported by former researchers. Sensitivity studies of grid scales and time steps are both performed, where a common grid scale provides grid-independent results and a common time step provides time-step-independent results. Moreover, the model is revealed to achieve stable and accurate simulations at large time steps for which the CFL is greater than 1. In simulations of a challenging case (mixed flows characterized by frequent flow-regime conversions and a closed pipe with wide-top cross-sections), an artificial slot (A-slot) technique is proposed to cope with possible instabilities related to the discontinuous main-diagonal coefficients of the linear system. -
Chapter 16: Waves [Version 1216.1.K]
Contents 16 Waves 1 16.1Overview...................................... 1 16.2 GravityWavesontheSurfaceofaFluid . ..... 2 16.2.1 DeepWaterWaves ............................ 5 16.2.2 ShallowWaterWaves........................... 5 16.2.3 Capillary Waves and Surface Tension . .... 8 16.2.4 Helioseismology . 12 16.3 Nonlinear Shallow-Water Waves and Solitons . ......... 14 16.3.1 Korteweg-deVries(KdV)Equation . ... 14 16.3.2 Physical Effects in the KdV Equation . ... 16 16.3.3 Single-SolitonSolution . ... 18 16.3.4 Two-SolitonSolution . 19 16.3.5 Solitons in Contemporary Physics . .... 20 16.4 RossbyWavesinaRotatingFluid. .... 22 16.5SoundWaves ................................... 25 16.5.1 WaveEnergy ............................... 27 16.5.2 SoundGeneration............................. 28 16.5.3 T2 Radiation Reaction, Runaway Solutions, and Matched Asymp- toticExpansions ............................. 31 0 Chapter 16 Waves Version 1216.1.K, 7 Sep 2012 Please send comments, suggestions, and errata via email to [email protected] or on paper to Kip Thorne, 350-17 Caltech, Pasadena CA 91125 Box 16.1 Reader’s Guide This chapter relies heavily on Chaps. 13 and 14. • Chap. 17 (compressible flows) relies to some extent on Secs. 16.2, 16.3 and 16.5 of • this chapter. The remaining chapters of this book do not rely significantly on this chapter. • 16.1 Overview In the preceding chapters, we have derived the basic equations of fluid dynamics and devel- oped a variety of techniques to describe stationary flows. We have also demonstrated how, even if there exists a rigorous, stationary solution of these equations for a time-steady flow, instabilities may develop and the amplitude of oscillatory disturbances will grow with time. These unstable modes of an unstable flow can usually be thought of as waves that interact strongly with the flow and extract energy from it.