The Value of the Dual Systems Model of Adolescent Risk-Taking

Total Page:16

File Type:pdf, Size:1020Kb

The Value of the Dual Systems Model of Adolescent Risk-Taking OPINION ARTICLE published: 27 May 2013 HUMAN NEUROSCIENCE doi: 10.3389/fnhum.2013.00223 The value of the dual systems model of adolescent risk-taking Nicole M. Strang*, Jason M. Chein and Laurence Steinberg Department of Psychology, Temple University, Philadelphia, PA, USA *Correspondence: [email protected] Edited by: Russell A. Poldrack, University of Texas at Austin, USA Reviewed by: Russell A. Poldrack, University of Texas at Austin, USA Sarah Helfinstein, University of Texas at Austin, USA In recent years, a perspective on adolescent make three main points: (1) that the data 10- to 30-year-olds, participants’ self- risk-taking derived from developmen- do not support the DS model because report indicated a peak in sensation- tal neuroscience has become increasingly there are too few studies assessing the seeking during mid-adolescence popular. This perspective, referred to as relationship between development in each (Steinberg et al., 2009), and on a gam- the “dual systems model” (Somerville brain system and patterns of “real-world” bling task, participants’ behavior was et al., 2010; Steinberg, 2010)orsome- behavior; (2) that activation of the socioe- most influenced by rewarding stimuli times the “maturational imbalance the- motional system is sometimes associated during this same age period (Cauffman ory” (Casey et al., 2011), posits that with adaptive functioning, that activation et al., 2010). In contrast, impulse con- increased risk-taking during adolescence of the cognitive control system is some- trol increases gradually and linearly, and is due to a combination of heightened times associated with maladaptive func- the peak in performance on tasks mea- reward sensitivity and immature impulse tioning, and that these pieces of evidence suring capabilities like planning and control, which are tied to the develop- are contrary to the DS model; and (3) that response inhibition occurs subsequent ment of two brain systems that undergo patterns of brain development are more to the peak in reward sensitivity. This significant change during this age period, complex than those described by the DS linear trajectory has been demonstrated but that develop along different timeta- theory. in self-reports of impulsive behavior bles. One system, which has been called As proponents of the DS perspective in several large-scale studies (Steinberg the “socioemotional” incentive process- on adolescent risk taking, we welcome the et al., 2009; Harden and Tucker-Drob, ing system (Steinberg, 2010; Chein et al., opportunity to respond to the Pfeifer and 2011). Additionally there is compelling 2011) or “ventral affective system” (Pfeifer Allen critique. While, we agree that pre- evidence from behavioral studies of cog- and Allen, 2012), is localized mainly sentations of the model have sometimes nitive control, which demonstrate that in the ventral striatum and ventrome- oversimplified the evidence or overlooked performance improves gradually over the dial prefrontal cortex. The second system, inconsistencies in the literature, we believe course of adolescence and does not peak referred to as the “cognitive control” sys- that the framework continues to offer until late adolescence (Luna, 2009; Albert tem (Steinberg, 2010; Chein et al., 2011) a useful model for understanding risky and Steinberg, 2011). Furthermore, both or “prefrontal control system” (Pfeifer and behavior in adolescence. In the absence of impulsivity (Verdejo-García et al., 2008) Allen, 2012), is localized mainly in lat- an alternative theoretical account, which and reward/sensation-seeking (Galvan eral prefrontal, parietal, and anterior cin- Pfeifer and Allen do not offer, the DS et al., 2007; Romer, 2010) are correlated gulate cortices (Wager and Smith, 2003; model provides a useful heuristic for the with self-reported risk-taking. Owen et al., 2005). Briefly, the dual systems formulation of testable hypotheses. Importantly, the brain systems pre- (DS) perspective posits that risk-taking Pfeifer and Allen (2012) make sev- sumed to mediate these constructs fol- during mid-adolescence is the product of eral excellent points about the model’s low similar developmental trajectories. the heightened reactivity of the socioe- limitations and the challenges of map- The remodeling of dopaminergic pathways motional system against a backdrop of ping neuroimaging findings onto specific connecting the ventral striatum to the PFC still maturing cognitive control. With fur- theoretical claims. However, in our view, is most pronounced shortly after puberty, ther maturation, the socioemotional sys- there are three main shortcomings in their justbeforetheriseinrewardsensitivity tem becomes less reactive and the cognitive critique. First and foremost, the authors (Spear, 2009; Luciana and Collins, 2012). control system becomes stronger and more fail to acknowledge that there is con- In contrast, the prefrontal and parietal cor- efficient. Together, these changes lead to siderable behavioral evidence consistent tices, which are thought to support age- an increase in risk taking during adoles- with the predictions of the DS model. related improvements in cognitive control cence followed by a decrease in risk taking Reward sensitivity follows an inverted U- (Luna and Sweeney, 2001; Bunge et al., as individuals move into adulthood. shaped curve (Steinberg et al., 2009; 2002; Astle and Scerif, 2009; Luna et al., A recent article (Pfeifer and Allen, Romer, 2010; Harden and Tucker-Drob, 2010),areamongthelastbrainregionsto 2012) critiques the DS model. The authors 2011). In a large behavioral study of mature (Huttenlocher, 1990; Giedd et al., Frontiers in Human Neuroscience www.frontiersin.org May 2013 | Volume 7 | Article 223 | 1 Strang et al. Value of dual systems model 1999; Bitan et al., 2006). The value of examine brain-behavior relations through older adolescents permits individuals to the DS theory is that it provides an inte- individual differences analyses. We note, make more informed decisions, but it also grated account for the observed changes in however, that real-world behaviors are enables them to ruminate, sometimes to risk-taking, in the psychological constructs undoubtedly subserved by interacting and a degree that may lead to or exacerbate presumed to contribute to risk-taking, and distributed brain networks, not just indi- depression. in the structural and functional neural vidual brain regions, and there is not cur- Third, Pfeifer and Allen (2012) point changes presumed to contribute to the rently a consensus on an analytic approach out that there are findings that run counter psychological changes. for exploring correlations between acti- to predictions derived from the DS model. Pfeifer and Allen (2012) are correct that vations in interactive networks and con- It is hard to think of any theory of human there are few studies that assess, within comitant behavior. Moreover, real-world development for which there are no incon- the same experimental sample, correla- risk-taking is influenced by a wide array sistent findings; a complete absence of tions among real-world behavior, associ- of contextual variables that cannot be con- inconsistency in the literature is an unre- ated psychological functioning, and the trolled in the lab. alistic criterion against which to evalu- presumed structural and functional neu- Second, the authors mischaracterize the ate a theory’s utility. Over time, findings ral substrates of these phenomena—but DS model as built on the assumption that that are inconsistent with other studies or this is surely not a shortcoming unique activation of the socioemotional system is with predictions derived from a particu- to this area of inquiry. Indeed, the neu- always maladaptive and activation of the lar theory inevitably arise. In evaluating roimaging literature as a whole includes cognitive control system is always adaptive; these instances, the chief considerations very few studies with an adequate sam- to our knowledge no such assertions have should be (1) whether the inconsistencies ple to support strong conclusions about ever been made by proponents of the DS in the theory can be explained through brain-behavior correlations, and serious view. Perhaps this assertion arises in the more nuanced analyses or by refining the objections have been raised about the popular press, but we don’t believe it is theory; (2) whether the putative incon- potential for spurious conclusions to arise a characteristic of scientific writings that sistencies are incompatible with what the when small sample sizes are used (Yarkoni, employ this framework. The DS model theory actually predicts, rather than with 2009; Vul and Pashler, 2012). Even when is agnostic with respect to whether the mischaracterizations of the theory; and (3) a substantial correlation actually exists developmental changes in brain structure whether there are so many inconsistencies between brain activation in some particu- or function produce desirable or unde- that the theory is no longer useful. lar region and behavior in the population, sirable consequences. Even, if the neural The question of whether reward sen- an atypically large fMRI sample is needed changes of adolescence impel individu- sitivity is heightened during adolescence for a fair chance of detecting the effect als to take more risks, not all risk tak- illustrates the first of these points nicely. [e.g., With a correlation of r = 0.5, 60 par- ing is undesirable; indeed, one of the While, it had once appeared as if findings ticipants would be needed to
Recommended publications
  • A Dual Systems Model of Adolescent Risk-Taking
    Developmental Psychobiology Laurence Steinberg Department of Psychology Temple University A Dual Systems Model of Philadelphia, PA 19122 E-mail: [email protected] Adolescent Risk-Taking ABSTRACT: It has been hypothesized that reward-seeking and impulsivity develop along different timetables and have different neural underpinnings, and that the difference in their timetables helps account for heightened risk-taking during adolescence. In order to test these propositions, age differences in reward-seeking and impulsivity were examined in a socioeconomically and ethnically diverse sample of 935 individuals between the ages of 10 and 30, using self-report and behavioral measures of each construct. Consistent with predictions, age differences in reward-seeking follow a curvilinear pattern, increasing between preadolescence and mid-adolescence, and declining thereafter. In contrast, age differences in impulsivity follow a linear pattern, with impulsivity declining steadily from age 10 on. Heightened vulnerability to risk-taking in middle adolescence may be due to the combination of relatively higher inclinations to seek rewards and still maturing capacities for self-control. ß 2010 Wiley Periodicals, Inc. Dev Psychobiol 52: 216–224, 2010. Keywords: adolescence; impulse control; reward-seeking; risk-taking; social neuroscience INTRODUCTION anterior cingulate cortex to which they are interconnected (Steinberg, 2008). According to this dual systems model, In the past several years, a new perspective on risk-taking adolescent risk-taking is hypothesized to be stimulated by and decision-making during adolescence has emerged, a rapid and dramatic increase in dopaminergic activity one that is informed by advances in developmental within the socioemotional system around the time neuroscience (Casey, Getz, & Galvan, 2008; Steinberg, of puberty, which is presumed to lead to increases in 2008).
    [Show full text]
  • The Dual Systems Model: Review, Reappraisal, and Reaffirmation
    Developmental Cognitive Neuroscience 17 (2016) 103–117 Contents lists available at ScienceDirect Developmental Cognitive Neuroscience j ournal homepage: http://www.elsevier.com/locate/dcn Review The dual systems model: Review, reappraisal, and reaffirmation a,∗,1 b,1 b b Elizabeth P. Shulman , Ashley R. Smith , Karol Silva , Grace Icenogle , b b b,c Natasha Duell , Jason Chein , Laurence Steinberg a Brock University, Psychology Department, 1812 Sir Isaac Brock Way, St. Catharines, ON L2S 3A1, Canada b Temple University, Department of Psychology, 1701 N. 13th Street, Philadelphia, PA 19122, USA c King Abdulaziz University, Abdullah Sulayman, Jeddah 22254, Saudi Arabia a r t i c l e i n f o a b s t r a c t Article history: According to the dual systems perspective, risk taking peaks during adolescence because activation of an Received 22 January 2015 early-maturing socioemotional-incentive processing system amplifies adolescents’ affinity for exciting, Received in revised form 17 July 2015 pleasurable, and novel activities at a time when a still immature cognitive control system is not yet Accepted 19 December 2015 strong enough to consistently restrain potentially hazardous impulses. We review evidence from both Available online 29 December 2015 the psychological and neuroimaging literatures that has emerged since 2008, when this perspective was originally articulated. Although there are occasional exceptions to the general trends, studies show that, Keywords: as predicted, psychological and neural manifestations of reward sensitivity increase between childhood Adolescents and adolescence, peak sometime during the late teen years, and decline thereafter, whereas psychological Risk taking and neural reflections of better cognitive control increase gradually and linearly throughout adolescence Dual systems Sensation-seeking and into the early 20s.
    [Show full text]
  • Neuroimage 124 (2016) 409–420
    NeuroImage 124 (2016) 409–420 Contents lists available at ScienceDirect NeuroImage journal homepage: www.elsevier.com/locate/ynimg Testing a dual-systems model of adolescent brain development using resting-state connectivity analyses A.C.K. van Duijvenvoorde ⁎, M. Achterberg, B.R. Braams, S. Peters, E.A. Crone Institute of Psychology, Leiden University, and The Netherlands Leiden Institute for Brain and Cognition (LIBC), Leiden, The Netherlands article info abstract Article history: The current study aimed to test a dual-systems model of adolescent brain development by studying changes in Accepted 27 April 2015 intrinsic functional connectivity within and across networks typically associated with cognitive-control and Available online 10 May 2015 affective-motivational processes. To this end, resting-state and task-related fMRI data were collected of 269 par- ticipants (ages 8–25). Resting-state analyses focused on seeds derived from task-related neural activation in the same participants: the dorsal lateral prefrontal cortex (dlPFC) from a cognitive rule-learning paradigm and the nucleus accumbens (NAcc) from a reward-paradigm. Whole-brain seed-based resting-state analyses showed an age-related increase in dlPFC connectivity with the caudate and thalamus, and an age-related decrease in con- nectivity with the (pre)motor cortex. nAcc connectivity showed a strengthening of connectivity with the dorsal anterior cingulate cortex (ACC) and subcortical structures such as the hippocampus, and a specific age-related decrease in connectivity with the ventral medial PFC (vmPFC). Behavioral measures from both functional para- digms correlated with resting-state connectivity strength with their respective seed. That is, age-related change in learning performance was mediated by connectivity between the dlPFC and thalamus, and age-related change in winning pleasure was mediated by connectivity between the nAcc and vmPFC.
    [Show full text]
  • Individual Differences in the Development of Sensation Seeking and Impulsivity During Adolescence: Further Evidence for a Dual Systems Model
    Developmental Psychology © 2011 American Psychological Association 2011, Vol. 47, No. 3, 739–746 0012-1649/11/$12.00 DOI: 10.1037/a0023279 BRIEF REPORT Individual Differences in the Development of Sensation Seeking and Impulsivity During Adolescence: Further Evidence for a Dual Systems Model K. Paige Harden and Elliot M. Tucker-Drob University of Texas at Austin Consistent with social neuroscience perspectives on adolescent development, previous cross-sectional research has found diverging mean age-related trends for sensation seeking and impulsivity during adolescence. The present study uses longitudinal data on 7,640 youth from the National Longitudinal Study of Youth Children and Young Adults, a nationally representative sample assessed biennially from 1994 to 2006. Latent growth curve models were used to investigate mean age-related changes in self-reports of impulsivity and sensation seeking from ages 12 to 24 years, as well individual differences in these changes. Three novel findings are reported. First, impulsivity and sensation seeking showed diverging patterns of longitudinal change at the population level. Second, there was substantial person- to-person variation in the magnitudes of developmental change in both impulsivity and sensation seeking, with some teenagers showing rapid changes as they matured and others maintaining relatively constant levels with age. Finally, the correlation between age-related changes in impulsivity and sensation seeking was modest and not significant. Together, these results constitute the first support for the dual systems model of adolescent development to derive from longitudinal behavioral data. Keywords: adolescence, impulsivity, sensation seeking, personality, individual differences Adolescence is a developmental period characterized by sweep- maturity at different ages (Somerville et al., 2010).
    [Show full text]
  • The Critical Importance of the Adolescent Stage of Brain Development
    The Critical Importance of the Adolescent Stage of Brain Development Beatriz Luna, PhD Staunton Professor of Psychiatry and Pediatrics Laboratory of Neurocognitive Development University of Pittsburgh Medical Center Disclosure There are no conflicts of interests to report New Yorker Adolescence 1 Adolescence • Stage of development when sexual maturation associated with pubertal hormonal changes • Hormones affect brain maturation • Hormones affect behavior • Socialization, mating, independence Age of Onset of Psychiatric Disorders Paus et al., 2008 • Major psychopathology emerges and intensifies during adolescence • Reward and cognitive systems are compromised in psychopathology • Reward and cognitive systems mature through adolescence Sex Differences Females Males •Mood, anxiety, and eating •Risk taking: accidental disorders deaths, suicide, substance abuse, and violent offenses •Earlier brain maturation. •Males have protracted development. frontal GM •Greater negative affect to •Greater physiological stress reactivity to stress. •Greater engagement of insula •Males show less functional (interoception) to stress reactivity to angry faces in amygdala. Ordaz & Luna 2012 2 Adolescence: Vulnerabilities • There is a peak in sensation seeking – Sensation seeking can lead to risk-taking undermining survival • Despite peak physical health there is a twofold increase in mortality (Dahl 2004) • Substance abuse, unprotected sex, extreme sports, suicide Adolescence: Vulnerabilities • There is a peak in sensation seeking that can lead to risk-taking
    [Show full text]
  • Adolescent Brain Development
    ADOLESCENT BRAIN DEVELOPMENT Adolescence is a period of physical, mental, and Youth, even in their late teens, do not have emotional development, generally occurring the same ability as adults to make mature between the ages of 12 and 18, often accompanied decisions. by distinct behavioral changes.¹ Engaging in reckless actions during adolescence is Neuroscience research shows that there are socially normative behavior.⁹ However, although physical differences between the brains of crimes peak around late adolescence, they begin a adults and youth. steep decline into adulthood.¹⁰ It is harder for adolescents to exercise self-control According to recent findings, the human brain does than it is for adults.¹¹ In fact, it is unreasonable to not reach full maturity until at least the mid-20s.² expect that people younger than 18 will have a fully The specific changes that follow young adulthood are formed ability to resist impulses.¹² not yet well studied, but it is known that they involve Adolescents and adults think differently in terms of increased myelination and continued adding and risks and rewards when considering alternative pruning of neurons.³ choices. In particular, because of shifts in dopamine The prefrontal cortex of the brain is crucial for production, kids are more likely to place greater weighing risk vs. reward, future planning, impulse weight on rewards than on risks when making such a control, and is critical for a person to be able to make choice.¹³ This type of decision-making is likely to lead rational decisions.⁴ However, it is one of the last parts to risky behaviors.¹⁴ of the brain to develop and is still not fully mature by Adolescents are less likely to consider the long-term late adolescence.⁵ consequences of the actions they choose because The limbic system, which assists in processing and their capacity for thinking and planning for the future managing emotions, is still maturing during is still developing.¹⁵ adolescence.
    [Show full text]
  • A Review and Recommendations for Statistically Evaluating Dual Systems Models of Adolescent Risk Behavior
    Florida International University FIU Digital Commons Center for Children and Families Faculty Publications College of Arts, Sciences & Education 7-25-2019 Mind the gap: A review and recommendations for statistically evaluating Dual Systems models of adolescent risk behavior Samuel N. Meisel Whitney D. Fosco Larry W. Hawk Craig R. Colder Follow this and additional works at: https://digitalcommons.fiu.edu/ccf_fac This work is brought to you for free and open access by the College of Arts, Sciences & Education at FIU Digital Commons. It has been accepted for inclusion in Center for Children and Families Faculty Publications by an authorized administrator of FIU Digital Commons. For more information, please contact [email protected]. Developmental Cognitive Neuroscience 39 (2019) 100681 Contents lists available at ScienceDirect Developmental Cognitive Neuroscience journal homepage: www.elsevier.com/locate/dcn Mind the gap: A review and recommendations for statistically evaluating Dual Systems models of adolescent risk behavior T ⁎ Samuel N. Meisela, , Whitney D. Foscob, Larry W. Hawka, Craig R. Coldera a University at Buffalo, The State University of New York, United States b Center for Children and Families, Florida International University, United States ARTICLE INFO ABSTRACT Keywords: According to Dual Systems models (Casey et al., 2008; Luna and Wright, 2016; Steinberg, 2008), a rapidly- Dual systems models developing socioemotional system and gradually-developing cognitive control system characterize adolescent Imbalance hypothesis brain development. The imbalance hypothesis forwarded by Dual Systems models posits that the magnitude of Sensation seeking the imbalance between these two developing systems should predict the propensity for engaging in a variety of Self-Regulation risk behaviors.
    [Show full text]
  • 237214154.Pdf
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by DigitalCommons@Florida International University Florida International University FIU Digital Commons Center for Children and Families Faculty Publications College of Arts, Sciences & Education 7-25-2019 Mind the gap: A review and recommendations for statistically evaluating Dual Systems models of adolescent risk behavior Samuel N. Meisel Whitney D. Fosco Larry W. Hawk Craig R. Colder Follow this and additional works at: https://digitalcommons.fiu.edu/ccf_fac This work is brought to you for free and open access by the College of Arts, Sciences & Education at FIU Digital Commons. It has been accepted for inclusion in Center for Children and Families Faculty Publications by an authorized administrator of FIU Digital Commons. For more information, please contact [email protected]. Developmental Cognitive Neuroscience 39 (2019) 100681 Contents lists available at ScienceDirect Developmental Cognitive Neuroscience journal homepage: www.elsevier.com/locate/dcn Mind the gap: A review and recommendations for statistically evaluating Dual Systems models of adolescent risk behavior T ⁎ Samuel N. Meisela, , Whitney D. Foscob, Larry W. Hawka, Craig R. Coldera a University at Buffalo, The State University of New York, United States b Center for Children and Families, Florida International University, United States ARTICLE INFO ABSTRACT Keywords: According to Dual Systems models (Casey et al., 2008; Luna and Wright, 2016; Steinberg, 2008), a rapidly- Dual systems models developing socioemotional system and gradually-developing cognitive control system characterize adolescent Imbalance hypothesis brain development. The imbalance hypothesis forwarded by Dual Systems models posits that the magnitude of Sensation seeking the imbalance between these two developing systems should predict the propensity for engaging in a variety of Self-Regulation risk behaviors.
    [Show full text]
  • Executive Functions and Adolescent Risk Taking
    Umeå Universitet Institutionen för psykologi D-uppsats ht10 Executive Functions and Adolescent Risk Taking - A dual system approach Louise Falk and Anna Rickardsson Handledare: Timo Mäntylä Executive Functions and Adolescent Risk Taking - A dual system approach Louise Falk and Anna Rickardsson This study examined the relation between executive functioning (EF) and risk taking in adolescents using a dual system approach. According to the dual system perspective adolescents are prone to engage in risky behaviors as a result of an imbalance between the cognitive control system and the affective system (Casey, Getz & Galvan, 2008; Cohen, 2005; Steinberg, 2008; Van Leijenhorst et al., 2010). We investigated both the possible direct impact EF capacity has on risk taking as well as how the developmental trajectory of EF influences adolescent risk taking. 34 participants between 15-18 years of age from a non-clinical group carried out four computerized tasks. Two tasks measured risk taking, the Balloon Analogue Risk Task (BART) and the Columbia Card Task (CCT) and two tasks measured EF, N-back and the Matrix Monitoring Task. The participants had earlier carried out similar EF tasks in 2004 and 2008. The results showed that risk taking tendencies correlated negatively with performance in the EF tasks. No correlation was found between developmental trajectories of EF and risk taking. An alternative explanation for this result is presented. Our findings indicate support for the dual system perspective and we discuss some practical implications of the dual system way of looking at risk taking. Keywords: executive functions; risk taking; adolescence; dual system Studies show that risk taking increases during adolescence and that adolescents risk taking tendencies can be related to a wide variety of dangerous behaviors such as car accidents, drowning, STDs and smoking (Blum & Nelson Mmari, 2004) as well as a heightened risk for drug- and alcohol use (Silveri, Tzolos, Pimentel & Yugelun, 2004; Bates & Labouvie, 1997).
    [Show full text]
  • Alterations in Adolescent Dopaminergic Systems As a Function of Early T Mother-Toddler Attachment: a Prospective Longitudinal Examination ⁎ Ethan M
    International Journal of Developmental Neuroscience 78 (2019) 122–129 Contents lists available at ScienceDirect International Journal of Developmental Neuroscience journal homepage: www.elsevier.com/locate/ijdevneu Alterations in adolescent dopaminergic systems as a function of early T mother-toddler attachment: A prospective longitudinal examination ⁎ Ethan M. McCormicka, Nancy L. McElwainb,c, Eva H. Telzera, a Department of Psychology and Neuroscience, University of North Carolina, Chapel Hill, NC, 27599, United States b Department of Human Development and Family Studies, University of Illinois at Urbana-Champaign, IL, 61801, United States c The Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, IL, 61801, United States ARTICLE INFO ABSTRACT Keywords: Early experiences have the potential for outsized influence on neural development across a wide number of Adolescence domains. In humans, many of the most important such experiences take place in the context of the mother-child fMRI attachment relationship. Work from animal models has highlighted neural changes in dopaminergic systems as a Attachment function of early care experiences, but translational research in humans has been limited. Our goal was to fill this Dorsal striatum gap by examining the longitudinal associations between early attachment experiences (assessed at 2.5 years) and Risk taking neural responses to risk and rewards during adolescence (assessed at 13 years). Adolescence is a developmental period where sensitivity to rewards has important implications for behavior and long-term outcomes, providing an important window to study potential influences of early attachment experiences on reward processing. In order to address this question, 50 adolescents completed a risk and reward task during an fMRI scan, allowing us to assess differences in neural sensitivity to changes in risk level and reward amount as a function ofearly attachment experiences.
    [Show full text]
  • Adolescent Risk Taking by Enhancing Activity in the Brain’S Reward Circuitry
    Adolescent risk-taking OVERVIEW What emotional and cognitive operations develop during adolescence? This document provides an Adolescence is marked by heightened risk-taking, reward-seeking, and overview of the scientific impulsive behaviors. Some of these behaviors serve a functional purpose as community’s current understanding of why adolescents begin to establish independence from their parents and take on 1 adolescents are more likely adult roles and responsibilities , but they can also result in negative than children or adults to consequences, such as increased rates of mortality and addiction. engage in risk-taking Researchers have identified a number of emotional and cognitive processes that behavior, how this develop during adolescence that are related to the behavioral changes observed behavior is measured in during this time. Processes involved in cognitive control (such as the abilities experimental contexts, and to selectively choose an action or thought based on rules or plans, inhibit how this knowledge can be impulsive behaviors, and hold information in working memory) improve in a applied to support gradual linear fashion from childhood through adolescence and into adulthood. evidence-based practice. People also get better with age at resisting immediate temptation in order to receive a larger reward at a later time (a process known as “temporal discounting of reward” or “delay of gratification”)2. These processes are part of an overarching construct of self-control. The development of these processes has been linked to the maturation of the prefrontal cortex (PFC). In contrast, there is evidence that other processes are at their peak in adolescence, rather than changing in a linear way from childhood to adulthood.
    [Show full text]
  • PDF File of an Unedited Manuscript That Has Been Accepted for Publication
    HHS Public Access Author manuscript Author ManuscriptAuthor Manuscript Author Neurosci Manuscript Author Biobehav Rev. Manuscript Author Author manuscript; available in PMC 2020 June 01. Published in final edited form as: Neurosci Biobehav Rev. 2019 June ; 101: 129–142. doi:10.1016/j.neubiorev.2018.12.024. Incorporating the social context into neurocognitive models of adolescent decision-making: A neuroimaging meta-analysis Jorien van Hoorn Leiden University, Faculty of Social and Behavioral Sciences, Institute of Psychology, Wassenaarseweg 52, 2333AK, Leiden, The Netherlands Holly Shablack, Kristen A. Lindquist, Eva H. Telzer Department of Psychology & Neuroscience, University of North Carolina at Chapel Hill, 235 E. Cameron Avenue, Chapel Hill, NC 27599, USA Abstract Neurobiological models of adolescent decision-making emphasize developmental changes in brain regions involved in affect (e.g., ventral striatum) and cognitive control (e.g., lateral prefrontal cortex). Although social context plays an important role in adolescent decision-making, current models do not discuss brain regions implicated in processing social information (e.g., dorsomedial prefrontal cortex). We conducted a coordinate-based meta-analysis using the Multilevel peak Kernel Density Analysis (MKDA) method to test the hypothesis that brain regions involved in affect, cognitive control, and social information processing support adolescent decision-making in social contexts (N = 21 functional neuroimaging studies; N = 1292 participants). Results indicated that dorsomedial prefrontal cortex, inferior frontal gyrus/insula and ventral striatum are consistently associated with adolescent decision-making in social contexts. Activity within these regions was modulated by the type of social context and social actors involved. Findings suggest including brain regions involved in social information processing into models of adolescent decision-making.
    [Show full text]