Symmetry, Integrability and Geometry: Methods and Applications SIGMA 17 (2021), 031, 27 pages Representations of the Lie Superalgebra osp(1j2n) with Polynomial Bases Asmus K. BISBO a, Hendrik DE BIE b and Joris VAN DER JEUGT a a) Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Krijgslaan 281-S9, B-9000 Gent, Belgium E-mail:
[email protected],
[email protected] b) Department of Electronics and Information Systems, Faculty of Engineering and Architecture, Ghent University, Krijgslaan 281-S8, B-9000 Gent, Belgium E-mail:
[email protected] Received June 30, 2020, in final form March 10, 2021; Published online March 25, 2021 https://doi.org/10.3842/SIGMA.2021.031 Abstract. We study a particular class of infinite-dimensional representations of osp(1j2n). These representations Ln(p) are characterized by a positive integer p, and are the lowest com- ponent in the p-fold tensor product of the metaplectic representation of osp(1j2n). We con- struct a new polynomial basis for Ln(p) arising from the embedding osp(1j2np) ⊃ osp(1j2n). The basis vectors of Ln(p) are labelled by semi-standard Young tableaux, and are expressed as Clifford algebra valued polynomials with integer coefficients in np variables. Using com- binatorial properties of these tableau vectors it is deduced that they form indeed a basis. The computation of matrix elements of a set of generators of osp(1j2n) on these basis vectors requires further combinatorics, such as the action of a Young subgroup on the horizontal strips of the tableau. Key words: representation theory; Lie superalgebras; Young tableaux; Clifford analysis; parabosons 2020 Mathematics Subject Classification: 17B10; 05E10; 81R05; 15A66 1 Introduction In representation theory of Lie algebras, Lie superalgebras or their deformations, there are often three problems to be tackled.