Igm Cellular Dynamics of Memory B Cell

Total Page:16

File Type:pdf, Size:1020Kb

Igm Cellular Dynamics of Memory B Cell Cellular Dynamics of Memory B Cell Populations: IgM + and IgG+ Memory B Cells Persist Indefinitely as Quiescent Cells This information is current as Derek D. Jones, Joel R. Wilmore and David Allman of September 24, 2021. J Immunol published online 5 October 2015 http://www.jimmunol.org/content/early/2015/10/03/jimmun ol.1501365 Downloaded from Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision http://www.jimmunol.org/ • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription by guest on September 24, 2021 Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2015 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. Published October 5, 2015, doi:10.4049/jimmunol.1501365 The Journal of Immunology Cellular Dynamics of Memory B Cell Populations: IgM+ and IgG+ Memory B Cells Persist Indefinitely as Quiescent Cells Derek D. Jones, Joel R. Wilmore, and David Allman Despite their critical role in long-term immunity, the life span of individual memory B cells remains poorly defined. Using a tet- racycline-regulated pulse-chase system, we measured population turnover rates and individual t1/2 of pre-established Ag-induced Ig class-switched and IgM-positive memory B cells over 402 d. Our results indicate that, once established, both IgG-positive and less frequent IgM-positive memory populations are exceptionally stable, with little evidence of attrition or cellular turnover. Indeed, the vast majority of cells in both pools exhibited t1/2 that appear to exceed the life span of the mouse, contrasting dramatically with mature naive B cells. These results indicate that recall Ab responses are mediated by stable pools of extremely long-lived cells, and suggest that Ag-experienced B cells employ remarkably efficient survival mechanisms. The Journal of Immunology, 2015, 195: 000–000. Downloaded from emory B cells mediate robust recall responses by vated cells, there is little information on the steady-state dynamics differentiating rapidly into Ab-secreting plasma cells of established memory B cell populations. M and forming nascent germinal centers (GCs), and by Several groups have since sought to define the life span of serving as effective APCs (1–4). Because secondary Ab responses memory B cells; however, the results have not led to a clear can be induced long after initial Ag encounter (5), it is generally consensus. Using a BCR transgenic system, Anderson et al. (11) http://www.jimmunol.org/ assumed that individual memory B cells are exceptionally long- showed that memory B cell numbers remained constant be- lived. However, current experimental evidence for this idea is tween 8 and 20 wk postimmunization, and based on short-term varied and at times contradictory. Yet, a clear definition of memory in vivo BrdU-labeling experiments estimated the t1/2 of mem- B cell life spans and the mechanisms regulating this process is ory B cells to be 8–10 wk. Given that the accepted t1/2 of naive critical for vaccine design and for developing improved strategies B cells is 7–8 wk (12–14), based on these results it is unclear for combating Ab-mediated pathologies. whether individual memory B cells possess substantially longer In people, numbers of Ag-specific memory B cells remain life spans than their naive counterparts. By contrast, Pape et al. relatively stable for .50 y after smallpox vaccination (6). How- (15) showed immunization of conventional inbred mice with ever, these results do not provide information on the life span of the protein PE induced the generation of long-lived IgM+ and by guest on September 24, 2021 individual cells. Consequently, it is not known whether long-term class-switched (IgG+) memory cells. However, whereas in this maintenance of such populations requires periodic input from system IgM+ memory B cells remained constant for upward of activated B cells, or whether particular clones come to dominate 500 d, class-switched cells decayed with exponential kinetics, memory pools over extended time frames. The former scenario is returning to preimmunization levels by 400 d (15). Why IgM consistent with the work of Barrington et al. (7) wherein persisting and class-switched memory cells might possess distinct t1/2 Ag appeared to promote the generation of nascent memory B cells remains to be determined. These results also appear to differ well after immunization. Similarly, others have proposed that with those of Schittek and Rajewsky (16), who showed that maintenance of serum Ab titers requires the slow, but consistent class-switched memory B cell pools are relatively stable over generation of plasma cells by Ag-activated memory B cells (8, 9). 8 wk. However, the latter workers did not examine decay rates These ideas are consistent with a model put forth earlier by Fearon for extended periods, or attempt to calculate t1/2 for individual et al. (10) proposing that memory B cells employ a stem cell-like cells within this pool. self-renewal program to continuously generate plasma cells. No- To resolve these issues, we employed a nontoxic pulse-chase tably, although each of these scenarios predicts that memory B cell labeling approach. This strategy exploits a tetracycline-regulated pools contain meaningful numbers of activated or recently acti- reporter allele encoding the chromatin protein histone 2B fused to GFP. This approach allowed us to establish decay rates for individual cells within established Ag-specific memory B cell Department of Pathology and Laboratory Medicine, University of Pennsylvania populations without concern for the toxic effects associated School of Medicine, Philadelphia, PA 19104 with extended exposure to DNA nucleotide analogs such as Received for publication June 15, 2015. Accepted for publication September 14, BrdU. To provide appropriate benchmarks for this system, we 2015. also determined decay rates for naive B cell populations. Our This work was supported by National Institutes of Health Grant R01-AI097590 (to results show that whereas naive follicular and marginal zone D.A.) and National Institutes of Health Training Grant T32CA009140 (to D.D.J.). B cells exhibit decay rates consistent with a t1/2 of 13–22 wk, Address correspondence and reprint requests to Dr. David Allman, University of + + Pennsylvania, 36th Street and Hamilton Walk, 230 John Morgan Building, Philadel- decay rates for IgM and IgG memory B cells were mark- phia, PA 19104-6082. E-mail address: [email protected] edly slower, revealing cellular t1/2 greater than the 2-y life Abbreviations used in this article: BV, Brilliant Violet; DOX, doxycycline; GC, span of the mouse. These data illustrate that, once established, germinal center; NP, (4-hydroxy-3-nitrophenyl)acetyl; TACI, transmembrane activa- Ag-specific memory B cell populations are remarkably stable tor and calcium-modulating cyclophilin ligand interactor. and highly enriched for quiescent and exceptionally long-lived Copyright Ó 2015 by The American Association of Immunologists, Inc. 0022-1767/15/$25.00 cells. www.jimmunol.org/cgi/doi/10.4049/jimmunol.1501365 2 MEMORY B CELL LIFE SPAN Materials and Methods ligand interactor (TACI) were PE conjugates purchased from BioLegend. Mice and immunizations Flow cytometric acquisition was performed on a BD LSRII, and analyses were performed using FlowJo 8.8.6 (Tree Star). Multiple files per sample Adult C57BL/6 or C57BL/6-backcrossed Rosa26+/rtTA,Col1A1+/TetOP-H2B-GFP were concatenated prior to data analysis. Cells were sorted for cell culture mice were purchased from Jackson Laboratories and maintained in a with a four-laser FACSAria. specific pathogen-free facility at the University of Pennsylvania, in ac- cordance with institutional guidelines for animal care and welfare. Mice Cell culture were immunized i.p. with 50 mg (4-hydroxy-3-nitrophenyl)acetyl (NP)18- Sorted B cells were cultured for 2–3 d in RPMI 1640 supplemented with chicken g-globulin in alum. To induce transgene expression, mice were 10% FCS and glutamine, antibiotics, HEPES, and 2-ME before analysis maintained on drinking water containing 2 mg/ml doxycycline (DOX; by flow cytometry. LPS (Escherichia coli) was purchased from Sigma- Sigma-Aldrich) supplemented with 10 mg/ml sucrose. Aldrich and used at 10 mg/ml. Flow cytometry Estimation of cellular t1/2 Single-cell suspensions of splenocytes were prepared, depleted of RBCs by When possible, t1/2 for defined cell populations were calculated as fol- hypotonic lysis, and stained with optimal dilutions of the indicated Abs, as lows: t1/2 =(T3 log2)/ log (starting quantity/ending quantity), where T = described (17). All of the following reagents were obtained from eBio- elapsed time. science, unless noted otherwise: PerCP-eFluor710 anti-IgM (II/41); PE anti-CD23 (B3B4; BD Pharmingen); anti-CD138 (281-2; BD Pharmingen); PE-Texas Red anti-B220 (RA3-6B2); PE-Cy7 anti-CD21/35 (eBioBD9), Results anti-CD4 (GK1.5), anti-CD8a (53-6.7), anti–Gr-1 (RB6-8C5), anti-F4/80 Inclusion of the tetracycline analog DOX in the drinking water of (BM8), and anti-TER119 (BioLegend); allophycocyanin anti-CD93 Rosa26+/rtTA, Col1A1+/TetOP-H2B-GFP mice induces the expression (AA4.1); AlexaFluor700 anti-CD38 (90); allophycocyanin-Cy5.5 anti- of Histone2B-GFP fusion proteins. Once generated, Histone2B- Downloaded from CD19 (RM7719; Invitrogen); allophycocyanin-Cy7 anti-IgD (11-26c.2a; GFP proteins incorporate into the chromatin of most cells, BioLegend); and Brilliant Violet (BV; all from BioLegend), 605 anti-CD73 (TY/11.8), BV650 anti-CD80 (16-I0A1), BV785 anti-CD19 (6D5), and allowing the tracking of individual nondividing cells for at least biotin anti–PD-L2 (TY25; BioLegend).
Recommended publications
  • SAHLGRENSKA AKADEMIN Thymic Studies
    Göteborg, 2019 Thymic studies Investigations into the effects of childhood thymectomy, and characterization of thymic B cells and Hassall's corpuscles Akademisk avhandling Som för avläggande av medicine doktorsexamen vid Sahlgrenska akademin, Göteborgs universitet kommer att offentligen försvaras i föreläsningssalen våning 3, Guldhedsgatan 10A, Göteborg Tisdagen den 14e maj, klockan 13.00 av Christina Lundqvist Fakultetsopponent: Professor Ludger Klein Ludwig-Maximilians-Universität, Tyskland Avhandlingen baseras på följande delarbeten I. Gudmundsdottir J*, Lundqvist C*, Ijspeert H, van der Slik E, Óskarsdóttir S, Lindgren S, Lundberg V, Berglund M, Lingman-Framme J, Telemo E, van der Burg M, Ekwall O. T-cell receptor sequencing reveals decreased diversity 18 years after early thymectomy. J Allergy Clin Immunol. 2017 Dec;140(6):1743- 1746.e7. doi: 10.1016/j.jaci.2017.08.002. Epub 2017 Sep 1. * These authors contributed equally to this work. II. Lundqvist C*, Camponeschi A*, Visentini M, Telemo E, Ekwall O‡, Mårtensson IL‡. Switched CD21-/low B cells with an antigen-presenting phenotype in the infant thymus. J Allergy Clin Immunol. 2018 Nov 30. pii: S0091-6749(18)31721- 4. doi: 10.1016/j.jaci.2018.11.019. * These authors contributed equally to this work. ‡ These authors contributed equally to this work. III. Lundqvist C, Lindgren S, Cheuk S, Lundberg V, Berglund M, Thörn K, Telemo E, Ekwall O. Characterization of Hassall's corpuscles in the human thymus. Manuscript SAHLGRENSKA AKADEMIN INSTITUTIONEN FÖR MEDICIN Göteborg, 2019 Thymic studies Investigations into the effects of childhood thymectomy, and characterization of thymic B cells and Hassall's corpuscles Christina Lundqvist Avdelningen för reumatologi och inflammationsforskning, Institutionen för medicin, Sahlgrenska akademin, Göteborgs universitet Abstract This thesis focuses on the human thymus, a primary lymphoid organ responsible for the maturation of T cells.
    [Show full text]
  • Toll-Like Receptor 9 Signaling Acts on Multiple Elements of the Germinal Center to Enhance Antibody Responses
    Toll-like receptor 9 signaling acts on multiple elements PNAS PLUS of the germinal center to enhance antibody responses Derek C. Rookhuizena,1 and Anthony L. DeFrancob,2 aDepartment of Molecular and Cell Biology, Life Sciences Addition, University of California, Berkeley, CA 94720; and bDepartment of Microbiology and Immunology, University of California, San Francisco, CA 94143 Edited by David Tarlinton, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia, and accepted by the Editorial Board June 24, 2014 (received for review December 23, 2013) Recent studies have demonstrated important roles of nucleic acid- where they provide survival and selection cues to antigen-pre- sensing Toll-like receptors (TLRs) in promoting protective antibody senting B cells through T-cell receptor (TCR) recognition of responses against several viruses. To dissect how recognition of antigenic peptide–MHC II complexes, costimulatory ligand– nucleic acids by TLRs enhances germinal center (GC) responses, receptor pairs, and cytokine production (8, 15, 16). Recently, + + mice selectively deleted for myeloid differentiation primary- it has become clear that some follicular CXCR5 CD4 T cells are + response protein 88 (MyD88) in B cells or dendritic cells (DCs) were thymically derived FoxP3 regulatory T cells, referred to as fol- immunized with a haptenated protein antigen bound to a TLR9 licular regulatory T (TFR) cells (17–22). Although their function ligand. TLR9 signaling in DCs led to greater numbers of follicular is poorly understood at this point, TFR cells appear to limit the helper T (TFH) cells and GC B cells, and accelerated production of size of the GC response (17–20).
    [Show full text]
  • B Cells + Interaction
    Human B Cell Activation by Autologous NK Cells Is Regulated by CD40-CD40 Ligand Interaction: Role of Memory B Cells and CD5 + B Cells This information is current as of October 2, 2021. Isaac R. Blanca, Earl W. Bere, Howard A. Young and John R. Ortaldo J Immunol 2001; 167:6132-6139; ; doi: 10.4049/jimmunol.167.11.6132 http://www.jimmunol.org/content/167/11/6132 Downloaded from References This article cites 45 articles, 17 of which you can access for free at: http://www.jimmunol.org/content/167/11/6132.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on October 2, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2001 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. Human B Cell Activation by Autologous NK Cells Is Regulated by CD40-CD40 Ligand Interaction: Role of Memory B Cells and CD5؉ B Cells Isaac R. Blanca,*† Earl W. Bere,* Howard A.
    [Show full text]
  • B Cell Immunity in Solid Organ Transplantation
    REVIEW published: 10 January 2017 doi: 10.3389/fimmu.2016.00686 B Cell Immunity in Solid Organ Transplantation Gonca E. Karahan, Frans H. J. Claas and Sebastiaan Heidt* Department of Immunohaematology and Blood Transfusion, Leiden University Medical Center, Leiden, Netherlands The contribution of B cells to alloimmune responses is gradually being understood in more detail. We now know that B cells can perpetuate alloimmune responses in multiple ways: (i) differentiation into antibody-producing plasma cells; (ii) sustaining long-term humoral immune memory; (iii) serving as antigen-presenting cells; (iv) organizing the formation of tertiary lymphoid organs; and (v) secreting pro- as well as anti-inflammatory cytokines. The cross-talk between B cells and T cells in the course of immune responses forms the basis of these diverse functions. In the setting of organ transplantation, focus has gradually shifted from T cells to B cells, with an increased notion that B cells are more than mere precursors of antibody-producing plasma cells. In this review, we discuss the various roles of B cells in the generation of alloimmune responses beyond antibody production, as well as possibilities to specifically interfere with B cell activation. Keywords: HLA, donor-specific antibodies, antigen presentation, cognate T–B interactions, memory B cells, rejection Edited by: Narinder K. Mehra, INTRODUCTION All India Institute of Medical Sciences, India In the setting of organ transplantation, B cells are primarily known for their ability to differentiate Reviewed by: into long-lived plasma cells producing high affinity, class-switched alloantibodies. The detrimental Anat R. Tambur, role of pre-existing donor-reactive antibodies at time of transplantation was already described in Northwestern University, USA the 60s of the previous century in the form of hyperacute rejection (1).
    [Show full text]
  • Extrafollicular Proliferation of B Cells in the Absence of Follicular Hyperplasia
    Histopathology 2005, 47, 90–100. DOI: 10.1111/j.1365-2559.2005.02173.x Extrafollicular proliferation of B cells in the absence of follicular hyperplasia: a distinct reaction pattern in lymph nodes correlated with primary or recall type responses A Brighenti, M Andrulis,1 E Geissinger,1 S Roth,1 HKMu¨ller-Hermelink1 &TRu¨diger1 Istituto di Anatomia Patologica, Universita` degli Studi di Verona, Verona, Italy, and 1Institute of Pathology, University of Wu¨rzburg, Wu¨rzburg, Germany Date of submission 30 April 2004 Accepted for publication 10 March 2005 Brighenti A, Andrulis M, Geissinger E, Roth S, Mu¨ller-Hermelink H K & Ru¨diger T (2005) Histopathology 47, 90–100 Extrafollicular proliferation of B cells in the absence of follicular hyperplasia: a distinct reaction pattern in lymph nodes correlated to primary or recall type responses Aims: Extrafollicular activation of B cells is rarely cases proliferating cells were mainly IgG+CD27+, i.e. observed in human lymph nodes. The aim of this study derived from class-switched postgerminal centre mem- was to extensively analyse the expression of surface ory B cells. Some of these cells expressed CD30. In the molecules and transcription factors in four such cases, other two cases, immunoglobulin-forming cells were comparing them with follicular B cells and medullary non-class-switched IgM+CD27– B cells, representing a cord plasma cells. primary expansion of naive B cells. Methods and results: Various combinations of B-cell- Conclusions: Extrafollicular B-cell activation is the related surface markers and transcription factors were morphological correlate of rapid B-cell responses that studied by triple immunofluorescence.
    [Show full text]
  • Advanced Laboratory Studies for Primary Immunodeficiency Disorders
    4813: Problem-based Learning Workshop Advanced Laboratory studies for Primary Immunodeficiency Disorders Moderator: Richard Wasserman, MD, PhD Discussion Leader: Roshini Abraham, PhD ● Understand B cell flow analysis in CVID (PBL case) HUMAN PERIPHERAL B CELL DIFFERENTIATION Marginal zone B cells Bone marrow Immature B cells Transitional B cells Naïve B cells Memory B cells Plasmablasts Periphery MARKERS FOR PERIPHERAL B CELL SUBSETS - CURRENT Total B cells: CD19 and/or CD20 Transitional B cells: CD19+CD38+IgM+ Total IgM+ B cells: CD19+IgM+ (includes naïve B cells) Memory B cells: CD19+CD27+ switched memory B cells: CD19+CD27+IgM-IgD- marginal zone B cells: CD19+CD27+IgM+IgD+ IgM-only memory B cells: CD19+CD27+IgM+IgD- Plasmablasts: CD19+CD38+IgM- CD21+ B cells: CD19+CD21+ CD21- B cells: CD19+CD21- ● With newer information, more suitable cellular markers are available for accurate identification of transitional B cells and plasmablasts, in particular, but also for naïve B cells NEWER B CELL MARKERS FOR B CELL SUBSET QUANTITATION Total B cells and B cell subsets can be quantitated in blood using multicolor flow cytometry: Total B cells: CD45+CD19+20+ For B cell subset analysis, the gating strategy uses CD45+19+20+/- (depending on the subset being studied), thus these markers are not specifically repeated in the panel below:- Transitional B cells: T1: CD24hi38hi10+27-21lowIgM+++ T2: CD24hi38hi10+27-21int IgM+++ Naïve B cells: IgM+IgD+27-38-21+++ Memory B cells: Marginal zone B cells: CD27+IgM+IgD+ IgM-only memory: CD27+IgM+IgD- IgD-only
    [Show full text]
  • Signals for B Cell Activation in Antibody Response
    Signals for B cell activation in Antibody response YANG ZHANG A thesis is submitted to the University of Birmingham for the degree of Doctor of Philosophy School of immunity & Infection College of Medicine and Dental Science University of Birmingham June 2010 University of Birmingham Research Archive e-theses repository This unpublished thesis/dissertation is copyright of the author and/or third parties. The intellectual property rights of the author or third parties in respect of this work are as defined by The Copyright Designs and Patents Act 1988 or as modified by any successor legislation. Any use made of information contained in this thesis/dissertation must be in accordance with that legislation and must be properly acknowledged. Further distribution or reproduction in any format is prohibited without the permission of the copyright holder. Abstract Germinal centres (GCs) are the sites where V-gene hypermutation and B cell selection are taking place. Testing specificity and affinity of GC B cell receptor by interaction with antigen on follicular dendritic cells (FDCs) may be an important selection process to select high affinity B cell clone. As antigen on FDC is present in the form of antigen-antibody immune complex, GC B cells are expected to have to compete with antibody to get access antigen. Initially this antibody will be of low affinity. However, during the course of an immune response, this affinity may increase. We have tested this competitive selection model by following the replacement of antibodies in the GC over the course of an immune response. The speed of this replacement is dependent on affinity.
    [Show full text]
  • Vaccine Immunology Claire-Anne Siegrist
    2 Vaccine Immunology Claire-Anne Siegrist To generate vaccine-mediated protection is a complex chal- non–antigen-specifc responses possibly leading to allergy, lenge. Currently available vaccines have largely been devel- autoimmunity, or even premature death—are being raised. oped empirically, with little or no understanding of how they Certain “off-targets effects” of vaccines have also been recog- activate the immune system. Their early protective effcacy is nized and call for studies to quantify their impact and identify primarily conferred by the induction of antigen-specifc anti- the mechanisms at play. The objective of this chapter is to bodies (Box 2.1). However, there is more to antibody- extract from the complex and rapidly evolving feld of immu- mediated protection than the peak of vaccine-induced nology the main concepts that are useful to better address antibody titers. The quality of such antibodies (e.g., their these important questions. avidity, specifcity, or neutralizing capacity) has been identi- fed as a determining factor in effcacy. Long-term protection HOW DO VACCINES MEDIATE PROTECTION? requires the persistence of vaccine antibodies above protective thresholds and/or the maintenance of immune memory cells Vaccines protect by inducing effector mechanisms (cells or capable of rapid and effective reactivation with subsequent molecules) capable of rapidly controlling replicating patho- microbial exposure. The determinants of immune memory gens or inactivating their toxic components. Vaccine-induced induction, as well as the relative contribution of persisting immune effectors (Table 2.1) are essentially antibodies— antibodies and of immune memory to protection against spe- produced by B lymphocytes—capable of binding specifcally cifc diseases, are essential parameters of long-term vaccine to a toxin or a pathogen.2 Other potential effectors are cyto- effcacy.
    [Show full text]
  • B-Cell Development, Activation, and Differentiation
    B-Cell Development, Activation, and Differentiation Sarah Holstein, MD, PhD Nov 13, 2014 Lymphoid tissues • Primary – Bone marrow – Thymus • Secondary – Lymph nodes – Spleen – Tonsils – Lymphoid tissue within GI and respiratory tracts Overview of B cell development • B cells are generated in the bone marrow • Takes 1-2 weeks to develop from hematopoietic stem cells to mature B cells • Sequence of expression of cell surface receptor and adhesion molecules which allows for differentiation of B cells, proliferation at various stages, and movement within the bone marrow microenvironment • Immature B cell leaves the bone marrow and undergoes further differentiation • Immune system must create a repertoire of receptors capable of recognizing a large array of antigens while at the same time eliminating self-reactive B cells Overview of B cell development • Early B cell development constitutes the steps that lead to B cell commitment and expression of surface immunoglobulin, production of mature B cells • Mature B cells leave the bone marrow and migrate to secondary lymphoid tissues • B cells then interact with exogenous antigen and/or T helper cells = antigen- dependent phase Overview of B cells Hematopoiesis • Hematopoietic stem cells (HSCs) source of all blood cells • Blood-forming cells first found in the yolk sac (primarily primitive rbc production) • HSCs arise in distal aorta ~3-4 weeks • HSCs migrate to the liver (primary site of hematopoiesis after 6 wks gestation) • Bone marrow hematopoiesis starts ~5 months of gestation Role of bone
    [Show full text]
  • REVIEW Anti-CD20-Based Therapy of B Cell Lymphoma: State of The
    Leukemia (2002) 16, 2004–2015 2002 Nature Publishing Group All rights reserved 0887-6924/02 $25.00 www.nature.com/leu REVIEW Anti-CD20-based therapy of B cell lymphoma: state of the art C Kosmas1, K Stamatopoulos2, N Stavroyianni2, N Tsavaris3 and T Papadaki4 1Department of Medicine, 2nd Division of Medical Oncology, ‘Metaxa’ Cancer Hospital, Piraeus, Greece; 2Department of Hematology, G Papanicolaou General Hospital, Thessaloniki, Greece; 3Oncology Unit, Department of Pathophysiology, Athens University School of Medicine, Laikon General Hospital, Athens, Greece; and 4Hemopathology Department, Evangelismos Hospital, Athens, Greece Over the last 5 years, studies applying the chimeric anti-CD20 ficulties in identifying a completely tumor-specific target; (2) MAb have renewed enthusiasm and triggered world-wide appli- the impracticality of constructing a unique antibody for each cation of anti-CD20 MAb-based therapies in B cell non-Hodg- kin’s lymphoma (NHL). Native chimeric anti-CD20 and isotope- patient; (3) the development of an immune response to murine 6 labeled murine anti-CD20 MAbs are currently employed with immunoglobulins (human anti-mouse antibodies, HAMA). By encouraging results as monotherapy or in combination with the end of the 1980s enthusiasm for therapeutic MAbs was conventional chemotherapy and in consolidation of remission waning; murine native (unconjugated), radioactively labeled after treatments with curative intent (ie after/ in combination or toxin-conjugated MAbs failed to yield significant clinical with high-dose chemotherapy and hematopoietic stem cell responses; moreover, they were not uncommonly associated rescue). On the available experience, anti-CD20 MAb-based therapeutic strategies will be increasingly integrated in the with toxicities, predominantly in the form of serum sickness treatment of B cell NHL and related malignancies.
    [Show full text]
  • B Cell Responses Against Influenza Viruses
    viruses Review B Cell Responses against Influenza Viruses: Short-Lived Humoral Immunity against a Life-Long Threat Jenna J. Guthmiller 1,* , Henry A. Utset 1 and Patrick C. Wilson 1,2 1 Section of Rheumatology, Department of Medicine, University of Chicago, Chicago, IL 60637, USA; [email protected] (H.A.U.); [email protected] (P.C.W.) 2 Committee on Immunology, University of Chicago, Chicago, IL 60637, USA * Correspondence: [email protected] Abstract: Antibodies are critical for providing protection against influenza virus infections. However, protective humoral immunity against influenza viruses is limited by the antigenic drift and shift of the major surface glycoproteins, hemagglutinin and neuraminidase. Importantly, people are exposed to influenza viruses throughout their life and tend to reuse memory B cells from prior exposure to generate antibodies against new variants. Despite this, people tend to recall memory B cells against constantly evolving variable epitopes or non-protective antigens, as opposed to recalling them against broadly neutralizing epitopes of hemagglutinin. In this review, we discuss the factors that impact the generation and recall of memory B cells against distinct viral antigens, as well as the immunological limitations preventing broadly neutralizing antibody responses. Lastly, we discuss how next-generation vaccine platforms can potentially overcome these obstacles to generate robust and long-lived protection against influenza A viruses. Keywords: influenza viruses; humoral immunity; broadly neutralizing antibodies; imprinting; Citation: Guthmiller, J.J.; Utset, H.A.; hemagglutinin; germinal center; plasma cells Wilson, P.C. B Cell Responses against Influenza Viruses: Short-Lived Humoral Immunity against a Life-Long Threat. Viruses 2021, 13, 1.
    [Show full text]
  • Evasion of Affinity-Based Selection in Germinal Centers by Epstein–Barr Virus LMP2A
    Evasion of affinity-based selection in germinal centers by Epstein–Barr virus LMP2A Takeharu Minamitania,1, Teruhito Yasuia,1,2, Yijie Mab, Hufeng Zhoub, Daisuke Okuzakic, Chiau-Yuang Tsaia, Shuhei Sakakibaraa, Benjamin E. Gewurzb, Elliott Kieffb,2, and Hitoshi Kikutania,2 aDepartment of Molecular Immunology, Research Institute for Microbial Diseases, World Premier International Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan; bDivision of Infectious Disease, Department of Medicine, Microbiology and Immunobiology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115; and cDNA-chip Development Center for Infectious Diseases, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan Contributed by Elliott Kieff, July 27, 2015 (sent for review May 1, 2015) Epstein–Barr virus (EBV) infects germinal center (GC) B cells and B-cell development or augments the differentiation and acti- establishes persistent infection in memory B cells. EBV-infected B vation of antigen-driven B cells (9, 10, 14–16). cells can cause B-cell malignancies in humans with T- or natural In the peripheral blood of persistently infected people, EBV − killer-cell deficiency. We now find that EBV-encoded latent mem- resides exclusively in IgD memory B cells (17). However, in ton- brane protein 2A (LMP2A) mimics B-cell antigen receptor (BCR) signal- sils, EBV is found not only in memory B cells but also in GC and + ing in murine GC B cells, causing altered humoral immune responses IgD resting B cells in which EBNA1, LMP1, and LMP2A are and autoimmune diseases. Investigation of the impact of LMP2A on expressed (17, 18).
    [Show full text]