''Deciphering Tectonic and Climatic Controls on Erosion and Sediment

Total Page:16

File Type:pdf, Size:1020Kb

''Deciphering Tectonic and Climatic Controls on Erosion and Sediment Deciphering tectonic and climatic controls on erosion and sediment transfer in the NW Himalaya A dissertation submitted to the Graduate School of the University of Cincinnati in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY in the Department of Geology of the McMicken College of Arts and Sciences by Elizabeth N. Orr MSc., Royal Holloway, University of London BSc., University of Glasgow 19th of April 2019 Dissertation Committee Dr. Lewis A. Owen Dr. Dylan Ward Dr. Craig Dietsch Dr. Richard Beck Abstract Central to examining orogenic belt formation and evolution are efforts to define the relative roles of tectonics and climate in landscape denudation, and the complex feedbacks that exist between them. Studies in high altitude, high relief mountain settings such as the Himalayan-Tibetan orogen show that these relationships are not completely straightforward and that denudation can scale with tectonics, precipitation and/or topography. Steep north-south trending gradients in elevation, relief, rock uplift and precipitation make the NW Himalaya an excellent location to examine these controls of landscape denudation. As a first step to help elucidate the erosional processes involved in sediment mobilization from primary sources at catchment headwaters, rates of lateral rockwall slope erosion are defined for a suite of 12 catchments between the Baltistan region of Pakistan and Garhwal, northern India. These rates are derived from 10Be cosmogenic nuclide concentrations in medial moraine sediment, and affirm that between ~0.02 and 7 m of lateral slope erosion through periglacial processes can be achieved across a single millennium in this setting, and >2 km when extrapolated for the whole Quaternary. This erosion is sufficient to influence topographic change at the catchment head, and emphasizes the importance of localized erosion when evaluating broader landscape change. Statistically significant relationships are apparent between slope erosion and apatite fission track cooling ages and inferred rates of exhumation. The distribution and magnitude of these latter records of denudation are argued to be the result of the Indo- Eurasian convergence and the geometry and shortening of the Main Himalayan Thrust. Rockwall slope erosion in the NW Himalaya is therefore found to be primarily governed by tectonically driven rock uplift, with precipitation as a secondary control. ii To examine the nature and timing of sediment transfer from primary sources to transient sinks, such as landforms and sediment deposits, 18 new and 29 recalculated 10Be fan surface exposure ages define the timing of surface abandonment for a suite of 10 fans across the Greater Himalaya ranges in Ladakh, Lahul, Kullu and Garhwal in northern India. The fans are found to evolve during interglacials and periods of deglaciation, which are associated with a higher intensity monsoon. As glacial conditions or periods of relative cooling and increasing aridity become reestablished, aggradation ceases or becomes more restricted and the fan surfaces stabilize and/or are abandoned. A regional temporal framework of landform abandonment/aggradation cessation and incision events for the monsoon-influenced western Himalaya ranges (MWHR) and the semi- arid western Himalaya ranges (SWHR) are defined for the NW Himalaya. The timing of regional landform abandonment events for the MWHR and SWHR is consistent with the fan record, occuring during periods of relative cooling and increasing aridity. Regional incision events are less straightforward as they are recognized across various climatic conditions, likely due to the ubiquitous nature of erosion in these active alpine settings. A preservation bias in favor of Holocene geomorphic evidence in the MWHR is due to elevated rates of erosion in this region, which rapidly rework and overprint landforms and sediment deposits. Lower rates of erosion in the SWHR, assist in the preservation of geomorphic evidence throughout the last glacial. Climate and climate-driven processes largely moderate sediment transfer in the NW Himalaya; however, the distribution of precipitation and temperature are themselves influenced by the structural evolution of the orogen. Although the primary controls of erosion and sediment transfer in this study are shown to be rock uplift and climate respectively, this research overall argues that the various components of Himalayan mountain range evolution cannot each be governed by one mechanism alone. Instead, the coupling between tectonics and climate is central to examining processes of erosion and sediment transfer in this setting and in evaluating broad trends in landscape change. The specific iii nature and rates of landscape change on the catchment scale are shown to be influenced by longstanding catchment-specific feedbacks between topography, geology, surface processes, climate and tectonics, in addition to regional forcings on the mountain range and/or orogen scale. Catchment-wide landscape change can be viewed as a continuum of sediment transfer cycles, which trace sediment from a source to its eventual evacuation from the catchment. Each step within a transfer cycle is moderated by a set of preconditioning factors, and one or more forcing factor. This approach emphasizes the important contribution of preexisting landscape dynamics and variability in external forcings over space and time, in the landscape development of high altitude, high relief mountains ranges of the Himalayan-Tibetan orogen. iv v ‘When we try to pick out anything by itself, we find it hitched to everything else in the universe’ − John Muir (1838−1914) vi Acknowledgments My PhD program, research projects and associated field campaigns have been funded by the Department of Geology at the University of Cincinnati, PRIME Laboratories at Purdue University, National Geographic, the Geological Society of America and the UC Graduate Student Governance Association. I would like to extend my sincere thanks to my primary advisor Professor Lewis Owen for his invaluable instruction and continued support throughout this process. I would like to acknowledge my committee members, Dr. Dylan Ward, Dr. Craig Dietsch and Dr. Richard Beck who have generously shared their time and expertise with me over the past four years. Heart felt thanks are extended to Sourav Saha for his support, experience and humor in the field and out, and to Sarah Hammer for her instruction and friendship in the Geochronology Laboratories. I would also like to acknowledge Dr. Jeff Havig, Dr. Tom Lowell, Dr. Aaron Diefendorf and Jason Cesta for constructive conversations about research projects and career. Thanks are also extended to Dr. Marc Caffee for comments on iterations of manuscripts. Many thanks to Discover Ladakh Adventure Tours and Travel for providing vital logistical support across three field campaigns. In my four years at the University of Cincinnati, my path has crossed countless people who have contributed to my research, and professional and personal development (sadly, too many people to mention individually). I would therefore just like to thank the students, postdocs, staff and faculty of the Department of Geology, past and present, for making this process as enjoyable and rewarding as it has been. Finally, none of this would have been possible without the unwavering support, generosity and patience of my friends and family on either side of the Atlantic Ocean, and my partner. Thank you for putting up with me. I would like to dedicate this dissertation research to my grandmother – for had she lived in a different time and under different circumstances, she would have done this and more. vii Table of Contents page Abstract…………………………………………………………………………………………….ii Acknowledgments………………………………………………………………………………. vii 1. Introduction…………………………………………………………………………………….1 2. Regional setting………………………………………………………………………………...4 3. Methodology……………………………………………………………………………………6 3.1 Remote sensing and terrain analyses………………………………………………….6 3.2 Sedimentological analyses…………………………………………………………….6 3.3 Cosmogenic nuclide analyses…………………………………………………………7 3.4 Statistical analyses…………………………………………………………………….8 4. Foci summaries…………………………………………………………………………………9 4.1. Focus 1. ‘Rates of periglacial rockwall slope erosion in the upper Bhagirathi catchment, Garhwal, northern India’.……………………………………………………………………………….9 4.2. Focus 2. ‘Rockwall slope erosion in the NW Himalaya’…………………………………….11 4.3. Focus 3. ‘Climate driven late Quaternary fan surface abandonment in the NW Himalaya’…….....13 4.4. Focus 4. ‘Defining controls of regional geomorphic change in the NW Himalaya’……………...14 5. Discussion ……………………………………………………………………………………..15 5.1. Controls of landscape change……………………………………………………….15 5.2. Cycles of Himalayan catchment sediment transfer………………………………….17 6. Future directions……………………………………………………………………………...18 7. References……………………………………………………………………………………..23 8. Manuscript 1…………………………………………………………………………………..30 9. Manuscript 2…………………………………………………………………………………..90 10. Manuscript 3………………………………………………………………………………..142 11. Supplementary items………………………………………………………………………182 11.1 Supplementary geomorphic maps…………………………………………………182 11.2. Supplementary items 1 (Manuscript 1)…………………………………………...184 11.3. Supplementary items 2 (Manuscript 2)…………………………………………...198 11.4. Supplementary items 3 (Manuscript 3)…………………………………………...202 viii 1. Introduction Much attention has been paid to understanding the large-scale coupling between tectonic and climatic processes in the geology and dynamics of orogenic
Recommended publications
  • Table of Contents
    Table of Contents Acknowledgements xi Foreword xii I. EXECUTIVE SUMMARY XIV II. INTRODUCTION 20 A. The Context of the SoE Process 20 B. Objectives of an SoE 21 C. The SoE for Uttaranchal 22 D. Developing the framework for the SoE reporting 22 Identification of priorities 24 Data collection Process 24 Organization of themes 25 III. FROM ENVIRONMENTAL ASSESSMENT TO SUSTAINABLE DEVELOPMENT 34 A. Introduction 34 B. Driving forces and pressures 35 Liberalization 35 The 1962 War with China 39 Political and administrative convenience 40 C. Millennium Eco System Assessment 42 D. Overall Status 44 E. State 44 F. Environments of Concern 45 Land and the People 45 Forests and biodiversity 45 Agriculture 46 Water 46 Energy 46 Urbanization 46 Disasters 47 Industry 47 Transport 47 Tourism 47 G. Significant Environmental Issues 47 Nature Determined Environmental Fragility 48 Inappropriate Development Regimes 49 Lack of Mainstream Concern as Perceived by Communities 49 Uttaranchal SoE November 2004 Responses: Which Way Ahead? 50 H. State Environment Policy 51 Institutional arrangements 51 Issues in present arrangements 53 Clean Production & development 54 Decentralization 63 IV. LAND AND PEOPLE 65 A. Introduction 65 B. Geological Setting and Physiography 65 C. Drainage 69 D. Land Resources 72 E. Soils 73 F. Demographical details 74 Decadal Population growth 75 Sex Ratio 75 Population Density 76 Literacy 77 Remoteness and Isolation 77 G. Rural & Urban Population 77 H. Caste Stratification of Garhwalis and Kumaonis 78 Tribal communities 79 I. Localities in Uttaranchal 79 J. Livelihoods 82 K. Women of Uttaranchal 84 Increased workload on women – Case Study from Pindar Valley 84 L.
    [Show full text]
  • Mail: [email protected] ) and Marco ([email protected] ), Switzerland
    Ladakh 25 Febraury – 14 March 2020 Paola (mail: [email protected] ) and Marco ([email protected] ), Switzerland We went to Ladakh especially for the snow leopard, and in winter because was said that is the best period to see the animal. Practicalities We (Marco and Paola) generally take “last minute” decisions for our travels and also this time we began searching the web in December for a local company. We found Exotic Travel (Phunchok Tzering, www.Exoticladakh.com) in Leh; there were good comments in the web about the company, we took contact and in less than 2 weeks everything was organized, and at a reasonable price. At this point we want to comment about prices and the using of foreign companies. Has been more than 30 years that we travel around the world, especially for birding, always using local companies or even contacting directly local guides, and we never had bad experiences. Through other birders or mammal-watchers’ trip reports (www.mammalwatching.com) is now quite easy to gather comments on local guides and local companies and so finding a reliable one. If you are able to arrive by your own at the destination (this time Leh), from there you can use the local company, saving good money and being freer. Anyway, foreign companies often relay on local companies for the final organisation in loco. Many young people could not afford the price of a foreign company but could using the local one! If you are just two, or travelling with known friends, you can also be more flexible and still adapt the itinerary as the trip unrolls.
    [Show full text]
  • Gori River Basin Substate BSAP
    A BIODIVERSITY LOG AND STRATEGY INPUT DOCUMENT FOR THE GORI RIVER BASIN WESTERN HIMALAYA ECOREGION DISTRICT PITHORAGARH, UTTARANCHAL A SUB-STATE PROCESS UNDER THE NATIONAL BIODIVERSITY STRATEGY AND ACTION PLAN INDIA BY FOUNDATION FOR ECOLOGICAL SECURITY MUNSIARI, DISTRICT PITHORAGARH, UTTARANCHAL 2003 SUBMITTED TO THE MINISTRY OF ENVIRONMENT AND FORESTS GOVERNMENT OF INDIA NEW DELHI CONTENTS FOREWORD ............................................................................................................ 4 The authoring institution. ........................................................................................................... 4 The scope. .................................................................................................................................. 5 A DESCRIPTION OF THE AREA ............................................................................... 9 The landscape............................................................................................................................. 9 The People ............................................................................................................................... 10 THE BIODIVERSITY OF THE GORI RIVER BASIN. ................................................ 15 A brief description of the biodiversity values. ......................................................................... 15 Habitat and community representation in flora. .......................................................................... 15 Species richness and life-form
    [Show full text]
  • Shivling Trek in Garhwal Himalaya 2013
    Shivling Trek in Garhwal Himalaya 2013 Area: Garhwal Himalayas Duration: 13 Days Altitude: 5263 mts/17263 ft Grade: Moderate – Challenging Season: May - June & Aug end – early Oct Day 01: Delhi – Haridwar (By AC Train) - Rishikesh (25 kms/45 mins approx) In the morning take AC Train from Delhi to Haridwar at 06:50 hrs. Arrival at Haridwar by 11:25 hrs, meet our guide and transfer to Rishikesh by road. On arrival check in to hotel. Evening free to explore the area. Dinner and overnight stay at the hotel. Day 02: Rishikesh - Uttarkashi (1150 mts/3772 ft) In the morning after breakfast drive to Uttarkashi via Chamba. One can see a panoramic view of the high mountain peaks of Garhwal. Upon arrival at Uttarkashi check in to hotel. Evening free to explore the surroundings. Dinner and overnight stay at the hotel. Day 03: Uttarkashi - Gangotri (3048 mts/9998 ft) In the morning drive to Gangotri via a beautiful Harsil valley. Enroute take a holy dip in hot sulphur springs at Gangnani. Upon arrival at Gangotri check in to hotel. Evening free to explore the beautiful surroundings. Dinner and overnight stay in hotel/TRH. Harsil: Harsil is a beautiful spot to see the colors of the nature. The walks, picnics and trek lead one to undiscovered stretches of green, grassy land. Harsil is a perfect place to relax and enjoy the surroundings. Sighting here includes the Wilson Cottage, built in 1864 and Sat Tal (seven Lakes). The adventurous tourists have the choice to set off on various treks that introduces them to beautiful meadows, waterfalls and valleys.
    [Show full text]
  • A Case Study of Gilgit-Baltistan
    The Role of Geography in Human Security: A Case Study of Gilgit-Baltistan PhD Thesis Submitted by Ehsan Mehmood Khan, PhD Scholar Regn. No. NDU-PCS/PhD-13/F-017 Supervisor Dr Muhammad Khan Department of Peace and Conflict Studies (PCS) Faculties of Contemporary Studies (FCS) National Defence University (NDU) Islamabad 2017 ii The Role of Geography in Human Security: A Case Study of Gilgit-Baltistan PhD Thesis Submitted by Ehsan Mehmood Khan, PhD Scholar Regn. No. NDU-PCS/PhD-13/F-017 Supervisor Dr Muhammad Khan This Dissertation is submitted to National Defence University, Islamabad in fulfilment for the degree of Doctor of Philosophy in Peace and Conflict Studies Department of Peace and Conflict Studies (PCS) Faculties of Contemporary Studies (FCS) National Defence University (NDU) Islamabad 2017 iii Thesis submitted in fulfilment of the requirement for Doctor of Philosophy in Peace and Conflict Studies (PCS) Peace and Conflict Studies (PCS) Department NATIONAL DEFENCE UNIVERSITY Islamabad- Pakistan 2017 iv CERTIFICATE OF COMPLETION It is certified that the dissertation titled “The Role of Geography in Human Security: A Case Study of Gilgit-Baltistan” written by Ehsan Mehmood Khan is based on original research and may be accepted towards the fulfilment of PhD Degree in Peace and Conflict Studies (PCS). ____________________ (Supervisor) ____________________ (External Examiner) Countersigned By ______________________ ____________________ (Controller of Examinations) (Head of the Department) v AUTHOR’S DECLARATION I hereby declare that this thesis titled “The Role of Geography in Human Security: A Case Study of Gilgit-Baltistan” is based on my own research work. Sources of information have been acknowledged and a reference list has been appended.
    [Show full text]
  • Lulc Classifications Using Gis and Remote Sensing Techniques in Gori Ganga Watershed of Kumaun Himalaya, Uttarakhand
    EPRA International Journal of Agriculture and Rural Economic Research (ARER)- Peer-Reviewed Journal Volume: 9 | Issue: 8| August 2021 | Journal DOI: 10.36713/epra0813| Impact Factor SJIF (2021) : 7.604| ISSN: 2321 - 7847 LULC CLASSIFICATIONS USING GIS AND REMOTE SENSING TECHNIQUES IN GORI GANGA WATERSHED OF KUMAUN HIMALAYA, UTTARAKHAND D. S. Parihar and Deepak Department of Geography, Kumaun University, S.S.J. Campus, Almora, Uttarakhand (India) 263601. ABSTRACT Present research paper is an attempt to classifications of the Land Use Land Cover (LULC) by using supervised classification in the Gori Ganga watershed of Kumaun Himalaya, Uttarakhand (India). Geographical distribution of LULC status of Gori Ganga watershed in 2018 about 26.50% (580.86 km2) area was covered with snow, 3.85% (84.33 km2) area was covered with glacier, 1.93% (42.39 km2) area was covered with barren land, 5.63% (123.31 km2) area was covered with Sand cover area, 10.02% (219.53 km2) area was covered with water body, 50.39% (1104.49 km2) area was covered with vegetation and 1.68% (36.72 km2) area was covered with agriculture area. A brief account of these results it’s discussed in the following paragraphs. KEY WORD: LULC, Gori Ganga Watershed, Kumaun Himalaya, GIS and Remote Sensing 1.0 INTRODUCTION maximum likelihood algorithm of supervised The most commonly terms used are basin, classification was used for pixel clustering. Identified catchment and watershed. In the glossary of three types of LULC were in the study area like geographical terms, a basin is “the whole tract of a vegetation, built-up land and others (Rawat et al., country drained by a river and its tributaries” (Stamp 2013).
    [Show full text]
  • Timber Line Delineations Using NDVI Techniques in the Gori Ganga Watershed of Kumaun Himalaya, Uttarakhand
    Quest Journals Journal of Research in Environmental and Earth Sciences Volume 7 ~ Issue 4 (2021) pp: 40-45 ISSN(Online) :2348-2532 www.questjournals.org Research Paper Timber Line Delineations Using NDVI Techniques in the Gori Ganga Watershed of Kumaun Himalaya, Uttarakhand D. S. Parihar Department of Geography, Kumaun University, S.S.J Campus, Almora (Uttarakhand), India-263601 ABSTRACT Present research paper is an attempt to delineations the timber line by using Normalized Difference Vegetation Index (NDVI) in the Gori Ganga watershed, Kumaun Himalaya, Uttarakhand (India). The objective of the present study is delineation of vegetation lines of the Gori Ganga watershed in time space. For the study of detect timber line used of Landsat-5, 8 and Cartosat-1 satellite imageries of three different time periods like Landsat-5 Thematic Mapper (TM) of 1990, Landsat-5 (TM) of 1999 and Landsat-8 Operational Land Imager and Thermal Infrared Sensor (OLI and TIRS) of 2016 and Cartosat-1 of 2008. Geographical distribution of timber line average height reveals that in 1990 was about 3516.11 m (± 369 m) which varies between 1729 m to 4560 m, in 1999 was about 3680.69 m (± 362 m) which varies between 2654 m to 6093 m and in 2016 was about 4060.58 m (± 619 m) which varies between 3125 m to 5185 m. KEY WORDS: NDVI Techniques, Timber line, Remote Sensing and GIS Received 25 April, 2021; Revised: 06 May, 2021; Accepted 08 May, 2021 © The author(s) 2021. Published with open access at www.questjournals.org I. INTRODUCTION Ecosystem provides various forms of services through payment mechanism which contributes surplus money to national income and supports to improve the local livelihoods (Khanal et al., 2014).
    [Show full text]
  • No Longer Tracking Greenery in High Altitudes: Pastoral Practices of Rupshu Nomads and Their Implications for Biodiversity Conse
    Singh et al. Pastoralism: Research, Policy and Practice 2013, 3:16 http://www.pastoralismjournal.com/content/3/1/16 RESEARCH Open Access No longer tracking greenery in high altitudes: Pastoral practices of Rupshu nomads and their implications for biodiversity conservation Navinder J Singh1,2,3*, Yash Veer Bhatnagar2, Nicolas Lecomte4, Joseph L Fox1 and Nigel G Yoccoz1 Abstract Nomadic pastoralism has thrived in Asia’s rangelands for several millennia by tracking seasonal changes in forage productivity and coping with a harsh climate. This pastoralist lifestyle, however, has come under intense transformations in recent decades due to socio-political and land use changes. One example is of the high-altitude trans-Himalayan rangelands of the Jammu and Kashmir State in northern India: major socio-political reorganisation over the last five decades has significantly impacted the traditional pasture use pattern and resources. We outline the organizational transformations and movement patterns of the Rupshu pastoralists who inhabit the region. We demonstrate the changes in terms of intensification of pasture use across the region as well as a social reorganisation due to accommodation of Tibetan refugees following the Sino-Indian war in 1961 to 1962. We focus in particular on the Tso Kar basin - an important socio-ecological system of livestock herding and biodiversity in the eastern Ladakh region. The post-war developmental policies of the government have contributed to these modifications in traditional pasture use and present a threat to the rangelands as well as to the local biodiversity. In the Tso Kar basin, the number of households and livestock has almost doubled while pasture area has declined by half.
    [Show full text]
  • India L M S Palni, Director, GBPIHED
    Lead Coordinator - India L M S Palni, Director, GBPIHED Nodal Person(s) – India R S Rawal, Scientist, GBPIHED Wildlife Institute of India (WII) G S Rawat, Scientist Uttarakhand Forest Department (UKFD) Nishant Verma, IFS Manoj Chandran, IFS Investigators GBPIHED Resource Persons K Kumar D S Rawat GBPIHED Ravindra Joshi S Sharma Balwant Rawat S C R Vishvakarma Lalit Giri G C S Negi Arun Jugran I D Bhatt Sandeep Rawat A K Sahani Lavkush Patel K Chandra Sekar Rajesh Joshi WII S Airi Amit Kotia Gajendra Singh Ishwari Rai WII Merwyn Fernandes B S Adhikari Pankaj Kumar G S Bhardwaj Rhea Ganguli S Sathyakumar Rupesh Bharathi Shazia Quasin V K Melkani V P Uniyal Umesh Tiwari CONTRIBUTORS Y P S Pangtey, Kumaun University, Nainital; D K Upreti, NBRI, Lucknow; S D Tiwari, Girls Degree College, Haldwani; Girija Pande, Kumaun University, Nainital; C S Negi & Kumkum Shah, Govt. P G College, Pithoragarh; Ruchi Pant and Ajay Rastogi, ECOSERVE, Majkhali; E Theophillous and Mallika Virdhi, Himprkrthi, Munsyari; G S Satyal, Govt. P G College Haldwani; Anil Bisht, Govt. P G College Narayan Nagar CONTENTS Preface i-ii Acknowledgements iii-iv 1. Task and the Approach 1-10 1.1 Background 1.2 Feasibility Study 1.3 The Approach 2. Description of Target Landscape 11-32 2.1 Background 2.2 Administrative 2.3 Physiography and Climate 2.4 River and Glaciers 2.5 Major Life zones 2.6 Human settlements 2.7 Connectivity and remoteness 2.8 Major Land Cover / Land use 2.9 Vulnerability 3. Land Use and Land Cover 33-40 3.1 Background 3.2 Land use 4.
    [Show full text]
  • Rockwall Slope Erosion in the Northwestern Himalaya 10.1029/2020JF005619 Elizabeth N
    RESEARCH ARTICLE Rockwall Slope Erosion in the Northwestern Himalaya 10.1029/2020JF005619 Elizabeth N. Orr1 , Lewis A. Owen2, Sourav Saha3, Sarah J. Hammer4, and Marc W. Caffee5,6 Key Points: 1GFZ German Research Centre for Geosciences, Potsdam, Germany, 2Department of Marine, Earth, and Atmospheric • Rates of periglacial rockwall Sciences, North Carolina State University, Raleigh, NC, USA, 3Department of Earth, Planetary, and Space Sciences, slope erosion are defined for the 4 northwestern Himalaya using University of California, Los Angeles, CA, USA, Department of Geology, University of Cincinnati, Cincinnati, OH, cosmogenic 10Be concentrations in USA, 5Department of Physics, Purdue University, West Lafayette, IN, USA, 6Department of Earth, Atmospheric and sediment from medial moraines Planetary Sciences, Purdue University, West Lafayette, IN, USA • Tectonically driven uplift offers a first-order control on patterns of rockwall slope erosion • Precipitation and temperature play Abstract Rockwall slope erosion is an important component of alpine landscape evolution, yet secondary roles in this erosion the role of climate and tectonics in driving this erosion remains unclear. We define the distribution and magnitude of periglacial rockwall slope erosion across 12 catchments in Himachal Pradesh and Jammu 10 Correspondence to: and Kashmir in the Himalaya of northern India using cosmogenic Be concentrations in sediment from 4 4 E. N. Orr, medial moraines. Beryllium-10 concentrations range from 0.5 ± 0.04 × 10 to 260.0 ± 12.5 × 10 at/g SiO2, [email protected] which yield erosion rates between 7.6 ± 1.0 and 0.02 ± 0.004 mm/a. Between 0.02 and 8 m of rockwall slope erosion would be possible in this setting across a single millennium, and∼ >2 km when∼ extrapolated Citation: for the Quaternary period.
    [Show full text]
  • Unit–3 CLIMATE
    B.S/B.Ed./MSC Level Geography of Pakistan-I CODE No: 4655 / 8663 / 9351 Department of Pakistan Studies Faculty of Social Sciences & Humanities ALLAMA IQBAL OPEN UNIVERSITY ISLAMABAD i (All rights Reserved with the Publisher) First Printing ................................ 2019 Quantity ....................................... 5000 Printer........................................... Allama Iqbal Open University, Islamabad Publisher ...................................... Allama Iqbal Open University, Islamabad ii COURSE TEAM Chairperson: Prof. Dr. Samina Awan Course Coordinator: Dr. Khalid Mahmood Writers: Mr. Muhammad Javed Mr. Arshad Iqbal Wani Mrs. Zunaira Majeed Mr. Muhammad Haroon Mrs. Iram Zaman Mrs. Seema Saleem Mr. Usman Latif Reviewer: Dr. Khalid Mahmood Editor: Fazal Karim Layout Design: Asrar ul Haque Malik iii FOREWORD Allama Iqbal Open University has the honour to present various programmes from Metric to PhD. level for those who are deprived from regular education due to their compulsions. It is obviously your own institution that provides you the education facility at your door step. Allama Iqbal Open University is the unique in Pakistan which provides education to all citizens; without any discrimination of age, gender, ethnicity, region or religion. It is no doubt that our beloved country had been facing numerous issues since its creation. The initial days were very tough for the newly state but with the blessings of Allah Almighty, it made progress day by day. However, due to conspiracy of external powers and some weaknesses of our leaders, the internal situation of East Pakistan rapidly changed and the end was painful as we lost not only the land but also our Bengali brothers. After the war of 1971, the people and leaders of Pakistan were forced to rethink the future of the remaining country.
    [Show full text]
  • Nanda Devi – Milam Valley, India
    NANDA DEVI – MILAM VALLEY, INDIA Land-only duration: 22 days Grade: Moderate Trekking days: 15 days Max altitude: 3835m (option to 4500m) 2015 price: contact us We can run this on dates to suit you for a minimum group size of 1. Dates: The 2 main trekking seasons are Spring and Autumn. Contact us at [email protected] with your preferred dates tel (within UK: 01244 940 940 tel (outside UK): +44 1244 940 940 email: [email protected] web: www.trekmountains.com skype ID: trekMountains The twin peaks of 7818m Nanda Devi form India’s second highest mountain, situated in a remote region bordering Nepal and Tibet. The alpine glaciers, high valleys and flower- strewn meadows on the eastern approach to this magnificent mountain are an enticing world apart, and ideal for trekking. The area remains one of the lesser trod regions of the Indian Himalaya, - welcome news for the connoisseur trekker. A fascinating drive from Delhi across the northern plains of India brings us to the foothills of the Himalaya and border region of Kumaon. Our trek begins at the quiet hill town of Munsiari where we descend to the lush Milam Valley, whose semi-tropical rainforests are alive with huge butterflies, exotic birds and large lizards. Once an important trade route, the broad trail was built by the British and is still used by local people to travel from village to village. Following the gorge of the Gori Ganga, we weave high above its foaming waters, climbing steadily among rhododendron forests, which support a botanist’s paradise of ferns orchids, peonies and hydrangea.
    [Show full text]