Intersection of FOXO- and RUNX1-Mediated Gene Expression

Total Page:16

File Type:pdf, Size:1020Kb

Intersection of FOXO- and RUNX1-Mediated Gene Expression Intersection of FOXO- and RUNX1-mediated gene PNAS PLUS expression programs in single breast epithelial cells during morphogenesis and tumor progression Lixin Wanga,1, Joan S. Bruggeb, and Kevin A. Janesa,1,2 aDepartment of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908; and bDepartment of Cell Biology, Harvard Medical School, Boston, MA 02115 Edited by Yoshiaki Ito, Institute of Molecular and Cell Biology, Singapore, and accepted by the Editorial Board July 28, 2011 (received for review March 3, 2011) Gene expression networks are complicated by the assortment of be obtained with conventional oligonucleotide microarrays after regulatory factors that bind DNA and modulate transcription PCR-based amplification of cDNA from 10 microdissected cells combinatorially. Single-cell measurements can reveal biological (2, 22, 23). By surveying hundreds of cells overall, stochastic pro- mechanisms hidden by population averages, but their value has filing captures the most reproducible cell to cell expression het- not been fully explored in the context of mRNA regulation. Here, erogeneities in a cell population. Individual transcripts that are we adapted a single-cell expression profiling technique to exam- nonuniformly expressed are then organized by the pattern of their ine the gene expression program downstream of Forkhead box O expression fluctuations to reveal coordinated single-cell programs. (FOXO) transcription factors during 3D breast epithelial acinar mor- In this work, we report a detailed analysis centering around phogenesis. By analyzing patterns of mRNA fluctuations among one class of transcription factors—the FOXOs—whose expres- individual matrix-attached epithelial cells, we found that a subset sion was found to be strongly nonuniform in our initial study of FOXO target genes was jointly regulated by the transcription (2). FOXO proteins are a subgroup of the Forkhead family of factor Runt-related transcription factor 1 (RUNX1). Knockdown of transcriptional regulators that play important roles in cell cycle RUNX1 causes hyperproliferation and abnormal morphogenesis, arrest, stress responses, and cell death (24). All FOXO isoforms both of which require normal FOXO function. Down-regulating recognize a common (A/G)TAAA(T/C)A DNA consensus, which RUNX1 and FOXOs simultaneously causes widespread oxidative is frequently observed in the extended promoters of many genes stress, which arrests proliferation and restores normal acinar mor- (SI Appendix, Table S1) (25, 26). However, FOXOs are often phology. In hormone-negative breast cancers lacking human epi- not redundant, and isoform-specific functions have been widely HER2 fi fi dermal growth factor receptor 2 ( ) ampli cation, we nd that documented (27–29). FOXO transcriptional activity is regulated RUNX1 down-regulation is strongly associated with up-regulation both positively and negatively by phosphorylation and ubiquiti- of FOXO1, which may be required to support growth of RUNX1- nation (30–34). Although FOXOs predominantly function as tran- negative tumors. The coordinate function of these two tumor sup- scriptional activators, they may also act as repressors in certain pressors may provide a failsafe mechanism that inhibits cancer- SYSTEMS BIOLOGY contexts (35). Last, FOXOs can interact with at least a dozen progression. other transcription factors, resulting in altered binding specificity and transcriptional activity (SI Appendix, Table S2) (36). Thus, in heterogeneity | triple-negative | stochastic | systems biology many ways, FOXO proteins are an archetype for the complexity that lies between signal transduction and gene expression. enetically identical mammalian cells often display patterns Here, we asked whether a focused examination of endogenous – Gof gene protein expression that are profoundly different (1 FOXOs by stochastic profiling would yield insights into their 3). Cell to cell heterogeneity has been recognized in cancer for function at the network level. Instead of using constitutively nearly half a century (4, 5). However, only lately have heteroge- active FOXO alleles to homogenize signaling (SI Appendix, neous cell populations been exploited as a means for uncover- Table S3), we quantified fluctuations in FOXO expression and – ing new mechanisms of biological regulation (6 8). With recently activity that occur naturally during 3D organotypic culture of developed techniques that can interrogate single-cell states, we breast epithelial cells (2, 37). By mapping these fluctuations onto are now poised to embrace heterogeneity rather than average it – a panel of FOXO target genes, we discovered that the measured out (9 11). FOXO expression signature divides into two groups with distinct Nonuniformities emerge at the earliest steps of gene expression – single-cell patterns. One of these groups receives a key second (12 14). Therefore, measurements of mRNA expression hetero- input from another transcription factor, RUNX1, which is var- geneity may help to uncover new biology if combined with systems iably active. RUNX1 is required for the proper timing of pro- approaches for analysis (11). This possibility offers a particularly liferative suppression in 3D spheroids, and its stable knockdown rich opportunity for unraveling transcriptional networks, where results in abnormal hyperproliferative acinar structures. In- complex combinations of factors work together to mediate pro- terestingly, this phenotype requires native single-cell regulation grams of gene expression (15). Early pioneering studies initially focused on describing the fundamental kinetics and statistics of transcription in single cells (1, 12–14, 16–19). Now, an open question is how methods that provide single-cell information Author contributions: L.W., J.S.B., and K.A.J. designed research; L.W. and K.A.J. performed should be applied to help understand the coordination of tran- research; L.W., J.S.B., and K.A.J. analyzed data; and J.S.B. and K.A.J. wrote the paper. scriptional programs and their role in cell phenotype (20, 21). The authors declare no conflict of interest. For this purpose, we recently developed a technique called This article is a PNAS Direct Submission. Y.I. is a guest editor invited by the Editorial Board. stochastic profiling (2). Stochastic profiling does not attempt to 1L.W. and K.A.J. contributed equally to this work. quantify mRNA levels in single cells but instead, gleans single- 2To whom correspondence should be addressed. E-mail: [email protected]. cell information by analyzing the statistical fluctuations in 15–20 See Author Summary on page 16499. repeated measurements of 10 cells. The increased amount of This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10. starting material allows high-quality, transcriptome-wide data to 1073/pnas.1103423108/-/DCSupplemental. www.pnas.org/cgi/doi/10.1073/pnas.1103423108 PNAS | October 4, 2011 | vol. 108 | no. 40 | E803–E812 Downloaded by guest on September 29, 2021 of FOXO function to withstand the increased oxidative stress expressed was the transcription factor FOXO1. The pattern of caused by RUNX1 knockdown. Combined inhibition of RUNX1 single-cell FOXO1 expression correlated with many transcripts and FOXO leads to an acute state of oxidative stress that induces that had been previously linked to oxidative stress and proliferative proliferation arrest and restores normal 3D morphology. In a suppression, suggesting a coordinated cellular response. Because large study of estrogen receptor (ER)-, progesterone receptor FOXO family transcriptional activity is itself linked to oxidative (PR)-, and HER2-negative breast cancers, we find that reduced stress and proliferation arrest (38, 39), we chose to investigate the RUNX1 expression correlates with FOXO1 up-regulation, which interplay between the expression of FOXOs and FOXO-dependent presumably enables tumor progression. Our results illustrate target genes. how careful single-cell analysis of gene expression can reveal The MCF10A clone 5E (MCF10A-5E) used for 3D culture functional interactions within transcriptional networks that are expresses not only FOXO1 but also FOXO3 (SI Appendix, Fig. important for cancer-relevant cell phenotypes. S1), and we found that both FOXO proteins were heteroge- neously expressed and localized in individual acini during mor- Results phogenesis (Fig. 1A). Together with the two FOXOs, we mon- Dissecting Single-Cell FOXO Coregulation by Stochastic Sampling. We itored time-dependent changes in the levels of 18 transcripts previously cataloged the transcriptional heterogeneities that during morphogenesis: eight genes were validated or reported emerge among individual matrix-attached breast epithelial cells FOXO targets (BTG1, CAV1, CDKN1A, FBXO32, SEMA3C, during acinar morphogenesis in a 3D culture model (2, 37). One SESN1, SOD2, and SOX4)(SI Appendix, Table S3), five genes gene that was predicted with high confidence to be nonuniformly were constitutively expressed (GAPDH, HINT1, PRDX6, S100A6, AB) FOXO1 FOXO3 BTG1 CDKN1A FBXO32 SOD2 SESN1 CAV1 SEMA3C SOX4 10 FOXO1 FOXO3 1 0 -1 Validated FOXO target d induction (log Reported FOXO target Fol 4 6 8 1012 4 6 8 1012 4 6 8 1012 4 6 8 1012 4 6 8 1012 4 6 8 1012 4 6 8 1012 4 6 8 1012 4 6 8 1012 4 6 8 1012 E-cadherin DAPI ) PRDX6 HDPAG HINT1 S100A6 UBC CDKN1C KRT10 1BNCC BCL2L13 CCNI 10 1 0 -1 Loading controls d induction (log Other Fol 4 6 8 1012 4 6 8 1012 4 6 8 1012 4 6 8 1012 4 6 8 1012 4 6 8 1012 4 6 8 1012 4 6 8 1012 4 6 8 1012 4 6 8 1012 Day of morphogenesis C D p E Log10 (homogeneously expressed) 0 -4 -8 -12 -16 CCNB1 CCNB1 3 KRT10 3 SOD2 Candidate SOD2 BCL2L13 heterogeneities KRT10 2 2 CCNI FBXO32 SOX4 SESN1 FOXO1 1 1 CDKN1C FOXO3 BTG1 CDKN1A CCNI 0 0 FOXO3 BCL2L13 FOXO1 CDKN1A -1 CAV1 -1 FBXO32 CAV1 UBC change from geometric mean SOX4 2 -2 GAPDH -2 SEMA3C BTG1 Log False-discovery rate PRDX6 CDKN1C -3 HINT1 Standard deviations from geometric mean -3 S100A6 SESN1 61 11 9 3412 14 7813 5618 71 12 1015 123456789101112131415161718 10-cell stochastic samplings 10-cell stochastic samplings Fig. 1. Focused stochastic sampling of a FOXO expression dichotomy in 3D breast epithelial cultures.
Recommended publications
  • RUNX1 Control of Mammary Epithelial and Breast Cancer Cell Phenotypes
    University of Massachusetts Medical School eScholarship@UMMS GSBS Dissertations and Theses Graduate School of Biomedical Sciences 2017-12-12 RUNX1 Control of Mammary Epithelial and Breast Cancer Cell Phenotypes Deli Hong University of Massachusetts Medical School Let us know how access to this document benefits ou.y Follow this and additional works at: https://escholarship.umassmed.edu/gsbs_diss Part of the Cancer Biology Commons, and the Cell Biology Commons Repository Citation Hong D. (2017). RUNX1 Control of Mammary Epithelial and Breast Cancer Cell Phenotypes. GSBS Dissertations and Theses. https://doi.org/10.13028/M21Q2F. Retrieved from https://escholarship.umassmed.edu/gsbs_diss/949 This material is brought to you by eScholarship@UMMS. It has been accepted for inclusion in GSBS Dissertations and Theses by an authorized administrator of eScholarship@UMMS. For more information, please contact [email protected]. RUNX1 CONTROL OF MAMMARY EPITHELIAL AND BREAST CANCER CELL PHENOTYPES A Dissertation Presented By Deli Hong Submitted to the Faculty of the University of Massachusetts Graduate School of Biomedical Sciences, Worcester in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY December 12, 2017 Program of Cell Biology RUNX1 CONTROL OF MAMMARY EPITHELIAL AND BREAST CANCER CELL PHENOTYPES A Dissertation Presented By Deli Hong This work was undertaken in the Graduate School of Biomedical Sciences Program of Cell Biology The signature of the Thesis Advisor signifies validation of Dissertation content Gary S. Stein, Ph. D., Thesis Advisor The signatures of the Dissertation Defense Committee signify completion and approval as to style and content of the Dissertation Leslie Shaw, Ph.
    [Show full text]
  • GATA3 As an Adjunct Prognostic Factor in Breast Cancer Patients with Less Aggressive Disease: a Study with a Review of the Literature
    diagnostics Article GATA3 as an Adjunct Prognostic Factor in Breast Cancer Patients with Less Aggressive Disease: A Study with a Review of the Literature Patrizia Querzoli 1, Massimo Pedriali 1 , Rosa Rinaldi 2 , Paola Secchiero 3, Paolo Giorgi Rossi 4 and Elisabetta Kuhn 5,6,* 1 Section of Anatomic Pathology, Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 44124 Ferrara, Italy; [email protected] (P.Q.); [email protected] (M.P.) 2 Section of Anatomic Pathology, ASST Mantova, Ospedale Carlo Poma, 46100 Mantova, Italy; [email protected] 3 Surgery and Experimental Medicine and Interdepartmental Center of Technology of Advanced Therapies (LTTA), Department of Morphology, University of Ferrara, 44121 Ferrara, Italy; [email protected] 4 Epidemiology Unit, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, 42122 Reggio Emilia, Italy; [email protected] 5 Division of Pathology, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, 20122 Milano, Italy 6 Department of Biomedical, Surgical, and Dental Sciences, University of Milan, 20122 Milano, Italy * Correspondence: [email protected]; Tel.: +39-02-5032-0564; Fax: +39-02-5503-2860 Abstract: Background: GATA binding protein 3 (GATA3) expression is positively correlated with Citation: Querzoli, P.; Pedriali, M.; estrogen receptor (ER) expression, but its prognostic value as an independent factor remains unclear. Rinaldi, R.; Secchiero, P.; Rossi, P.G.; Thus, we undertook the current study to evaluate the expression of GATA3 and its prognostic value Kuhn, E. GATA3 as an Adjunct in a large series of breast carcinomas (BCs) with long-term follow-up. Methods: A total of 702 Prognostic Factor in Breast Cancer consecutive primary invasive BCs resected between 1989 and 1993 in our institution were arranged Patients with Less Aggressive in tissue microarrays, immunostained for ER, progesterone receptor (PR), ki-67, HER2, p53, and Disease: A Study with a Review of GATA3, and scored.
    [Show full text]
  • Progesterone Receptor Isoform B Regulates the Oxtr-Plcl2-Trpc3 Pathway to Suppress Uterine Contractility
    Progesterone receptor isoform B regulates the Oxtr-Plcl2-Trpc3 pathway to suppress uterine contractility Mary C. Peaveya,1, San-Pin Wub,1, Rong Lib, Jian Liub, Olivia M. Emeryb, Tianyuan Wangc, Lecong Zhouc, Margeaux Wetendorfd, Chandra Yallampallie, William E. Gibbonse, John P. Lydond, and Francesco J. DeMayob,2 aDepartment of Obstetrics and Gynecology, University of North Carolina, Chapel Hill, NC 27599; bReproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709; cIntegrative Bioinformatic Support Group, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709; dDepartment of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030; and eDepartment of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX 77030 Edited by R. Michael Roberts, University of Missouri, Columbia, MO, and approved January 19, 2021 (received for review June 6, 2020) Uterine contractile dysfunction leads to pregnancy complications The “progesterone receptor isoform switch” concept was posited such as preterm birth and labor dystocia. In humans, it is hypoth- to explain the transition from a quiescent to a contractile myometrial esized that progesterone receptor isoform PGR-B promotes a re- phenotype in the presence of high levels of progesterone (10, 11, laxed state of the myometrium, and PGR-A facilitates uterine 26–30). Progesterone acts via the nuclear receptor isoforms, PGR-A contraction. This hypothesis was tested in vivo using transgenic and PGR-B, which are coexpressed at different levels throughout mouse models that overexpress PGR-A or PGR-B in smooth muscle pregnancy (31–35). Progesterone can transactivate different tran- cells. Elevated PGR-B abundance results in a marked increase in scriptional programs determined by the relative levels of PGR-A and gestational length compared to control mice (21.1 versus 19.1 d PGR-B isoforms in the myometrium (36–41).
    [Show full text]
  • The Novel Progesterone Receptor
    0013-7227/99/$03.00/0 Vol. 140, No. 3 Endocrinology Printed in U.S.A. Copyright © 1999 by The Endocrine Society The Novel Progesterone Receptor Antagonists RTI 3021– 012 and RTI 3021–022 Exhibit Complex Glucocorticoid Receptor Antagonist Activities: Implications for the Development of Dissociated Antiprogestins* B. L. WAGNER†, G. POLLIO, P. GIANGRANDE‡, J. C. WEBSTER, M. BRESLIN, D. E. MAIS, C. E. COOK, W. V. VEDECKIS, J. A. CIDLOWSKI, AND D. P. MCDONNELL Department of Pharmacology and Cancer Biology (B.L.W., G.P., P.G., D.P.M.), Duke University Medical Center, Durham, North Carolina 27710; Molecular Endocrinology Group (J.C.W., J.A.C.), NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709; Department of Biochemistry and Molecular Biology (M.B., W.V.V.), Louisiana State University Medical School, New Orleans, Louisiana 70112; Ligand Pharmaceuticals, Inc. (D.E.M.), San Diego, California 92121; Research Triangle Institute (C.E.C.), Chemistry and Life Sciences, Research Triangle Park, North Carolina 27709 ABSTRACT by agonists for DNA response elements within target gene promoters. We have identified two novel compounds (RTI 3021–012 and RTI Accordingly, we observed that RU486, RTI 3021–012, and RTI 3021– 3021–022) that demonstrate similar affinities for human progeste- 022, when assayed for PR antagonist activity, accomplished both of rone receptor (PR) and display equivalent antiprogestenic activity. As these steps. Thus, all three compounds are “active antagonists” of PR with most antiprogestins, such as RU486, RTI 3021–012, and RTI function. When assayed on GR, however, RU486 alone functioned as 3021–022 also bind to the glucocorticoid receptor (GR) with high an active antagonist.
    [Show full text]
  • Expression of the Apoptosis-Related Genes Bcl-2 and P53 in Clinical Samples from Endometrial Carcinoma Patients
    ANTICANCER RESEARCH 31: 4191-4194 (2011) Expression of the Apoptosis-related Genes Bcl-2 and p53 in Clinical Samples from Endometrial Carcinoma Patients IRENE GONZÁLEZ-RODILLA1, VIRGINIA VERNA2, ANA-BELÉN MUÑOZ2, JOSÉ ESTÉVEZ2, MERCEDES BOIX2 and JOSÉ SCHNEIDER2 Departments of 1Pathology and 2Obstetrics and Gynecology, Marqués de Valdecilla University Hospital, Cantabria University, Santander, Spain Abstract. Background: Although alterations in the mechanisms biological features indicative of a less aggressive tumor of apoptosis are an integral part of the tumor phenotype, their phenotype (1). Furthermore, in that same paper, any level of precise role in endometrial carcinoma is still obscure. The aim expression of Bcl-2, from the lowest upwards, was found to was to determine whether Bcl-2 plays a similar biological role be biologically significant. Finally, an explanation for the so- in endometrial cancer as in breast cancer, endometrial cancer called ‘Bcl-2 paradox in breast cancer’, where Bcl-2 being an being also a hormone-dependent tumor. Materials and anti-apoptotic gene, thus promoting the immortalisation of Methods: The expression of the apoptosis-related Bcl-2 and p53 tumor cells, should in principle represent a negative biological genes, together with Ki67, E-cadherin, c-erb-B2 and estrogen feature of tumors expressing it, virtually all published results and progesterone receptors were studied in 136 formalin-fixed, point to the opposite, i.e. that Bcl-2 expression is associated paraffin-embedded endometrial carcinoma samples by means with a better outcome in breast cancer, was put forward. Bcl- of immunohistochemistry. Results: Bcl-2 expression correlated 2 was found to be predominantly expressed in well- directly and significantly with E-cadherin (r=0.22, p=0.011) differentiated, low-proliferating breast carcinomas expressing estrogen receptor (r=0.18, p=0.04) and progesterone receptor hormone receptors, all of them highly favorable prognostic expression (r=0.30, p=0.0006), and inversely with surgical factors.
    [Show full text]
  • Characterization and Assay of Progesterone Receptor in Human Mammary Carcinoma1
    [CANCER RESEARCH 37, 464-471 , February 1977] Characterization and Assay of Progesterone Receptor in Human Mammary Carcinoma1 M. F. Pichon and E. Milgrom Groupe de Recherches sur Ia Biochimie Endocrinienne et Ia Reproduction (INSERM U.135), FacultédeMédecine,Paris-Sud, 94270 Bicétre,France ever, only some patients are improved by such treatments. It SUMMARY would thus be of great practical importance to predict in advance which patient will respond and to nationalize the [3H]Pregn-4-ene-3,20-dione ([3Hjpmogestenane)-recepton choice of the surgical or pharmacological technique to be complexes from human mammary carcinoma were found to used. During the last 15 years, the detection and quantifica be stabilized in the presence of glycerol. The dissociation tion of estrogen receptors in mammary tumors have allowed rate constant was lowered and the equilibrium dissociation marked progress in this direction (11, 12, 16, 18, 21, 22, 34). constant was decreased (KD = 3 nM in the absence of However, the growth of mammary carcinoma may be can glycerol and 1.1 nM in the presence of 30% glycerol), traIled not only by estrogens but also by other hormones whereas no clean-cut effect on the association rate was including observed and no change occurred in the concentration andragens, glucacorticaids, pragestagens , and of binding sites. Gortisol was found to compete with prolactin (13). The study of specific receptors for these [3Hjpmagesterone only at concentrations higher than 1 @M. hormones should shed some bight on the problem of tumor This made it possible to distinguish [3H]pmogestemanebind hormonal dependence . The characterization and measu me ing to the receptor from binding to carticosteroid-binding ment of progesterone receptors have been hampered by the globulin.
    [Show full text]
  • Genetic Alterations of Histone Lysine Methyltransferases and Their Significance in Breast Cancer
    www.impactjournals.com/oncotarget/ Oncotarget, Vol. 6, No.4 Genetic alterations of histone lysine methyltransferases and their significance in breast cancer Lanxin Liu1,*, Sarah Kimball1,*, Hui Liu1, Andreana Holowatyj1 and Zeng-Quan Yang1 1 Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA * These authors contributed equally to this work Correspondence to: Zeng-Quan Yang, email: [email protected] Keywords: breast cancer, histone lysine methyltransferase, gene amplification, deletion, mutation Received: August 27, 2014 Accepted: December 10, 2014 Published: December 11, 2014 This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. ABSTRACT Histone lysine methyltransferases (HMTs), a large class of enzymes that catalyze site-specific methylation of lysine residues on histones and other proteins, play critical roles in controlling transcription, chromatin architecture, and cellular differentiation. However, the genomic landscape and clinical significance of HMTs in breast cancer remain poorly characterized. Here, we conducted a meta-analysis of approximately 50 HMTs in breast cancer and identified associations among recurrent copy number alterations, mutations, gene expression, and clinical outcome. We identified 12 HMTs with the highest frequency of genetic alterations, including 8 with high-level amplification, 2 with putative homozygous deletion, and 2 with somatic mutation. Different subtypes of breast cancer have different patterns of copy number and expression for each HMT gene. In addition, chromosome 1q contains four HMTs that are concurrently or independently amplified or overexpressed in breast cancer. Copy number or mRNA expression of several HMTs was significantly associated with basal- like breast cancer and shorter patient survival.
    [Show full text]
  • Diagnostic Value of Progesterone Receptor and P53 Expression in Uterine Smooth Muscle Tumors Iman H Hewedi*, Nehal a Radwan and Lobna S Shash
    Hewedi et al. Diagnostic Pathology 2012, 7:1 http://www.diagnosticpathology.org/content/7/1/1 RESEARCH Open Access Diagnostic value of progesterone receptor and p53 expression in uterine smooth muscle tumors Iman H Hewedi*, Nehal A Radwan and Lobna S Shash Abstract Background: The diagnosis of uterine smooth muscle tumors depends on a combination of microscopic features. However, a small number of these tumors still pose difficult diagnostic challenges. Aim: To investigate progesterone receptor (PR) and p53 expression in leiomyomas (LMs), atypical leiomyomas (ALMs), smooth muscle tumors of uncertain malignant potential (STUMP), and leiomyosarcomas (LMSs) and to evaluate the potential utility of the selected immunohistochemical markers in differentiating these tumors. Materials and methods: Immunohistochemical expression of PR and p53 was investigated in 41 uterine smooth muscle tumors comprising: 15 LMS, 4 STUMP, 6 ALM and 16 LM. Quantitative evaluation of PR and p53 expression was graded on a scale from 0 to 3+. Results: Leiomyosarcomas showed reduced PR expression. All LMs as well as ALMs and STUMP were stained intensely for PR. Conversely, LMS was strongly stained with p53, while the three non-sarcomatous groups (STUMP, ALM, LM) were either entirely negative or weakly stained for p53. Regarding both PR and p53 expression, the difference between the LMS group and the three non-sarcomatous groups was highly significant (p < 0.001). Combined high PR - low p53 expression was seen in all the 26 examined cases of the non-sarcomatous group including the STUMP cases and none of the LMS cases. Therefore, it represents a “benign” profile with 100% specificity in diagnosis of a non-sarcomatous tumor.
    [Show full text]
  • Progesterone Receptor-A Isoform Interaction with RUNX Transcription Factors Controls
    bioRxiv preprint doi: https://doi.org/10.1101/2021.06.17.448908; this version posted June 20, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Progesterone receptor-A isoform interaction with RUNX transcription factors controls 2 chromatin remodelling at promoters during ovulation 3 Authors: Dinh DT 1 (*), Breen J 2, Nicol B 3, Smith KM 1, Nicholls M 1, Emery A 1, 4 Wong YY 1, Barry SC 1, Yao HHC 3, Robker RL 1, Russell DL 1 (*) 5 Affiliations: 6 1. Robinson Research Institute, Adelaide Medical School, University of Adelaide, Australia 7 2. South Australian Genomics Centre (SAGC), South Australian Health and Medical 8 Research Institute (SAHMRI), Adelaide, South Australia, Australia 9 3. Reproductive Developmental Biology Group, National Institute of Environmental Health 10 Sciences, Research Triangle Park, NC 27709, USA 11 12 Summary: 13 Progesterone receptor (PGR) plays diverse roles in reproductive tissues and thus coordinates 14 mammalian fertility. In the ovary, acutely induced PGR is the key determinant of ovulation 15 through transcriptional control of a unique set of genes that culminates in follicle rupture. 16 However, the molecular mechanisms for PGR’s specialised function in ovulation is poorly 17 understood. To address this, we assembled a detailed genomic profile of PGR action through 18 combined ATAC-seq, RNA-seq and ChIP-seq analysis in wildtype and isoform-specific PGR 19 null mice.
    [Show full text]
  • Maintenance of Mammary Epithelial Phenotype by Transcription Factor Runx1 Through Mitotic Gene Bookmarking Joshua Rose University of Vermont
    University of Vermont ScholarWorks @ UVM Graduate College Dissertations and Theses Dissertations and Theses 2019 Maintenance Of Mammary Epithelial Phenotype By Transcription Factor Runx1 Through Mitotic Gene Bookmarking Joshua Rose University of Vermont Follow this and additional works at: https://scholarworks.uvm.edu/graddis Part of the Biochemistry Commons, and the Genetics and Genomics Commons Recommended Citation Rose, Joshua, "Maintenance Of Mammary Epithelial Phenotype By Transcription Factor Runx1 Through Mitotic Gene Bookmarking" (2019). Graduate College Dissertations and Theses. 998. https://scholarworks.uvm.edu/graddis/998 This Thesis is brought to you for free and open access by the Dissertations and Theses at ScholarWorks @ UVM. It has been accepted for inclusion in Graduate College Dissertations and Theses by an authorized administrator of ScholarWorks @ UVM. For more information, please contact [email protected]. MAINTENANCE OF MAMMARY EPITHELIAL PHENOTYPE BY TRANSCRIPTION FACTOR RUNX1 THROUGH MITOTIC GENE BOOKMARKING A Thesis Presented by Joshua Rose to The Faculty of the Graduate College of The University of Vermont In Partial Fulfillment of the Requirements for the Degree of Master of Science Specializing in Cellular, Molecular, and Biomedical Sciences January, 2019 Defense Date: November 12, 2018 Thesis Examination Committee: Sayyed Kaleem Zaidi, Ph.D., Advisor Gary Stein, Ph.D., Advisor Seth Frietze, Ph.D., Chairperson Janet Stein, Ph.D. Jonathan Gordon, Ph.D. Cynthia J. Forehand, Ph.D. Dean of the Graduate College ABSTRACT Breast cancer arises from a series of acquired mutations that disrupt normal mammary epithelial homeostasis and create multi-potent cancer stem cells that can differentiate into clinically distinct breast cancer subtypes. Despite improved therapies and advances in early detection, breast cancer remains the leading diagnosed cancer in women.
    [Show full text]
  • Progesterone Receptor Transcription and Non-Transcription Signaling Mechanisms Susan A
    Steroids 68 (2003) 761–770 Progesterone receptor transcription and non-transcription signaling mechanisms Susan A. Leonhardt a, Viroj Boonyaratanakornkit a, Dean P. Edwards b,∗ a Department of Pathology B216, School of Medicine University of Colorado Health Sciences Center, 4200 East Ninth Avenue, Campus Box B216, Denver, CO 80262, USA b Department of Pathology and Program in Molecular Biology, University of Colorado Health Sciences Center, 4200 East Ninth Avenue, Campus Box B216, Denver, CO 80262, USA Abstract The diverse effects of progesterone on female reproductive tissues are mediated by the progesterone receptor (PR), a member of the nuclear receptor family of ligand-dependent transcription factors. Thus, PR is an important therapeutic target in female reproduction and in certain endocrine dependent cancers. This paper reviews our understanding of the mechanism of action of the most widely used PR antagonist RU486. Although RU486 is a competitive steroidal antagonist that can displace the natural hormone for PR, it’s potency derives from additional “active antagonism” that involves inhibiting the activity of PR hormone agonist complexes in trans through heterodimerization and competition for binding to progesterone response elements on target DNA, and by recruitment of corepressors that have the potential to actively repress gene transcription. An additional functional role for PR has recently been defined whereby a subpopulation of PR in the cytoplasm or cell membrane is capable of mediating rapid progesterone induced activation of certain signal transduction pathways in the absence of gene transcription. This paper also reviews recent results on the mechanism of the extra-nuclear action of PR and the potential biological roles and implications of this novel PR signaling pathway.
    [Show full text]
  • (NGS) for Primary Endocrine Resistance in Breast Cancer Patients
    Int J Clin Exp Pathol 2018;11(11):5450-5458 www.ijcep.com /ISSN:1936-2625/IJCEP0084102 Original Article Impact of next-generation sequencing (NGS) for primary endocrine resistance in breast cancer patients Ruoyang Li1*, Tiantian Tang1*, Tianli Hui1, Zhenchuan Song1, Fugen Li2, Jingyu Li2, Jiajia Xu2 1Breast Center, Fourth Hospital of Hebei Medical University, Shijiazhuang, China; 2Institute of Precision Medicine, 3D Medicines Inc., Shanghai, China. *Equal contributors. Received August 15, 2018; Accepted September 22, 2018; Epub November 1, 2018; Published November 15, 2018 Abstract: Multiple mechanisms have been detected to account for the acquired resistance to endocrine therapies in breast cancer. In this study we retrospectively studied the mechanism of primary endocrine resistance in estrogen receptor positive (ER+) breast cancer patients by next-generation sequencing (NGS). Tumor specimens and matched blood samples were obtained from 24 ER+ breast cancer patients. Fifteen of them displayed endocrine resistance, including recurrence and/or metastases within 24 months from the beginning of endocrine therapy, and 9 pa- tients remained sensitive to endocrine therapy for more than 5 years. Genomic DNA of tumor tissue was extracted from formalin-fixed paraffin-embedded (FFPE) tumor tissue blocks. Genomic DNA of normal tissue was extracted from peripheral blood mononuclear cells (PBMC). Sequencing libraries for each sample were prepared, followed by target capturing for 372 genes that are frequently rearranged in cancers. Massive parallel
    [Show full text]