Truncated WT1 Protein Isoform Expression Is Increased in MCF-7 Cells in a Long-Term Estrogen Depletion
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
RUNX1 Control of Mammary Epithelial and Breast Cancer Cell Phenotypes
University of Massachusetts Medical School eScholarship@UMMS GSBS Dissertations and Theses Graduate School of Biomedical Sciences 2017-12-12 RUNX1 Control of Mammary Epithelial and Breast Cancer Cell Phenotypes Deli Hong University of Massachusetts Medical School Let us know how access to this document benefits ou.y Follow this and additional works at: https://escholarship.umassmed.edu/gsbs_diss Part of the Cancer Biology Commons, and the Cell Biology Commons Repository Citation Hong D. (2017). RUNX1 Control of Mammary Epithelial and Breast Cancer Cell Phenotypes. GSBS Dissertations and Theses. https://doi.org/10.13028/M21Q2F. Retrieved from https://escholarship.umassmed.edu/gsbs_diss/949 This material is brought to you by eScholarship@UMMS. It has been accepted for inclusion in GSBS Dissertations and Theses by an authorized administrator of eScholarship@UMMS. For more information, please contact [email protected]. RUNX1 CONTROL OF MAMMARY EPITHELIAL AND BREAST CANCER CELL PHENOTYPES A Dissertation Presented By Deli Hong Submitted to the Faculty of the University of Massachusetts Graduate School of Biomedical Sciences, Worcester in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY December 12, 2017 Program of Cell Biology RUNX1 CONTROL OF MAMMARY EPITHELIAL AND BREAST CANCER CELL PHENOTYPES A Dissertation Presented By Deli Hong This work was undertaken in the Graduate School of Biomedical Sciences Program of Cell Biology The signature of the Thesis Advisor signifies validation of Dissertation content Gary S. Stein, Ph. D., Thesis Advisor The signatures of the Dissertation Defense Committee signify completion and approval as to style and content of the Dissertation Leslie Shaw, Ph. -
Analysis of Estrogen Receptor Isoforms and Variants in Breast Cancer Cell Lines
EXPERIMENTAL AND THERAPEUTIC MeDICINE 2: 537-544, 2011 Analysis of estrogen receptor isoforms and variants in breast cancer cell lines MAIE AL-BADER1, CHRISTOPHER FORD2, BUSHRA AL-AYADHY3 and ISSAM FRANCIS3 Departments of 1Physiology, 2Surgery, and 3Pathology, Faculty of Medicine, Kuwait University, Safat 13110, Kuwait Received November 22, 2010; Accepted February 14, 2011 DOI: 10.3892/etm.2011.226 Abstract. In the present study, the expression of estrogen domain C, the DNA binding domain; domains D/E, bearing receptor (ER)α and ERβ isoforms in ER-positive (MCF7, both the activation function-2 (AF-2) and the ligand binding T-47D and ZR-75-1) and ER-negative (MDA-MB-231, SK-BR-3, domains; and finally, domain F, the C-terminal domain (6,7). MDA-MB-453 and HCC1954) breast cancer cell lines was The actions of estrogens are mediated by binding to ERs investigated. ERα mRNA was expressed in ER-positive and (ERα and/or ERβ). These receptors, which are co-expressed some ER-negative cell lines. ERα ∆3, ∆5 and ∆7 spliced in a number of tissues, form functional homodimers or variants were present in MCF7 and T-47D cells; ERα ∆5 heterodimers. When bound to estrogens as homodimers, the and ∆7 spliced variants were detected in ZR-75-1 cells. transcription of target genes is activated (8,9), while as heterodi- MDA-MB-231 and HCC1954 cells expressed ERα ∆5 and ∆7 mers, ERβ exhibits an inhibitory action on ERα-mediated gene spliced variants. The ERβ1 variant was expressed in all of the expression and, in many instances, opposes the actions of ERα cell lines and the ERβ2 variant in all of the ER-positive and (7,9). -
GATA3 As an Adjunct Prognostic Factor in Breast Cancer Patients with Less Aggressive Disease: a Study with a Review of the Literature
diagnostics Article GATA3 as an Adjunct Prognostic Factor in Breast Cancer Patients with Less Aggressive Disease: A Study with a Review of the Literature Patrizia Querzoli 1, Massimo Pedriali 1 , Rosa Rinaldi 2 , Paola Secchiero 3, Paolo Giorgi Rossi 4 and Elisabetta Kuhn 5,6,* 1 Section of Anatomic Pathology, Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 44124 Ferrara, Italy; [email protected] (P.Q.); [email protected] (M.P.) 2 Section of Anatomic Pathology, ASST Mantova, Ospedale Carlo Poma, 46100 Mantova, Italy; [email protected] 3 Surgery and Experimental Medicine and Interdepartmental Center of Technology of Advanced Therapies (LTTA), Department of Morphology, University of Ferrara, 44121 Ferrara, Italy; [email protected] 4 Epidemiology Unit, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, 42122 Reggio Emilia, Italy; [email protected] 5 Division of Pathology, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, 20122 Milano, Italy 6 Department of Biomedical, Surgical, and Dental Sciences, University of Milan, 20122 Milano, Italy * Correspondence: [email protected]; Tel.: +39-02-5032-0564; Fax: +39-02-5503-2860 Abstract: Background: GATA binding protein 3 (GATA3) expression is positively correlated with Citation: Querzoli, P.; Pedriali, M.; estrogen receptor (ER) expression, but its prognostic value as an independent factor remains unclear. Rinaldi, R.; Secchiero, P.; Rossi, P.G.; Thus, we undertook the current study to evaluate the expression of GATA3 and its prognostic value Kuhn, E. GATA3 as an Adjunct in a large series of breast carcinomas (BCs) with long-term follow-up. Methods: A total of 702 Prognostic Factor in Breast Cancer consecutive primary invasive BCs resected between 1989 and 1993 in our institution were arranged Patients with Less Aggressive in tissue microarrays, immunostained for ER, progesterone receptor (PR), ki-67, HER2, p53, and Disease: A Study with a Review of GATA3, and scored. -
Progesterone Receptor Isoform B Regulates the Oxtr-Plcl2-Trpc3 Pathway to Suppress Uterine Contractility
Progesterone receptor isoform B regulates the Oxtr-Plcl2-Trpc3 pathway to suppress uterine contractility Mary C. Peaveya,1, San-Pin Wub,1, Rong Lib, Jian Liub, Olivia M. Emeryb, Tianyuan Wangc, Lecong Zhouc, Margeaux Wetendorfd, Chandra Yallampallie, William E. Gibbonse, John P. Lydond, and Francesco J. DeMayob,2 aDepartment of Obstetrics and Gynecology, University of North Carolina, Chapel Hill, NC 27599; bReproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709; cIntegrative Bioinformatic Support Group, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709; dDepartment of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030; and eDepartment of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX 77030 Edited by R. Michael Roberts, University of Missouri, Columbia, MO, and approved January 19, 2021 (received for review June 6, 2020) Uterine contractile dysfunction leads to pregnancy complications The “progesterone receptor isoform switch” concept was posited such as preterm birth and labor dystocia. In humans, it is hypoth- to explain the transition from a quiescent to a contractile myometrial esized that progesterone receptor isoform PGR-B promotes a re- phenotype in the presence of high levels of progesterone (10, 11, laxed state of the myometrium, and PGR-A facilitates uterine 26–30). Progesterone acts via the nuclear receptor isoforms, PGR-A contraction. This hypothesis was tested in vivo using transgenic and PGR-B, which are coexpressed at different levels throughout mouse models that overexpress PGR-A or PGR-B in smooth muscle pregnancy (31–35). Progesterone can transactivate different tran- cells. Elevated PGR-B abundance results in a marked increase in scriptional programs determined by the relative levels of PGR-A and gestational length compared to control mice (21.1 versus 19.1 d PGR-B isoforms in the myometrium (36–41). -
Estrogen Receptor a Binds to Peroxisome Proliferator ^ Activated
Human Cancer Biology Estrogen Receptor A Binds to Peroxisome Proliferator ^ Activated Receptor Response Element and Negatively Interferes with Peroxisome Proliferator ^ Activated Receptor ; Signaling in Breast Cancer Cells Daniela Bonofiglio,1Sabrina Gabriele,1Saveria Aquila,1Stefania Catalano,1Mariaelena Gentile,2 Emilia Middea,1Francesca Giordano,2 and Sebastiano Ando' 2,3 Abstract Purpose: The molecular mechanisms involved in the repressive effects exerted by estrogen receptors (ER) on peroxisome proliferator ^ activated receptor (PPAR) g^ mediated transcriptional activity remain to be elucidated. The aim of the present study was to provide new insight into the crosstalk between ERa and PPARg pathways in breast cancer cells. Experimental Design: Using MCF7 and HeLa cells as model systems, we did transient trans- fections and electrophoretic mobility shift assay and chromatin immunoprecipitation studies to evaluate the ability of ERa to influence PPAR response element ^ mediated transcription. A pos- sible direct interaction between ERa and PPARg was ascertained by coimmunoprecipitation assay, whereas their modulatory role in the phosphatidylinositol 3-kinase (PI3K)/AKT pathway was evaluated by determining PI3K activity and AKT phosphorylation. As a biological counter- part, we investigated the growth response to the cognate ligands of both receptors in hormone-dependent MCF7 breast cancer cells. Results:Our data show for the first time that ERa binds to PPAR response element and represses its transactivation. Moreover, we have documented the physical and functional interactions of ERa and PPARg, which also involve the p85 regulatory subunit of PI3K. Interestingly, ERa and PPARg pathways have an opposite effect on the regulation of the PI3K/AKT transduction cascade, explaining, at least in part, the divergent response exerted by the cognate ligands 17 h-estradiol and BRL49653on MCF7 cell proliferation. -
Agonists and Knockdown of Estrogen Receptor Β Differentially Affect
Schüler-Toprak et al. BMC Cancer (2016) 16:951 DOI 10.1186/s12885-016-2973-y RESEARCH ARTICLE Open Access Agonists and knockdown of estrogen receptor β differentially affect invasion of triple-negative breast cancer cells in vitro Susanne Schüler-Toprak1*, Julia Häring1, Elisabeth C. Inwald1, Christoph Moehle2, Olaf Ortmann1 and Oliver Treeck1 Abstract Background: Estrogen receptor β (ERβ) is expressed in the majority of invasive breast cancer cases, irrespective of their subtype, including triple-negative breast cancer (TNBC). Thus, ERβ might be a potential target for therapy of this challenging cancer type. In this in vitro study, we examined the role of ERβ in invasion of two triple-negative breast cancer cell lines. Methods: MDA-MB-231 and HS578T breast cancer cells were treated with the specific ERβ agonists ERB-041, WAY200070, Liquiritigenin and 3β-Adiol. Knockdown of ERβ expression was performed by means of siRNA transfection. Effects on cellular invasion were assessed in vitro by means of a modified Boyden chamber assay. Transcriptome analyses were performed using Affymetrix Human Gene 1.0 ST microarrays. Pathway and gene network analyses were performed by means of Genomatix and Ingenuity Pathway Analysis software. Results: Invasiveness of MBA-MB-231 and HS578T breast cancer cells decreased after treatment with ERβ agonists ERB-041 and WAY200070. Agonists Liquiritigenin and 3β-Adiol only reduced invasion of MDA-MB-231 cells. Knockdown of ERβ expression increased invasiveness of MDA-MB-231 cells about 3-fold. Transcriptome and pathway analyses revealed that ERβ knockdown led to activation of TGFβ signalling and induced expression of a network of genes with functions in extracellular matrix, tumor cell invasion and vitamin D3 metabolism. -
The Novel Progesterone Receptor
0013-7227/99/$03.00/0 Vol. 140, No. 3 Endocrinology Printed in U.S.A. Copyright © 1999 by The Endocrine Society The Novel Progesterone Receptor Antagonists RTI 3021– 012 and RTI 3021–022 Exhibit Complex Glucocorticoid Receptor Antagonist Activities: Implications for the Development of Dissociated Antiprogestins* B. L. WAGNER†, G. POLLIO, P. GIANGRANDE‡, J. C. WEBSTER, M. BRESLIN, D. E. MAIS, C. E. COOK, W. V. VEDECKIS, J. A. CIDLOWSKI, AND D. P. MCDONNELL Department of Pharmacology and Cancer Biology (B.L.W., G.P., P.G., D.P.M.), Duke University Medical Center, Durham, North Carolina 27710; Molecular Endocrinology Group (J.C.W., J.A.C.), NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709; Department of Biochemistry and Molecular Biology (M.B., W.V.V.), Louisiana State University Medical School, New Orleans, Louisiana 70112; Ligand Pharmaceuticals, Inc. (D.E.M.), San Diego, California 92121; Research Triangle Institute (C.E.C.), Chemistry and Life Sciences, Research Triangle Park, North Carolina 27709 ABSTRACT by agonists for DNA response elements within target gene promoters. We have identified two novel compounds (RTI 3021–012 and RTI Accordingly, we observed that RU486, RTI 3021–012, and RTI 3021– 3021–022) that demonstrate similar affinities for human progeste- 022, when assayed for PR antagonist activity, accomplished both of rone receptor (PR) and display equivalent antiprogestenic activity. As these steps. Thus, all three compounds are “active antagonists” of PR with most antiprogestins, such as RU486, RTI 3021–012, and RTI function. When assayed on GR, however, RU486 alone functioned as 3021–022 also bind to the glucocorticoid receptor (GR) with high an active antagonist. -
The Structure-Function Relationship of Angular Estrogens and Estrogen Receptor Alpha to Initiate Estrogen-Induced Apoptosis in Breast Cancer Cells S
Supplemental material to this article can be found at: http://molpharm.aspetjournals.org/content/suppl/2020/05/03/mol.120.119776.DC1 1521-0111/98/1/24–37$35.00 https://doi.org/10.1124/mol.120.119776 MOLECULAR PHARMACOLOGY Mol Pharmacol 98:24–37, July 2020 Copyright ª 2020 The Author(s) This is an open access article distributed under the CC BY Attribution 4.0 International license. The Structure-Function Relationship of Angular Estrogens and Estrogen Receptor Alpha to Initiate Estrogen-Induced Apoptosis in Breast Cancer Cells s Philipp Y. Maximov, Balkees Abderrahman, Yousef M. Hawsawi, Yue Chen, Charles E. Foulds, Antrix Jain, Anna Malovannaya, Ping Fan, Ramona F. Curpan, Ross Han, Sean W. Fanning, Bradley M. Broom, Daniela M. Quintana Rincon, Jeffery A. Greenland, Geoffrey L. Greene, and V. Craig Jordan Downloaded from Departments of Breast Medical Oncology (P.Y.M., B.A., P.F., D.M.Q.R., J.A.G., V.C.J.) and Computational Biology and Bioinformatics (B.M.B.), University of Texas, MD Anderson Cancer Center, Houston, Texas; King Faisal Specialist Hospital and Research (Gen.Org.), Research Center, Jeddah, Kingdom of Saudi Arabia (Y.M.H.); The Ben May Department for Cancer Research, University of Chicago, Chicago, Illinois (R.H., S.W.F., G.L.G.); Center for Precision Environmental Health and Department of Molecular and Cellular Biology (C.E.F.), Mass Spectrometry Proteomics Core (A.J., A.M.), Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Mass Spectrometry Proteomics Core (A.M.), and Dan L. Duncan molpharm.aspetjournals.org -
The WT1 Wilms' Tumor Suppressor Gene Product Interacts with Estrogen Receptor-Α and Regulates IGF-I Receptor Gene Transcripti
135 The WT1 Wilms’ tumor suppressor gene product interacts with estrogen receptor- and regulates IGF-I receptor gene transcription in breast cancer cells Naama Reizner, Sharon Maor, Rive Sarfstein, Shirley Abramovitch, Wade V Welshons1, Edward M Curran1, Adrian V Lee2 and Haim Werner Department of Clinical Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel 1Department of Veterinary Biomedical Sciences, University of Missouri, Columbia, Missouri 65211, USA 2Department of Medicine, Baylor College of Medicine, Houston, Texas 77030, USA (Requests for offprints should be addressed to H Werner; Email: [email protected]) Abstract The IGF-I receptor (IGF-IR) has an important role in breast cancer development and progression. Previous studies have suggested that the IGF-IR gene is negatively regulated by a number of transcription factors with tumor suppressor activity, including the Wilms’ tumor protein WT1. The present study was aimed at evaluating the hypothesis that IGF-IR gene transcription in breast cancer cells is under inhibitory control by WT1 and, furthermore, that the mechanism of action of WT1 involves functional and physical interactions with estrogen receptor- (ER). Results of transient coexpression experiments showed that all four predominant isoforms of WT1 (including or lacking alternatively spliced exons 5 and 9) repressed IGF-IR promoter activity by 39–49%. To examine the potential interplay between WT1 and ER in control of IGF-IR gene transcription we employed ER-depleted C4 cells that were generated by clonal selection of ER-positive MCF-7 cells that were maintained in estrogen-free conditions. IGF-IR levels in C4 cells were |43% of the values in MCF-7 cells whereas WT1 levels in C4 cells were 4·25-fold higher than in MCF-7. -
Expression of the Apoptosis-Related Genes Bcl-2 and P53 in Clinical Samples from Endometrial Carcinoma Patients
ANTICANCER RESEARCH 31: 4191-4194 (2011) Expression of the Apoptosis-related Genes Bcl-2 and p53 in Clinical Samples from Endometrial Carcinoma Patients IRENE GONZÁLEZ-RODILLA1, VIRGINIA VERNA2, ANA-BELÉN MUÑOZ2, JOSÉ ESTÉVEZ2, MERCEDES BOIX2 and JOSÉ SCHNEIDER2 Departments of 1Pathology and 2Obstetrics and Gynecology, Marqués de Valdecilla University Hospital, Cantabria University, Santander, Spain Abstract. Background: Although alterations in the mechanisms biological features indicative of a less aggressive tumor of apoptosis are an integral part of the tumor phenotype, their phenotype (1). Furthermore, in that same paper, any level of precise role in endometrial carcinoma is still obscure. The aim expression of Bcl-2, from the lowest upwards, was found to was to determine whether Bcl-2 plays a similar biological role be biologically significant. Finally, an explanation for the so- in endometrial cancer as in breast cancer, endometrial cancer called ‘Bcl-2 paradox in breast cancer’, where Bcl-2 being an being also a hormone-dependent tumor. Materials and anti-apoptotic gene, thus promoting the immortalisation of Methods: The expression of the apoptosis-related Bcl-2 and p53 tumor cells, should in principle represent a negative biological genes, together with Ki67, E-cadherin, c-erb-B2 and estrogen feature of tumors expressing it, virtually all published results and progesterone receptors were studied in 136 formalin-fixed, point to the opposite, i.e. that Bcl-2 expression is associated paraffin-embedded endometrial carcinoma samples by means with a better outcome in breast cancer, was put forward. Bcl- of immunohistochemistry. Results: Bcl-2 expression correlated 2 was found to be predominantly expressed in well- directly and significantly with E-cadherin (r=0.22, p=0.011) differentiated, low-proliferating breast carcinomas expressing estrogen receptor (r=0.18, p=0.04) and progesterone receptor hormone receptors, all of them highly favorable prognostic expression (r=0.30, p=0.0006), and inversely with surgical factors. -
Oestrogen Receptor α AF-1 and AF-2 Domains Have Cell
ARTICLE DOI: 10.1038/s41467-018-07175-0 OPEN Oestrogen receptor α AF-1 and AF-2 domains have cell population-specific functions in the mammary epithelium Stéphanie Cagnet1, Dalya Ataca 1, George Sflomos1, Patrick Aouad1, Sonia Schuepbach-Mallepell2, Henry Hugues3, Andrée Krust4, Ayyakkannu Ayyanan1, Valentina Scabia1 & Cathrin Brisken 1 α α 1234567890():,; Oestrogen receptor (ER ) is a transcription factor with ligand-independent and ligand- dependent activation functions (AF)-1 and -2. Oestrogens control postnatal mammary gland development acting on a subset of mammary epithelial cells (MECs), termed sensor cells, which are ERα-positive by immunohistochemistry (IHC) and secrete paracrine factors, which stimulate ERα-negative responder cells. Here we show that deletion of AF-1 or AF-2 blocks pubertal ductal growth and subsequent development because both are required for expres- sion of essential paracrine mediators. Thirty percent of the luminal cells are ERα-negative by IHC but express Esr1 transcripts. This low level ERα expression through AF-2 is essential for cell expansion during puberty and growth-inhibitory during pregnancy. Cell-intrinsic ERα is not required for cell proliferation nor for secretory differentiation but controls transcript levels of cell motility and cell adhesion genes and a stem cell and epithelial mesenchymal transition (EMT) signature identifying ERα as a key regulator of mammary epithelial cell plasticity. 1 Swiss Institute for Experimental Cancer Research, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland. 2 Department of Biochemistry, University of Lausanne, CH-1066 Epalinges, Switzerland. 3 Centre Hospitalier Universitaire Vaudois, Department of Laboratory Medecine, University Hospital of Lausanne, CH-1011 Lausanne, Switzerland. -
Characterization and Assay of Progesterone Receptor in Human Mammary Carcinoma1
[CANCER RESEARCH 37, 464-471 , February 1977] Characterization and Assay of Progesterone Receptor in Human Mammary Carcinoma1 M. F. Pichon and E. Milgrom Groupe de Recherches sur Ia Biochimie Endocrinienne et Ia Reproduction (INSERM U.135), FacultédeMédecine,Paris-Sud, 94270 Bicétre,France ever, only some patients are improved by such treatments. It SUMMARY would thus be of great practical importance to predict in advance which patient will respond and to nationalize the [3H]Pregn-4-ene-3,20-dione ([3Hjpmogestenane)-recepton choice of the surgical or pharmacological technique to be complexes from human mammary carcinoma were found to used. During the last 15 years, the detection and quantifica be stabilized in the presence of glycerol. The dissociation tion of estrogen receptors in mammary tumors have allowed rate constant was lowered and the equilibrium dissociation marked progress in this direction (11, 12, 16, 18, 21, 22, 34). constant was decreased (KD = 3 nM in the absence of However, the growth of mammary carcinoma may be can glycerol and 1.1 nM in the presence of 30% glycerol), traIled not only by estrogens but also by other hormones whereas no clean-cut effect on the association rate was including observed and no change occurred in the concentration andragens, glucacorticaids, pragestagens , and of binding sites. Gortisol was found to compete with prolactin (13). The study of specific receptors for these [3Hjpmagesterone only at concentrations higher than 1 @M. hormones should shed some bight on the problem of tumor This made it possible to distinguish [3H]pmogestemanebind hormonal dependence . The characterization and measu me ing to the receptor from binding to carticosteroid-binding ment of progesterone receptors have been hampered by the globulin.