Betweenness Centrality in Some Classes of Graphs

Total Page:16

File Type:pdf, Size:1020Kb

Betweenness Centrality in Some Classes of Graphs Hindawi Publishing Corporation International Journal of Combinatorics Volume 2014, Article ID 241723, 12 pages http://dx.doi.org/10.1155/2014/241723 Research Article Betweenness Centrality in Some Classes of Graphs Sunil Kumar Raghavan Unnithan, Balakrishnan Kannan, and Madambi Jathavedan Department of Computer Applications, Cochin University of Science and Technology, Cochin 682022, India Correspondence should be addressed to Sunil Kumar Raghavan Unnithan; [email protected] Received 21 May 2014; Accepted 21 October 2014; Published 25 December 2014 Academic Editor: Chris A. Rodger Copyright © 2014 Sunil Kumar Raghavan Unnithan et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. There are several centrality measures that have been introduced and studied for real-world networks. They account for thedifferent vertex characteristics that permit them to be ranked in order of importance in the network. Betweenness centrality is a measure of the influence of a vertex over the flow of information between every pair of vertices under the assumption that information primarily flows over the shortest paths between them. In this paper we present betweenness centrality of some important classes of graphs. 1. Introduction vertex centrality is in the potential of a vertex for control of information flow in the network. Positions are viewed Betweenness centrality plays an important role in analysis of as structurally central to the degree to which they stand social networks [1, 2], computer networks [3], and many other between others and can therefore facilitate, impede, or bias types of network data models [4–9]. the transmission of messages. Freeman in his papers [5, 16] In the case of communication networks the distance from classified betweenness centrality into three measures. The other units is not the only important property of a unit. three measures include two indexes of vertex centrality—one What is more important is which units lie on the shortest based on counts and one on proportions—and one index of paths (geodesics) among pairs of other units. Such units overall network or graph centralization. have control over the flow of information in the network. Betweenness centrality is useful as a measure of the potential 2.1. Betweenness Centrality of a Vertex. Betweenness central- of a vertex for control of communication. Betweenness ity (V) for a vertex V is defined as centrality [10–14] indicates the betweenness of a vertex in a network and it measures the extent to which a vertex lies on (V) (V) = ∑ , the shortest paths between pairs of other vertices. In many (1) real-world situations it has quite a significant role. ≠V≠ Determining betweenness is simple and straightforward where isthenumberofshortestpathswithvertices when only one geodesic connects each pair of vertices, where and as their end vertices, while (V) is the number of the intermediate vertices can completely control communi- those shortest paths that include vertex V [16]. High centrality cation between pairs of others. But when there are several scores indicate that a vertex lies on a considerable fraction of geodesics connecting a pair of vertices, the situation becomes shortest paths connecting pairs of vertices. morecomplicatedandthecontroloftheintermediatevertices gets fractionated. (i) Every pair of vertices in a connected graph provides avaluelyingin[0, 1] to the betweenness centrality of all other vertices. 2. Background (ii) If there is only one geodesic joining a particular pair The concept of betweenness centrality was first introduced of vertices, then that pair provides a betweenness by Bavelas in 1948 [15]. The importance of the concept of centrality 1 to each of its intermediate vertices and 2 International Journal of Combinatorics zero to all other vertices. For example, in a path graph, 1 a pair of vertices provides a betweenness centrality 1 to each of its interior vertices and zero to the exterior vertices. A pair of adjacent vertices always provides zero to all others. 2 6 (iii) If there are geodesics of length 2 joining a pair of vertices, then that pair of vertices provides a betweenness centrality 1/ to each of the intermediate vertices. 0 Freeman [16]provedthatthemaximumvaluetakenby (V) is achieved only by the central vertex in a star as the central vertex lies on the geodesic (which is unique) joining 3 5 every pair of other vertices. In a star with vertices, the betweenness centrality of the central vertex is therefore the number of such geodesics which is ( −1 ). The betweenness 2 centrality of each pendant vertex is zero since no pendant 4 vertex lies in between any geodesic. Again it can be seen that Figure 1: Wheel graph 7. the betweenness centrality of any vertex in a complete graph is zero since no vertex lies in between any geodesic as every geodesic is of length 1. ∗ The index, (), determines the degree to which (V ) exceeds the centrality of all other vertices in .Since() 2.2. Relative Betweenness Centrality. The betweenness cen- is the ratio of an observed sum of differences to its maximum trality increases with the number of vertices in the network, value, it will vary between 0 and 1. () = 0 if and only if all so a normalized version is often considered with the centrality ∗ (V) are equal, and () = 1 if and only if one vertex V values scaled to between 0 and 1. Betweenness centrality completely dominates the network with respect to centrality. canbenormalizedbydividing(V) by its maximum value. Freemanshowedthatallofthesemeasuresagreeinassigning Among all graphs of vertices the central vertex of a star −1 the highest centrality index to the star graph and the lowest graph has the maximum value which is ( ).Therelative 2 tothecompletegraph(seeTable 1). betweenness centrality is therefore defined as In this paper we present the betweenness centrality (V) 2 (V) measures in some important classes of graphs which are the (V) = = 0≤ (V) ≤1. Max (V) (−1)(−2) basic components of larger complex networks. (2) 3. Betweenness Centrality of 2.3. Betweenness Centrality of a Graph. The betweenness Some Classes of Graphs centrality of a graph measures the tendency of a single vertex to be more central than all other vertices in the graph. It 3.1. Betweenness Centrality of Vertices in Wheels is based on differences between the centrality of the most centralvertexandthatofallothers.Freeman[16] defined the Wheel Graph .AWheelgraph is obtained by joining betweenness centrality of a graph as the average difference a new vertex to every vertex in a cycle −1.Itwasinvented between the measures of centrality of the most central vertex bytheeminentgraphtheoristW.T.Tutte.Awheelgraphon andthatofallothervertices. 7verticesisshowninFigure 1. The betweenness centrality of a graph is defined as ∗ Theorem 1. The betweenness centrality of a vertex V in a wheel ∑=1 [ (V )− (V)] () = , graph , >5,isgivenby ∗ (3) Max ∑=1 [ (V ) − (V)] ∗ (−1)(−5) where (V ) is the largest value of (V) for any vertex V { ,V ℎ V, ∗ (V) = 2 in the given graph and Max ∑ [(V )−(V)] is the {1 =1 { ,ℎ. maximum possible sum of differences in centrality for any {2 graph of vertices which occur in star with the value −1 −1 (5) times (V) of the central vertex, that is, ( − 1) ( 2 ). Therefore the betweenness centrality of is defined as Proof. In the wheel graph the central vertex is adjacent ∗ to each vertex of the cycle −1. Consider the central vertex 2∑=1 [ (V )− (V)] () = of for >5.On−1 each pair of adjacent vertices con- (−1)2 (−2) tributes centrality 0,eachpairofalternateverticescontributes (4) 1/2 1 ∑ [ (V∗)− (V )] centrality , and all other pairs contribute centrality to =1 −1 or () = . the central vertex. Since there are vertices on −1, (−1) there exist −1adjacent pairs, −1alternate pairs, and International Journal of Combinatorics 3 Table 1: Graphs showing extreme betweenness. (V) (V)() { −1 {( ) for central vertex {1 for central vertex { 2 { 1 { {0 for other vertices {0 for other vertices 000 −1 ( 2 ) − 2( − 1) = ( − 1)( −6)/2 other pairs. Therefore 1 the betweenness centrality of the central vertex is given by (1/2)(−1)+1((−1)(−6)/2) = (−1)(−5)/2.Nowforany vertex on −1, there are two geodesics joining its adjacent vertices on −1, one of which passing through it. Therefore 2 6 the betweenness centrality of any vertex on −1 is 1/2. Note.Itcanbeseeneasilythat(V)=0for every vertex V in 4 and 2 { , V {3 if is the central vertex, 3 5 (V) = {1 (6) { , {3 otherwise 4 in 5. The relative centrality and graph centrality are as follows: Figure 2: Complete graph 6 −(V1, V4). 2 (V) (V) = (−1)(−2) The relative centrality and graph centrality are as follows: (−5) { , if V is the central vertex, 2 (V) −2 (V) = = { 1 { , , (−1)(−2) (−1)(−2) otherwise { 2 { , V ≠ V, V, ∗ 2 2 ∑=1 [ (V )− (V)] −6+4 = {(−1)(−2) ( )= = . (9) (−1) (−1)(−2) {0, otherwise, (7) ∗ ∑ [ (V )− (V )] 4 () = =1 = . (−1) (−1)2 (−2)2 3.2. Betweenness Centrality of Vertices in the Graph −. A complete graph on 6 vertices with one edge deleted is shown in Figure 2. 3.3. Betweenness Centrality of Vertices in Complete Bipartite Graphs Theorem 2. Let be a complete graph on vertices and = (V, V) an edge of it. Then the betweenness centrality of vertices Complete Bipartite Graphs ,.Agraphiscompletebipartite in −is given by if its vertices can be partitioned into two disjoint nonempty sets 1 and 2 such that two vertices and are adjacent if 1 { and only if ∈1 and ∈2.If|1|=and |2|=,such ,V ≠ V, V, (V) = {−2 (8) a graph is denoted ,. For example, see 3,4 in Figure 3. {0, ℎ. Theorem 3. The betweenness centrality of a vertex ina Proof. Suppose the edge (V, V) is removed from .Now complete bipartite graph , is given by V and V can be joined by means of any of the remaining −2vertices.
Recommended publications
  • Results on Domination Number and Bondage Number for Some Families of Graphs
    International Journal of Pure and Applied Mathematics Volume 107 No. 3 2016, 565-577 ISSN: 1311-8080 (printed version); ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu AP doi: 10.12732/ijpam.v107i3.5 ijpam.eu RESULTS ON DOMINATION NUMBER AND BONDAGE NUMBER FOR SOME FAMILIES OF GRAPHS G. Hemalatha1, P. Jeyanthi2 § 1Department of Mathematics Shri Andal Alagar College of Engineering Mamandur, Kancheepuram, Tamil Nadu, INDIA 2Research Centre, Department of Mathematics Govindammal Aditanar College for Women Tiruchendur 628 215, Tamil Nadu, INDIA Abstract: Let G = (V, E) be a simple graph on the vertex set V . In a graph G, A set S ⊆ V is a dominating set of G if every vertex in VS is adjacent to some vertex in S. The domination number of a graph Gγ(G)] is the minimum size of a dominating set of vertices in G. The bondage number of a graph G[Bdγ(G)] is the cardinality of a smallest set of edges whose removal results in a graph with domination number larger than that of G. In this paper we establish domination number and the bondage number for some families of graphs. AMS Subject Classification: 05C69 Key Words: dominating set, bondage number, domination number, cocktail party graph, coxeter graph, crown graph, cubic symmetric graph, doyle graph, folkman graph, levi graph, icosahedral graph 1. Introduction The domination in graphs is one of the major areas in graph theory which attracts many researchers because it has the potential to solve many real life problems involving design and analysis of communication network, social net- Received: October 17, 2015 c 2016 Academic Publications, Ltd.
    [Show full text]
  • Constructing Arbitrarily Large Graphs with a Specified Number Of
    Electronic Journal of Graph Theory and Applications 4 (1) (2019), 1–8 Constructing Arbitrarily Large Graphs with a Specified Number of Hamiltonian Cycles Michael Haythorpea aSchool of Computer Science, Engineering and Mathematics, Flinders University, 1284 South Road, Clovelly Park, SA 5042, Australia michael.haythorpe@flinders.edu.au Abstract A constructive method is provided that outputs a directed graph which is named a broken crown graph, containing 5n − 9 vertices and k Hamiltonian cycles for any choice of integers n ≥ k ≥ 4. The construction is not designed to be minimal in any sense, but rather to ensure that the graphs produced remain non-trivial instances of the Hamiltonian cycle problem even when k is chosen to be much smaller than n. Keywords: Hamiltonian cycles, Graph Construction, Broken Crown Mathematics Subject Classification : 05C45 1. Introduction The Hamiltonian cycle problem (HCP) is a famous NP-complete problem in which one must determine whether a given graph contains a simple cycle traversing all vertices of the graph, or not. Such a simple cycle is called a Hamiltonian cycle (HC), and a graph containing at least one arXiv:1902.10351v1 [math.CO] 27 Feb 2019 Hamiltonian cycle is said to be a Hamiltonian graph. Typically, randomly generated graphs (such as Erdos-R˝ enyi´ graphs), if connected, are Hamil- tonian and contain many Hamiltonian cycles. Although HCP is an NP-complete problem, for these graphs it is often fairly easy for a sophisticated heuristic (e.g. see Concorde [1], Keld Helsgaun’s LKH [4] or Snakes-and-ladders Heuristic [2]) to discover one of the multitude of Hamiltonian cy- cles through a clever search.
    [Show full text]
  • Prime Labeling of Union Graphs
    International Journal of Scientific Research in _____________________________ Research Paper . Mathematical and Statistical Sciences Vol.6, Issue.1, pp.86-93, February (2019) E-ISSN: 2348-4519 DOI: https://doi.org/10.26438/ijsrmss/v6i1.8693 Prime labeling of Union Graphs S K Patel1, A N Kansagara2* 1 Department of Mathematics, Government Engineering College, Bhuj-370 001. India. 2 Department of Mathematics, Shree D K V Arts and Science College, Jamnagar-361 008. India. *Corresponding author: [email protected] Tel: +91 94267 57504 Available online at: www.isroset.org Received: 01/Feb/2019, Accepted: 11/Feb/2019, Online: 28/Feb/2019 Abstract- A graph with vertices is called prime graph if its vertices can be labeled with first positive integers such that each pair of adjacent vertices have relatively prime labels. Such a labeling is called prime labeling. It is known that graphs like gear graphs, crown graphs, helm graphs, book graphs and are prime. In this paper, we study the prime labeling of union of these graphs. Keyword: Prime labeling, union of graphs, Corona product, Cartesian Product. AMS Subject Classification(2010): 05C7 I. INTRODUCTION (iii) whereas and are odd integers (iv) , where is any integer. All graphs considered in this paper are simple, finite, and 2. undirected. For a graph , and denotes the 3. , where is an odd integer. vertex set and edge set of respectively whereas 4. For arbitrary integers if and denotes the cardinality of the respective sets. For , then . terms not defined here, we refer the reader to [6]. Paths and cycles are the immediate examples of Now we discuss some basic definions which will be used in prime graphs but on the other hand the conjecture that trees main results.
    [Show full text]
  • Smith Forms for Adjacency Matrices of Circulant Graphs
    Smith forms for adjacency matrices of circulant graphs Gerald Williamsa aDepartment of Mathematical Sciences, University of Essex, Colchester, Essex CO4 3SQ, U.K. Abstract We calculate the Smith normal form of the adjacency matrix of each of the following graphs or their complements (or both): complete graph, cycle graph, square of the cycle, power graph of the cycle, distance matrix graph of cycle, Andr´asfaigraph, Doob graph, cocktail party graph, crown graph, prism graph, M¨obiusladder. The proofs operate by finding the abelianisation of a cyclically presented group whose relation matrix is column equivalent to the required adjacency matrix. Keywords: Smith normal form, circulant graph, adjacency matrix. 2000 MSC: 05C50, 15A21, 20F05. 1. Introduction The circulant matrix circn(a0; : : : ; an−1) is the n × n matrix whose first row is (a0; : : : ; an−1) and where row (i+1) (0 ≤ i ≤ n−2) is a cyclic shift of row i by one column. A circulant graph is a graph that is isomorphic to a graph whose adjacency matrix is circulant. We shall write A(Γ) for the adjacency matrix of a graph Γ. Given graphs Γ; Γ0 if det(A(Γ)) =6 det(A(Γ0)) (in particular if precisely one of A(Γ), A(Γ0) is singular) then Γ; Γ0 are non-isomorphic. Similarly, if rank(A(Γ)) =6 rank(A(Γ0)) then Γ; Γ0 are non-isomorphic. Singularity, rank, and determinants of various families of circulant graphs are considered (for example) in [3],[7],[16],[23]. For an n × n integer matrix M, the Smith normal form of M, written SNF(M), is the n × n diagonal integer matrix S = diagn(d0; : : : ; dn−1) where d0; : : : ; dn−1 2 N [ f0g and dijdi+1 (0 ≤ i ≤ n − 2) is such that there exist invertible integer matrices P; Q such that PMQ = S.
    [Show full text]
  • Pattern Avoidance and Fiber Bundle Structures on Schubert Varieties
    Thursday 2.10 Auditorium B Pattern Avoidance and Fiber Bundle Structures on Schubert Varieties Timothy Alland [email protected] SUNY Stony Brook (This talk is based on joint work with Edward Richmond.) MSC2000: 05E15, 14M15 Permutations are known to index type A Schubert varieties. A question one can ask regarding a specific Schubert variety is whether it is an iterated fiber bundle of Grass- mannian Schubert varieties, that is, if it has a complete parabolic bundle structure. We have found that a Schubert variety has a complete parabolic bundle structure if and only if its associated permutation avoids the patterns 3412, 52341, and 635241. We find this by first identifying when the standard projection from the Schubert variety in the complete flag variety to the Schubert variety in the Grassmannian is a fiber bundle using what we have called \split pattern avoidance". In this talk, I will demonstrate how we were able to move from a characterization of this projection in terms of the support and left descents of the permutation's parabolic decomposition to one that applies split pattern avoidance. I will also give a flavor of the proof of how the three patterns mentioned above determine whether a Schubert variety has a complete parabolic bundle structure. Monday 3.55 Auditorium B A simple proof of Shamir's conjecture Peter Allen [email protected] LSE (This talk is based on joint work with Julia B¨ottcher, Ewan Davies, Matthew Jenssen, Yoshiharu Kohayakawa, Barnaby Roberts.) MSC2000: 05C80 It is well known (and easy to show) that the threshold for a perfect matching in the bino- log n mial random graph G(n; p) is p = Θ n , coinciding with the threshold for every vertex to be in an edge (and much more is known).
    [Show full text]
  • Arxiv:2108.05223V2 [Math.CO] 12 Aug 2021 the Line Graph of the Crown
    The line graph of the crown graph is distance integral S. Morteza Mirafzal Department of Mathematics Lorestan University, Khorramabad, Iran E-mail: [email protected] E-mail: [email protected] Abstract The distance eigenvalues of a connected graph G are the eigenvalues of its distance matrix D(G). A graph is called distance integral if all of its distance eigenvalues are integers. Let n ≥ 3 be an integer. A crown graph Cr(n) is a graph obtained from the complete bipartite graph Kn,n by removing a perfect matching. Let L(Cr(n)) denote the line graph of the crown graph Cr(n). In this paper, by using the orbit partition method in algebraic graph theory, we determine the set of all distance eigenvalues of L(Cr(n)) and show that this graph is distance integral. 1 Introduction and Preliminaries arXiv:2108.05223v4 [math.CO] 8 Sep 2021 In this paper, a graph G = (V, E) is considered as an undirected simple graph where V = V (G) is the vertex-set and E = E(G) is the edge-set. For all the terminology and notation not defined here, we follow [3,4,5,6,7]. Let G = (V, E) be a graph and A = A(G) be an adjacency matrix of G. The characteristic polynomial of G is defined as P (G; x)= P (x)= |xI − A|. A zero of p(x) is called an eigenvalue of the graph G. A graph is called integral, if all the eigenvalues are integers. The study of integral graphs was initiated by 2010 Mathematics Subject Classification:05C50 Keywords: crown graph, distance integral, vertex-transitive, orbit partition Date: 1 2 S.
    [Show full text]
  • Bidirected Graph from Wikipedia, the Free Encyclopedia Contents
    Bidirected graph From Wikipedia, the free encyclopedia Contents 1 Bidirected graph 1 1.1 Other meanings ............................................ 1 1.2 See also ................................................ 2 1.3 References ............................................... 2 2 Bipartite double cover 3 2.1 Construction .............................................. 3 2.2 Examples ............................................... 3 2.3 Matrix interpretation ......................................... 4 2.4 Properties ............................................... 4 2.5 Other double covers .......................................... 4 2.6 See also ................................................ 5 2.7 Notes ................................................. 5 2.8 References ............................................... 5 2.9 External links ............................................. 6 3 Complex question 7 3.1 Implication by question ........................................ 7 3.2 Complex question fallacy ....................................... 7 3.2.1 Similar questions and fallacies ................................ 8 3.3 Notes ................................................. 8 4 Directed graph 10 4.1 Basic terminology ........................................... 11 4.2 Indegree and outdegree ........................................ 11 4.3 Degree sequence ............................................ 12 4.4 Digraph connectivity .......................................... 12 4.5 Classes of digraphs .........................................
    [Show full text]
  • On Balance Index Set of Double Graphs and Derived Graphs
    International Journal of Mathematics and Soft Computing Vol.4, No.2 (2014), 81 - 93. ISSN Print : 2249 - 3328 ISSN Online: 2319 - 5215 On Balance Index Set of Double graphs and Derived graphs Pradeep G. Bhat, Devadas Nayak Department of Mathematics Manipal Institute of Technology Manipal University, Manipal-576 104, India. E-mail: pg−[email protected], [email protected] Abstract In this paper we obtain Balance Index Set of the double graphs and the derived graphs of path graphs, cycle graphs, wheel graphs, complete bipartite graphs, star graphs, double star, crown graphs, helm graphs and flower graphs. Keywords: Friendly labeling, partial edge labeling, balance index set, double graphs and derived graphs. AMS Subject Classification(2010): 05C78. 1 Introduction We begin with simple, finite, connected and undirected graph G=(V; E). Here elements of set V and E are known as vertices and edges respectively. For all other terminologies and notations we follow Harary [1]. Definition 1.1. Double graph of a connected graph G is constructed by taking two copies of G say G0 and G00, join each vertex u0 in G0 to the neighbour of the corresponding u00 in G00. Double graph of G is denoted by D2(G). Definition 1.2. The derived graph of G, denoted by Gy is a graph with vertex set V (G), in which two vertices are adjacent if and only if their distance in G is two. Definition 1.3. The crown Cn K1 is obtained by joining a pendant edge to each vertex of Cn. Definition 1.4. The wheel Wn is defined to be the join K1 + Cn.
    [Show full text]
  • A Study on Color Energy of Graphs
    A Study on Color Energy of Graphs A Dissertation Submitted in Partial Fulfillment of the Requirements for the Award of the Degree of Master of Philosophy in Mathematics by Prajakta Bharat Joshi (Reg. No. 1640036) Under the Guidance of Mayamma Joseph Professor Department of Mathematics CHRIST UNIVERSITY BENGALURU, INDIA November 2017 Approval of Dissertation Dissertation entitled A Study on Color Energy of Graphs by Prajakta Bharat Joshi, Reg. No. 1640036 is approved for the award of the degree of Master of Philosophy in Mathematics. Examiner: Supervisor: Chairman: GRC: Date: Place: Bengaluru ii DECLARATION I, Prajakta Bharat Joshi, hereby declare that the dissertation, titled A Study on Color Energy of Graphs is a record of original research work undertaken by me for the award of the degree of Master of Philosophy in Mathematics. I have completed this study under the supervision of Dr Mayamma Joseph, Professor, Department of Mathematics. I also declare that this dissertation has not been submitted for the award of any degree, diploma, associateship, fellowship or other title. I hereby confirm the originality of the work and that there is no plagiarism in any part of the dissertation. Place: Bengaluru Date: Prajakta Bharat Joshi Reg. No. 1640036 Department of Mathematics Christ University, Bengaluru. iii CERTIFICATE This is to certify that the dissertation submitted by Prajakta Bharat Joshi, Reg. No. 1640036, titled A Study on Color Energy of Graphs is a record of research work done by her during the academic year 2016-2017 under my supervision in partial fulfillment for the award of Master of Philosophy in Mathematics.
    [Show full text]
  • On the Representation Number of a Crown Graph Arxiv:1609.00674V1
    On the representation number of a crown graph Marc Glen1, Sergey Kitaev1, and Artem Pyatkin2 1Department of Computer and Information Sciences, University of Strathclyde, 26 Richmond Street, Glasgow G1 1XH, UK 2Sobolev Institute of Mathematics, Novosibirsk State University, 630090 Novosibirsk, Russia Abstract A graph G = (V; E) is word-representable if there exists a word w over the alphabet V such that letters x and y alternate in w if and only if xy is an edge in E. It is known that any word-representable graph G is k-word-representable for some k, that is, there exists a word w representing G such that each letter occurs exactly k times in w. The minimum such k is called G's representation number. A crown graph Hn;n is a graph obtained from the complete bipar- tite graph Kn;n by removing a perfect matching. In this paper we show that for n ≥ 5, Hn;n's representation number is dn=2e. This result not only provides a complete solution to the open Problem 7.4.2 in [3], but also gives a negative answer to the question raised in Problem 7.2.7 in [3] on 3-word-representability of bipartite graphs. As a byproduct we obtain a new example of a graph class with a high representation number. arXiv:1609.00674v1 [math.CO] 2 Sep 2016 Keywords: word-representable graph, crown graph, representation number 1 Introduction A graph G = (V; E) is word-representable if there exists a word w over the alphabet V such that letters x and y alternate in w if and 1 only if xy is an edge in E.
    [Show full text]
  • Minimum Covering Distance Energy of a Graph 1 Introduction
    Applied Mathematical Sciences, Vol. 7, 2013, no. 111, 5525 - 5536 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ams.2013.38477 Minimum Covering Distance Energy of a Graph M. R. Rajesh Kanna, B. N. Dharmendra Department of Mathematics Maharani’s Science College for Women J. L. B. Road, Mysore - 570 005, India [email protected], [email protected] R. Pradeep Kumar Research and Development Centre Bharathiar University Coimbatore 641 046, India [email protected] Copyright c 2013 M. R. Rajesh Kanna, B. N. Dharmendra and R. Pradeep Kumar. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Recently Prof.Chandrashekar Adiga et al.[1] have defined the minimum covering energy, EC (G) of a graph G which depends on its particular minimum cover C. Motivated by this paper, we introduced the concept of minimum covering distance energy ECd(G) of a graph G and computed minimum covering distance energies of a star graph, complete graph, crown graph, bipartite graph and cocktail graphs. Upper and lower bounds for ECd(G) are also established. Mathematics Subject Classification: 05C50, 05C69 Keywords: Minimum covering set, Minimum covering distance matrix, Minimum covering distance eigenvalues, Minimum covering distance energy of a graph 1 Introduction The concept of energy of a graph was introduced by I. Gutman [10] in the year 1978. Let G be a graph with n vertices {v1,v2, ..., vn} and m edges. Let A =(aij) be the adjacency matrix of the 5526 M.
    [Show full text]
  • Structural Aspects of Switching Classes
    Structural Aspects of Switching Classes Structural Aspects of Switching Classes Proefschrift ter verkrijging van de graad van Doctor aan de Universiteit Leiden, op gezag van de Rector Magni¯cus Dr. D.D. Breimer, hoogleraar in de faculteit der Wiskunde en Natuurwetenschappen en die der Geneeskunde, volgens besluit van het College voor Promoties te verdedigen op woensdag 26 september 2001 te klokke 14.15 uur Jurriaan Hage geboren te Alphen aan den Rijn in 1969 Promotiecommissie Promotor: Prof. dr. G. Rozenberg Co-promotor: Dr. T. Harju (Turun Yliopisto, Finland) Referent: Prof. dr. H.-J. Kreowski (UniversitÄat Bremen, Duitsland) Overige leden: Prof. dr. H. Ehrig (Technische UniversitÄat Berlin, Duitsland) Prof. dr. E. Welzl (ETH ZÄurich, Zwitserland) Dr. J. Engelfriet Prof. dr. J. Kok Prof. dr. H.A.G. Wijsho® The work in this thesis was carried within the context of the IPA graduate school. And then there was light... Contents 1 Introduction 11 2 Preliminaries 15 2.1 Sets, functions and relations ....................... 15 2.2Basicgrouptheory............................ 16 2.3Basicgraphtheory............................ 22 I Switching Classes of Graphs 27 3 Switching Classes 29 3.1De¯nitions................................. 29 3.2Basicpropertiesofswitchingclasses.................. 32 3.3 Two-graphs . ............................... 37 3.4Somecomplexityconsiderations..................... 37 3.4.1 Easyproblemsforswitchingclasses............... 38 3.4.2 Hardproblemsforswitchingclasses.............. 40 3.4.3 Theembeddingproblem....................
    [Show full text]