Investigating Gluino Production at the LHC
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
1 Standard Model: Successes and Problems
Searching for new particles at the Large Hadron Collider James Hirschauer (Fermi National Accelerator Laboratory) Sambamurti Memorial Lecture : August 7, 2017 Our current theory of the most fundamental laws of physics, known as the standard model (SM), works very well to explain many aspects of nature. Most recently, the Higgs boson, predicted to exist in the late 1960s, was discovered by the CMS and ATLAS collaborations at the Large Hadron Collider at CERN in 2012 [1] marking the first observation of the full spectrum of predicted SM particles. Despite the great success of this theory, there are several aspects of nature for which the SM description is completely lacking or unsatisfactory, including the identity of the astronomically observed dark matter and the mass of newly discovered Higgs boson. These and other apparent limitations of the SM motivate the search for new phenomena beyond the SM either directly at the LHC or indirectly with lower energy, high precision experiments. In these proceedings, the successes and some of the shortcomings of the SM are described, followed by a description of the methods and status of the search for new phenomena at the LHC, with some focus on supersymmetry (SUSY) [2], a specific theory of physics beyond the standard model (BSM). 1 Standard model: successes and problems The standard model of particle physics describes the interactions of fundamental matter particles (quarks and leptons) via the fundamental forces (mediated by the force carrying particles: the photon, gluon, and weak bosons). The Higgs boson, also a fundamental SM particle, plays a central role in the mechanism that determines the masses of the photon and weak bosons, as well as the rest of the standard model particles. -
Supersymmetric Particle Searches
Citation: K.A. Olive et al. (Particle Data Group), Chin. Phys. C38, 090001 (2014) (URL: http://pdg.lbl.gov) Supersymmetric Particle Searches A REVIEW GOES HERE – Check our WWW List of Reviews A REVIEW GOES HERE – Check our WWW List of Reviews SUPERSYMMETRIC MODEL ASSUMPTIONS The exclusion of particle masses within a mass range (m1, m2) will be denoted with the notation “none m m ” in the VALUE column of the 1− 2 following Listings. The latest unpublished results are described in the “Supersymmetry: Experiment” review. A REVIEW GOES HERE – Check our WWW List of Reviews CONTENTS: χ0 (Lightest Neutralino) Mass Limit 1 e Accelerator limits for stable χ0 − 1 Bounds on χ0 from dark mattere searches − 1 χ0-p elastice cross section − 1 eSpin-dependent interactions Spin-independent interactions Other bounds on χ0 from astrophysics and cosmology − 1 Unstable χ0 (Lighteste Neutralino) Mass Limit − 1 χ0, χ0, χ0 (Neutralinos)e Mass Limits 2 3 4 χe ,eχ e(Charginos) Mass Limits 1± 2± Long-livede e χ± (Chargino) Mass Limits ν (Sneutrino)e Mass Limit Chargede Sleptons e (Selectron) Mass Limit − µ (Smuon) Mass Limit − e τ (Stau) Mass Limit − e Degenerate Charged Sleptons − e ℓ (Slepton) Mass Limit − q (Squark)e Mass Limit Long-livede q (Squark) Mass Limit b (Sbottom)e Mass Limit te (Stop) Mass Limit eHeavy g (Gluino) Mass Limit Long-lived/lighte g (Gluino) Mass Limit Light G (Gravitino)e Mass Limits from Collider Experiments Supersymmetrye Miscellaneous Results HTTP://PDG.LBL.GOV Page1 Created: 8/21/2014 12:57 Citation: K.A. Olive et al. -
Search for Long-Lived Stopped R-Hadrons Decaying out of Time with Pp Collisions Using the ATLAS Detector
PHYSICAL REVIEW D 88, 112003 (2013) Search for long-lived stopped R-hadrons decaying out of time with pp collisions using the ATLAS detector G. Aad et al.* (ATLAS Collaboration) (Received 24 October 2013; published 3 December 2013) An updated search is performed for gluino, top squark, or bottom squark R-hadrons that have come to rest within the ATLAS calorimeter, and decay at some later time to hadronic jets and a neutralino, using 5.0 and 22:9fbÀ1 of pp collisions at 7 and 8 TeV, respectively. Candidate decay events are triggered in selected empty bunch crossings of the LHC in order to remove pp collision backgrounds. Selections based on jet shape and muon system activity are applied to discriminate signal events from cosmic ray and beam-halo muon backgrounds. In the absence of an excess of events, improved limits are set on gluino, stop, and sbottom masses for different decays, lifetimes, and neutralino masses. With a neutralino of mass 100 GeV, the analysis excludes gluinos with mass below 832 GeV (with an expected lower limit of 731 GeV), for a gluino lifetime between 10 s and 1000 s in the generic R-hadron model with equal branching ratios for decays to qq~0 and g~0. Under the same assumptions for the neutralino mass and squark lifetime, top squarks and bottom squarks in the Regge R-hadron model are excluded with masses below 379 and 344 GeV, respectively. DOI: 10.1103/PhysRevD.88.112003 PACS numbers: 14.80.Ly R-hadrons may change their properties through strong I. -
LHC and the Origin of Neutrino Mass§
LHC and the origin of neutrino massx Goran Senjanovi´c International Centre for Theoretical Physics, 34100 Trieste, Italy Abstract It is often said that neutrino mass is a window to a new physics beyond the standard model (SM). This is certainly true if neutrinos are Majorana particles since the SM with Majorana neutrino mass is not a complete theory. The classical text-book test of neutrino Majorana mass, the neutrino-less double beta decay depends on the completion, and thus cannot probe neutrino mass. As pointed out already more than twenty five years ago, the colliders such as Tevatron or LHC offer a hope of probing directly the origin of neutrino Majorana mass through lepton number violating production of like sign lepton pairs. I discuss this in the context of all three types of seesaw mechanism. I then discuss in detail the situation in L − R symmetric theories, which led originally to the seesaw and which incorporate naturally both type I and type II. A WR gauge boson with a mass in a few TeV region could easily dominate neutrino-less double beta decay, and its discovery at LHC would have spectacular signatures of parity restoration and lepton number violation. At the end I give an example of a predictive SU(5) grand unified theory that results in a hybrid type I and III seesaw with a light fermion triplet below TeV scale. 1 Introduction If M is huge, there is no hope of direct observation of new physics. It is often said that large M is more We know that neutrinos are massive but light [1]. -
Introduction to Supersymmetry
Introduction to Supersymmetry Pre-SUSY Summer School Corpus Christi, Texas May 15-18, 2019 Stephen P. Martin Northern Illinois University [email protected] 1 Topics: Why: Motivation for supersymmetry (SUSY) • What: SUSY Lagrangians, SUSY breaking and the Minimal • Supersymmetric Standard Model, superpartner decays Who: Sorry, not covered. • For some more details and a slightly better attempt at proper referencing: A supersymmetry primer, hep-ph/9709356, version 7, January 2016 • TASI 2011 lectures notes: two-component fermion notation and • supersymmetry, arXiv:1205.4076. If you find corrections, please do let me know! 2 Lecture 1: Motivation and Introduction to Supersymmetry Motivation: The Hierarchy Problem • Supermultiplets • Particle content of the Minimal Supersymmetric Standard Model • (MSSM) Need for “soft” breaking of supersymmetry • The Wess-Zumino Model • 3 People have cited many reasons why extensions of the Standard Model might involve supersymmetry (SUSY). Some of them are: A possible cold dark matter particle • A light Higgs boson, M = 125 GeV • h Unification of gauge couplings • Mathematical elegance, beauty • ⋆ “What does that even mean? No such thing!” – Some modern pundits ⋆ “We beg to differ.” – Einstein, Dirac, . However, for me, the single compelling reason is: The Hierarchy Problem • 4 An analogy: Coulomb self-energy correction to the electron’s mass A point-like electron would have an infinite classical electrostatic energy. Instead, suppose the electron is a solid sphere of uniform charge density and radius R. An undergraduate problem gives: 3e2 ∆ECoulomb = 20πǫ0R 2 Interpreting this as a correction ∆me = ∆ECoulomb/c to the electron mass: 15 0.86 10− meters m = m + (1 MeV/c2) × . -
Elementary Particle Physics from Theory to Experiment
Elementary Particle Physics From Theory to Experiment Carlos Wagner Physics Department, EFI and KICP, Univ. of Chicago HEP Division, Argonne National Laboratory Society of Physics Students, Univ. of Chicago, Nov. 10, 2014 Particle Physics studies the smallest pieces of matter, 1 1/10.000 1/100.000 1/100.000.000 and their interactions. Friday, November 2, 2012 Forces and Particles in Nature Gravitational Force Electromagnetic Force Attractive force between 2 massive objects: Attracts particles of opposite charge k e e F = 1 2 d2 1 G = 2 MPl Forces within atoms and between atoms Proportional to product of masses + and - charges bind together Strong Force and screen each other Assumes interaction over a distance d ==> comes from properties of spaceAtoms and timeare made fromElectrons protons, interact with protons via quantum neutrons and electrons. Strong nuclear forceof binds e.m. energy together : the photons protons and neutrons to form atoms nuclei Strong nuclear force binds! togethers! =1 m! = 0 protons and neutrons to form nuclei protonD. I. S. of uuelectronsd formedwith Modeled protons by threeor by neutrons a theoryquarks, based bound on together Is very weak unless one ofneutron theat masses high energies is huge,udd shows by thatthe U(1)gluons gauge of thesymmetry strong interactions like the earth protons and neutrons SU (3) c are not fundamental Friday,p November! u u d 2, 2012 formed by three quarks, bound together by n ! u d d the gluons of the strong interactions Modeled by a theory based on SU ( 3 ) C gauge symmetry we see no free quarks Very strong at large distances confinement " in nature ! Weak Force Force Mediating particle transformations Observation of Beta decay demands a novel interaction Weak Force Short range forces exist only inside the protons 2 and neutrons, with massive force carriers: gauge bosons ! W and Z " MW d FW ! e / d Similar transformations explain the non-observation of heavier elementary particles in our everyday experience. -
Physics Beyond Colliders at CERN: Beyond the Standard Model
EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH (CERN) CERN-PBC-REPORT-2018-007 Physics Beyond Colliders at CERN Beyond the Standard Model Working Group Report J. Beacham1, C. Burrage2,∗, D. Curtin3, A. De Roeck4, J. Evans5, J. L. Feng6, C. Gatto7, S. Gninenko8, A. Hartin9, I. Irastorza10, J. Jaeckel11, K. Jungmann12,∗, K. Kirch13,∗, F. Kling6, S. Knapen14, M. Lamont4, G. Lanfranchi4,15,∗,∗∗, C. Lazzeroni16, A. Lindner17, F. Martinez-Vidal18, M. Moulson15, N. Neri19, M. Papucci4,20, I. Pedraza21, K. Petridis22, M. Pospelov23,∗, A. Rozanov24,∗, G. Ruoso25,∗, P. Schuster26, Y. Semertzidis27, T. Spadaro15, C. Vallée24, and G. Wilkinson28. Abstract: The Physics Beyond Colliders initiative is an exploratory study aimed at exploiting the full scientific potential of the CERN’s accelerator complex and scientific infrastructures through projects complementary to the LHC and other possible future colliders. These projects will target fundamental physics questions in modern particle physics. This document presents the status of the proposals presented in the framework of the Beyond Standard Model physics working group, and explore their physics reach and the impact that CERN could have in the next 10-20 years on the international landscape. arXiv:1901.09966v2 [hep-ex] 2 Mar 2019 ∗ PBC-BSM Coordinators and Editors of this Report ∗∗ Corresponding Author: [email protected] 1 Ohio State University, Columbus OH, United States of America 2 University of Nottingham, Nottingham, United Kingdom 3 Department of Physics, University of Toronto, Toronto, -
Observability of R-Hadrons at the LHC
1 Observability of R-Hadrons at the LHC Andrea Rizzi, ETH Zuerich, CMS Collaboration Moriond QCD, 17-24/03/2007 O u t l i n e 2 ● Introduction to R-hadrons ● R-hadrons hadronic interactions ● LHC production ● Detector signature ● Trigger ● Slow particles mass measurement H e a v y S t a b l e C h a r g e d P a r t i c l e s 3 ● Some theories extending the SM predict new HSCP (hep-ph/0611040) – Gauge Mediated SuSY breaking => stau – Split Supersymmetry ● very high mass for scalars ● gluino is long lived – Other models: GDM, AMSB, extrDim, stable stop, 4th gen fermions ● To be clear: – heavy = mass in 100 GeV – few TeV region – stable = ctau > few meters (stable for LHC exp) ● LHC detectors are not designed for such particles I n t r o d u c t i o n t o R - h a d r o n s ● If new heavy stable particles are coloured they will form new 4 hadrons ● gluinos or stops are example of such particles ● New hadrons formed with new SuSY particles are called R-hadrons ● Several different states can be formed : Gluino: stop: baryons ~gqqq baryons ~tqq antibaryons ~g qbar qbar qbar antiparyons ~tbar qbar qbar mesons ~g q qbar mesons ~t qbar glue-balls ~g g antimesons ~tbar q ● Some are charged, some are neutral ● The charge can change in hadronic interactions with matter while crossing the detector (by “replacing” the light quarks bounded to the heavy parton) ● Simulation of hadronic interactions is crucial to understand LHC detectability H a d r o n i c i n t e r a c t i o n s ● Some models have been proposed to understand R-hadrons / matter interaction -
LHC and the Origin of Neutrino Mass
Graduate Physics Seminar Monday, 28 February 2011 from 4 PM University of Nova Gorica, Ajdovščina site Auditorium Prof. Dr. Goran Senjanović The Abdus Salam International Centre for Theoretical Physics Trieste, Italy LHC and the origin of neutrino mass Abstract The physics of elementary particles is almost completely governed by symmetries. One particular symmetry stands out: the one between left and right, called parity, probably the first symmetry a child sees. Its maximal breaking in beta decay created a bombshell more than fifty years ago, and ultimately led to the creation of the Standard Model of all interactions (except gravity), whose final crowning confirmation is to be provided by the Large Hadron Collider (LHC) at CERN if successful in its hunt of the Higgs particle. The Standard Model is based on the basic premise of parity being broken always, at all energies, and being broken maximally. I argue, on the contrary, that in nature left-right symmetry is fundamental, and that at the high energies of the LHC one could actually see its restoration in full glory. I show how this is connected to the nature of the neutrino, a mysterious particle that we are still probing, eighty years after its conception and more than half a century after its discovery. I have been involved in the development of the Left-Right symmetric theory from its beginning, and more recently in its role in the possible creation of electrons out of 'nothing' at the LHC, and in neutrinoless double-beta decay. An essential role in this is played by the 'seesaw' mechanism of small neutrino mass, that emerged naturally from the idea of left-right symmetry, and that hopefully could be probed at the LHC. -
Curriculum Vitae
CURRICULUM VITAE Name: Goran Senjanovi´c Place/Date of Birth: Beograd, Jugoslavia, 9/6/1950 Nationality: Croatian Present Address: Gran Sasso Science Institute, GSSI Viale Francesco Crispi 7, L'Aquila, Italy. International Centre for Theoretical Physics, ICTP Strada Costiera 11, Trieste, Italy. Electronic mail: [email protected] Phone: +39-345-1700994, +385-(0)99-4106944 Foreign Languages: English, Italian, Spanish, French Marital Status: Divorced, one child. Education • BSc University of Beograd, Beograd, Yugoslavia, 1973. • PhD City College of New York, New York, USA, 1978. Positions Held • (1978 -1980): Postdoctoral Research Associate, University of Maryland, Maryland, USA. • (1980 -1982): Assistant Physicist, Brookhaven National Laboratory, Long Island, USA. • (1982 -1987): Associate Physicist, Brookhaven National Laboratory. 1 • (1987- 1993): Professor of Physics, University of Zagreb, Zagreb, Croatia. • (1991 -2013): Research Scientist (staff), International Centre for Theoretical Physics, Trieste, Italy. • (2013 - present) Emeritus Staff Associate, ICTP, Trieste, Italy. • (October 2013 - present) Director of Research, Gran Sasso Science Institute, L'Aquila, Italy Long-term on-leave Positions • (1983 -1984) Institute for Theoretical Physics, Santa Barbara, Califor- nia, USA. • (1984-1985) Virginia State University, Blacksburg, Virginia, USA • (1990 -1991) CERN, Geneva, Switzerland. Professional recognition • ICTP node representative of the EU 5th framework programme \Su- persymmetry and the early Universe" (2000-2004). • ICTP -
Disentangling the Seesaw Mechanism in the Minimal Left-Right Symmetric Model
PHYSICAL REVIEW D 100, 115031 (2019) Disentangling the seesaw mechanism in the minimal left-right symmetric model Goran Senjanović and Vladimir Tello International Centre for Theoretical Physics, Trieste, Italy (Received 14 January 2019; published 18 December 2019) In a recent paper we presented a systematic way of testing the seesaw origin of neutrino mass in the context of the minimal left-right symmetric model. The essence of the program is to exploit lepton number violating decays of doubly charged scalars, particles which lie at the heart of the Higgs-mechanism-based seesaw, to probe the Dirac neutrino mass term which in turn enters directly into a number of physical processes including the decays of right-handed neutrinos into the W boson and left-handed charged leptons. In this longer version we discuss at length these and related processes, and we offer some missing technical details. We also carefully analyze the physically appealing possibility of a parity conserving Yukawa sector showing that the neutrino Dirac mass matrix can be analytically expressed as a function of light and heavy neutrino masses and mixing, without resorting to any additional discrete symmetries, a context in which the seesaw mechanism can be disentangled completely. When parity does get broken, we show that, in the general case, only the Hermitian part of the Dirac mass term is independent which substantially simplifies the task of testing experimentally the origin of neutrino mass. We illustrate this program through some physical examples that allow simple analytical expressions. Our work shows that the minimal left-right symmetric model is a self-contained theory of neutrino mass which can be in principle tested at the LHC or the next hadron collider. -
Arxiv:1812.02669V2 [Hep-Ph] 20 Jul 2021 VII
TASI Lectures on the Strong CP Problem and Axions Anson Hook These TASI lectures where given in 2018 and provide an introduction to the Strong CP problem and the axion. I start by introducing the Strong CP problem from both a classical and a quantum mechanical perspective, calculating the neutron eDM and discussing the θ vacua. Next, I review the various solutions and discuss the active areas of axion model building. Finally, I summarize various experiments proposed to look for these solutions. Contents I. Introduction 2 II. The Strong CP problem and its solutions at the classical level 3 A. The Strong CP problem 3 B. Solutions 4 III. The Strong CP problem at the quantum level 4 A. Low-energy QCD done incorrectly 5 B. Anomalous symmetries 6 C. The theory of pions and neutrons done properly 7 IV. The θ vacua 9 V. Non-axion solutions to the Strong CP problem 12 A. The massless up quark 12 B. RG running of θ 13 C. Parity 13 D. CP 14 VI. Axions 15 A. The QCD axion 15 B. The axion quality problem 16 C. Solving the axion quality problem 17 D. Variations of the QCD axion 18 1. Large fermion and photon couplings 18 2. Changing the axion mass - neutron coupling relation 19 E. ALPs 19 arXiv:1812.02669v2 [hep-ph] 20 Jul 2021 VII. Axion/ALP dark matter 20 A. Misalignment : ALP Dark Matter 20 B. Misalignment : Axion DM 21 C. Topological production of axions 22 D. Variations of dark matter axions 22 VIII. Experimental probes of the Axion 23 A.