ERDAS ECW JP2 SDK 5.5 Update 3 USER GUIDE

Total Page:16

File Type:pdf, Size:1020Kb

ERDAS ECW JP2 SDK 5.5 Update 3 USER GUIDE ERDAS ECW JP2 SDK 5.5 Update 3 USER GUIDE Version 5.5.0 Update 3 11 February 2021 Contents Introduction ................................................................................................................................ 7 Overview ................................................................................................................................... 7 API Documentation ................................................................................................................... 8 Code Listings ........................................................................................................................ 8 Intended Audience .................................................................................................................... 8 Acknowledgements ................................................................................................................... 8 What’s New ................................................................................................................................. 9 Version 5.5 Update 3 ................................................................................................................ 9 Version 5.5 Update 2 ................................................................................................................ 9 Version 5.5 Update 1 ................................................................................................................ 9 Version 5.5 ............................................................................................................................... 9 Version 5.4 Update 1 .............................................................................................................. 10 Version 5.4 ............................................................................................................................. 10 Version 5.3 ............................................................................................................................. 10 Version 5.2 ............................................................................................................................. 11 Version 5.1 ............................................................................................................................. 11 Version 5.0 ............................................................................................................................. 12 Version 4.3 ............................................................................................................................. 13 Version 4.2 ............................................................................................................................. 13 Version 4.1 ............................................................................................................................. 13 Version 3.3 ............................................................................................................................. 13 Version 3.0 ............................................................................................................................. 14 Version 2.0 ............................................................................................................................. 14 About Image Compression ...................................................................................................... 15 Introduction ............................................................................................................................. 15 Lossless or Lossy Compression ............................................................................................. 15 Wavelet Based Encoding ........................................................................................................ 16 ECW Compression ................................................................................................................. 17 Licensing .................................................................................................................................. 18 Overview ................................................................................................................................. 18 Understanding Gigapixel Limitations....................................................................................... 19 2 Activating a License ................................................................................................................ 19 System Requirements ............................................................................................................. 21 Development Platforms .......................................................................................................... 21 Windows.............................................................................................................................. 21 Linux ................................................................................................................................... 21 MacOS X ............................................................................................................................. 21 Android, iOS ........................................................................................................................ 21 Development Environments .................................................................................................... 22 Windows.............................................................................................................................. 22 Linux ................................................................................................................................... 22 MacOS X ............................................................................................................................. 22 Android ................................................................................................................................ 22 iOS ...................................................................................................................................... 22 Runtime Platforms .................................................................................................................. 23 Windows.............................................................................................................................. 23 Linux ................................................................................................................................... 23 MacOS X ............................................................................................................................. 23 Android ................................................................................................................................ 23 iOS ...................................................................................................................................... 23 Installation ................................................................................................................................ 24 Windows ................................................................................................................................. 24 Linux ....................................................................................................................................... 26 MacOS X ................................................................................................................................ 26 Directory Structure .................................................................................................................. 26 File Formats .............................................................................................................................. 28 ECW Version 2 ....................................................................................................................... 29 ECW Version 3 ....................................................................................................................... 29 JPEG 2000 ............................................................................................................................. 29 NITF ....................................................................................................................................... 30 ECWP Streaming Protocol ...................................................................................................... 31 ECWP Version 2 ..................................................................................................................... 31 ECWP Version 3 ..................................................................................................................... 31 Example ECWP resources ..................................................................................................... 32 3 Features .................................................................................................................................... 33 ECWP Persistent Local Cache ............................................................................................... 33 Image Resampling .................................................................................................................. 33 Data Scaling ........................................................................................................................... 34 Dynamic Range Calculation...................................................................................................
Recommended publications
  • Lossy Image Compression Based on Prediction Error and Vector Quantisation Mohamed Uvaze Ahamed Ayoobkhan* , Eswaran Chikkannan and Kannan Ramakrishnan
    Ayoobkhan et al. EURASIP Journal on Image and Video Processing (2017) 2017:35 EURASIP Journal on Image DOI 10.1186/s13640-017-0184-3 and Video Processing RESEARCH Open Access Lossy image compression based on prediction error and vector quantisation Mohamed Uvaze Ahamed Ayoobkhan* , Eswaran Chikkannan and Kannan Ramakrishnan Abstract Lossy image compression has been gaining importance in recent years due to the enormous increase in the volume of image data employed for Internet and other applications. In a lossy compression, it is essential to ensure that the compression process does not affect the quality of the image adversely. The performance of a lossy compression algorithm is evaluated based on two conflicting parameters, namely, compression ratio and image quality which is usually measured by PSNR values. In this paper, a new lossy compression method denoted as PE-VQ method is proposed which employs prediction error and vector quantization (VQ) concepts. An optimum codebook is generated by using a combination of two algorithms, namely, artificial bee colony and genetic algorithms. The performance of the proposed PE-VQ method is evaluated in terms of compression ratio (CR) and PSNR values using three different types of databases, namely, CLEF med 2009, Corel 1 k and standard images (Lena, Barbara etc.). Experiments are conducted for different codebook sizes and for different CR values. The results show that for a given CR, the proposed PE-VQ technique yields higher PSNR value compared to the existing algorithms. It is also shown that higher PSNR values can be obtained by applying VQ on prediction errors rather than on the original image pixels.
    [Show full text]
  • Top 10 Reasons to Choose Autocad Raster Design 2010
    Top 10 Reasons to Choose AutoCAD Raster Design 2010 The Power of AutoCAD Minimize Costly Redrafting and Data Entry Time 1 Convert your scanned paper drawings to vector with Raster Design interactive and semiautomatic conversion tools. Use dynamic dimensioning and grip editing with vectorization Extend the power of AutoCAD® and tools to speed up the conversion and verification of raster AutoCAD-based software with AutoCAD® primitives such as lines, arcs, and circles. Easily convert Raster Design software. Make the most of continuous raster entities into AutoCAD polylines and 3D rasterized scanned drawings, maps, aerial polylines with vectorization following tools. Create and photos, satellite imagery, and digital elevation effectively manage hybrid drawings by converting only the models. Get more out of your raster data and necessary raster geometry, thereby speeding document enhance your designs, plans, presentations, and drawing revisions and updates. In addition, use optical and maps. AutoCAD Raster Design enables character recognition (OCR) functionality to recognize you to work in an AutoCAD environment, machine- and hand-printed text and tables on raster significantly reducing the need to purchase images to create AutoCAD text or multiline text (mtext). and learn multiple applications. RESULT: Speed project completion by unlocking and making the most of existing scanned engineering drawings, plans, Now Is the Time and maps. Use the Imagery You Require Take a look at how AutoCAD Raster Design AutoCAD Raster Design software supports a wide variety can help you improve your design process. 2 of industry-standard file formats, including single-image and multispectral file formats such as CALS, ER Mapper For more information about ECW, GIF, JPEG, JPEG 2000, LizardTech™ MrSID, TGA, AutoCAD Raster Design, go to TIFF, and more.
    [Show full text]
  • Understanding Compression of Geospatial Raster Imagery
    Understanding Compression of Geospatial Raster Imagery Document Overview This document was created for the North Carolina Geographic Information and Coordinating Council (GICC), http://ncgicc.com, by the GIS Technical Advisory Committee (TAC). Its purpose is to serve as a best practice or guidance document for GIS professionals that are compressing raster images. This document only addresses compressing geospatial raster data and specifically aerial or orthorectified imagery. It does not address compressing LiDAR data. Compression Overview Compression is the process of making data more compact so it occupies less disk storage space. The primary benefit of compressing raster data is reduction in file size. An added benefit is greatly improved performance over a network, because the user is transferring less data from a server to an application; however, compressed data must be decompressed to display in GIS software. The result may be slower raster display in GIS software than data that is not compressed. Compressed data can also increase CPU requirements on the server or desktop. Glossary of Common Terms Raster is a spatial data model made of rows and columns of cells. Each cell contains an attribute value identifying its color and location coordinate. Geospatial raster data like satellite images and aerial photographs are typically larger on average than vector data (predominately points, lines, or polygons). Compression is the process of making a (raster) file smaller while preserving all or most of the data it contains. Imagery compression enables storage of more data (image files) on a disk than if they were uncompressed. Compression ratio is the amount or degree of reduction of an image's file size.
    [Show full text]
  • Image Formats
    Image Formats Ioannis Rekleitis Many different file formats • JPEG/JFIF • Exif • JPEG 2000 • BMP • GIF • WebP • PNG • HDR raster formats • TIFF • HEIF • PPM, PGM, PBM, • BAT and PNM • BPG CSCE 590: Introduction to Image Processing https://en.wikipedia.org/wiki/Image_file_formats 2 Many different file formats • JPEG/JFIF (Joint Photographic Experts Group) is a lossy compression method; JPEG- compressed images are usually stored in the JFIF (JPEG File Interchange Format) >ile format. The JPEG/JFIF >ilename extension is JPG or JPEG. Nearly every digital camera can save images in the JPEG/JFIF format, which supports eight-bit grayscale images and 24-bit color images (eight bits each for red, green, and blue). JPEG applies lossy compression to images, which can result in a signi>icant reduction of the >ile size. Applications can determine the degree of compression to apply, and the amount of compression affects the visual quality of the result. When not too great, the compression does not noticeably affect or detract from the image's quality, but JPEG iles suffer generational degradation when repeatedly edited and saved. (JPEG also provides lossless image storage, but the lossless version is not widely supported.) • JPEG 2000 is a compression standard enabling both lossless and lossy storage. The compression methods used are different from the ones in standard JFIF/JPEG; they improve quality and compression ratios, but also require more computational power to process. JPEG 2000 also adds features that are missing in JPEG. It is not nearly as common as JPEG, but it is used currently in professional movie editing and distribution (some digital cinemas, for example, use JPEG 2000 for individual movie frames).
    [Show full text]
  • Parallel Heterogeneous Computing a Case Study on Accelerating JPEG2000 Coder
    Parallel Heterogeneous Computing A Case Study On Accelerating JPEG2000 Coder by Ro-To Le M.Sc., Brown University; Providence, RI, USA, 2009 B.Sc., Hanoi University of Technology; Hanoi, Vietnam, 2007 A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in The School of Engineering at Brown University PROVIDENCE, RHODE ISLAND May 2013 c Copyright 2013 by Ro-To Le This dissertation by Ro-To Le is accepted in its present form by The School of Engineering as satisfying the dissertation requirement for the degree of Doctor of Philosophy. Date R. Iris Bahar, Ph.D., Advisor Date Joseph L. Mundy, Ph.D., Advisor Recommended to the Graduate Council Date Vishal Jain, Ph.D., Reader Approved by the Graduate Council Date Peter M. Weber, Dean of the Graduate School iii Vitae Roto Le was born in Duc-Tho, Ha-Tinh, a countryside area in the Midland of Vietnam. He received his B.Sc., with Excellent Classification, in Electronics and Telecommunications from Hanoi University of Technology in 2007. Soon after re- ceiving his B.Sc., Roto came to Brown University to start a Ph.D. program in Com- puter Engineering in Fall 2007. His Ph.D. program was sponsored by a fellowship from the Vietnam Education Foundation, which was selectively nominated by the National Academies’ scientists. During his Ph.D. program, he earned a M.Sc. degree in Computer Engineering in 2009. Roto has been studying several aspects of modern computing systems, from hardware architecture and VLSI system design to high-performance software design. He has published several articles in designing a parallel JPEG2000 coder based on heterogeneous CPU-GPGPU systems and designing novel Three-Dimensional (3D) FPGA architectures.
    [Show full text]
  • Optimization of Image Compression for Scanned Document's Storage
    ISSN : 0976-8491 (Online) | ISSN : 2229-4333 (Print) IJCST VOL . 4, Iss UE 1, JAN - MAR C H 2013 Optimization of Image Compression for Scanned Document’s Storage and Transfer Madhu Ronda S Soft Engineer, K L University, Green fields, Vaddeswaram, Guntur, AP, India Abstract coding, and lossy compression for bitonal (monochrome) images. Today highly efficient file storage rests on quality controlled This allows for high-quality, readable images to be stored in a scanner image data technology. Equivalently necessary and faster minimum of space, so that they can be made available on the web. file transfers depend on greater lossy but higher compression DjVu pages are highly compressed bitmaps (raster images)[20]. technology. A turn around in time is necessitated by reconsidering DjVu has been promoted as an alternative to PDF, promising parameters of data storage and transfer regarding both quality smaller files than PDF for most scanned documents. The DjVu and quantity of corresponding image data used. This situation is developers report that color magazine pages compress to 40–70 actuated by improvised and patented advanced image compression kB, black and white technical papers compress to 15–40 kB, and algorithms that have potential to regulate commercial market. ancient manuscripts compress to around 100 kB; a satisfactory At the same time free and rapid distribution of widely available JPEG image typically requires 500 kB. Like PDF, DjVu can image data on internet made much of operating software reach contain an OCR text layer, making it easy to perform copy and open source platform. In summary, application compression of paste and text search operations.
    [Show full text]
  • Terraexplorer® Pro Datasheet
    TerraExplorer® Pro Version 6.6.1 Datasheet www.SkylineGlobe.com TABLE OF CONTENTS OVERVIEW ............................................................................................................................................................. 4 PRODUCT MAIN FEATURES .................................................................................................................................... 4 LAYERS ................................................................................................................................................................... 5 FEATURE LAYERS ............................................................................................................................................................ 5 COMPLEX LAYERS ........................................................................................................................................................... 7 IMAGERY LAYERS ............................................................................................................................................................ 7 ELEVATION LAYERS ......................................................................................................................................................... 9 3D MESH LAYERS (3DML) .............................................................................................................................................. 9 OBJECTS ..............................................................................................................................................................
    [Show full text]
  • Image Compression and Its Effect on Data Khaled S
    Marshall University Marshall Digital Scholar Theses, Dissertations and Capstones 1-1-2004 Image Compression and its Effect on Data Khaled S. Alkharabsheh Follow this and additional works at: http://mds.marshall.edu/etd Part of the Geophysics and Seismology Commons, Graphics and Human Computer Interfaces Commons, and the Physical and Environmental Geography Commons Recommended Citation Alkharabsheh, Khaled S., "Image Compression and its Effect on Data" (2004). Theses, Dissertations and Capstones. Paper 441. This Thesis is brought to you for free and open access by Marshall Digital Scholar. It has been accepted for inclusion in Theses, Dissertations and Capstones by an authorized administrator of Marshall Digital Scholar. For more information, please contact [email protected]. IMAGE COMPRESSION AND ITS EFFECT ON DATA Thesis submitted to The Graduate College of Marshall University In partial fulfillment of the Requirements for the degree of Master of Science Physical Science GeoBioPhysical Modeling by Khaled S. Alkharabsheh Prof. Ralph Oberly, Committee Chairperson, Ph.D Prof. James Brumfield, Ph.D Marshall University Aug. 02, 2004 ii ABSTRACT IMAGE COMPRESSION AND ITS EFFECT ON IMAGES By Khaled S. Alkharabsheh This thesis is intended to define and study different image compression techniques, software programs, image formats (from early ones such as “GIF” to most recent ones such as “JPEG 2000”), compression effect on compressed data (compressed images), and its effectiveness and usefulness in reducing the file size and its transmission time, as a result. In many GeoBioPhysical applications, some information inside any image may be the keys to solve different kinds of problems and classify features. This kind of data and information has to be handled with care; i.e.
    [Show full text]
  • Installing and Licensing IDL and ENVI
    Installation and Licensing Guide May 2009 Edition Copyright © ITT Visual Information Solutions All Rights Reserved 0509IDL71Inst Restricted Rights Notice The IDL®, IDL Advanced Math and Stats™, ENVI®, and ENVI Zoom™ software programs and the accompanying procedures, functions, and documentation described herein are sold under license agreement. Their use, duplication, and disclosure are subject to the restrictions stated in the license agreement. ITT Visual Information Solutions reserves the right to make changes to this document at any time and without notice. Limitation of Warranty ITT Visual Information Solutions makes no warranties, either express or implied, as to any matter not expressly set forth in the license agreement, including without limitation the condition of the software, merchantability, or fitness for any particular purpose. ITT Visual Information Solutions shall not be liable for any direct, consequential, or other damages suffered by the Licensee or any others resulting from use of the software packages or their documentation. Permission to Reproduce this Manual If you are a licensed user of these products, ITT Visual Information Solutions grants you a limited, nontransferable license to reproduce this particular document provided such copies are for your use only and are not sold or distributed to third parties. All such copies must contain the title page and this notice page in their entirety. Export Control Information The software and associated documentation are subject to U.S. export controls including the United States Export Administration Regulations. The recipient is responsible for ensuring compliance with all applicable U.S. export control laws and regulations. These laws include restrictions on destinations, end users, and end use.
    [Show full text]
  • Compression of Aerial Images for Reduced-Color Devices
    Compression of aerial images for reduced-color devices Pasi Fränti and Ville Hautamäki Department of Computer Science, University of Joensuu Box 111, FIN-80101 Joensuu, FINLAND ABSTRACT Mobile devices are more often capable for locating the user on the globe by using GPS or network-based systems. The location is given to the user in a meaningful context such as map or aerial image. We study compression methods for reducing the amount of data required by aerial images. We consider the two well known lossless graphics file formats GIF and PNG, the compression standards JPEG and JPEG2000, a fractal compressor known as FIASCO, and commercial wavelet-based method developed for aerial images. It is also expected that the devices support fewer than 256 gray levels. It is therefore possible to get further reduction by quantizing the images prior to compression, for example, to two-bit per pixel, and then apply lossless compression methods such as JBIG, GIF and PNG. For four color mobile displays error diffusion dithered images approximate the original 8-bit color images quite well. The trade-off in dithering is that the lossless compression ratios decrease. Solution to this might be to store the 8-bit images compressed by using a decent lossy compressor such as JPEG2000. Quantization and dithering should happen only at the moment when the image is displayed. Keywords: Aerial images, image compression, mobile imaging, JBIG, JPEG, JPEG2000. 1. INTRODUCTION Aerial images are photographs of terrain taken from air or from satellite. Conventional maps can be represented in digital form as vector graphics or as bi-level bitmap.
    [Show full text]
  • Python Image Processing Using GDAL
    Python Image Processing using GDAL Trent Hare ([email protected]), Jay Laura, and Moses Milazzo Sept. 25, 2015 Why Python • Clean and simple • Expressive language • Dynamically typed • Automatic memory management • Interpreted Advantages • Minimizes time to develop, debug and maintain • Encourages good programming practices: • Modular and object-oriented programming • Documentation tightly integrated • A large standard library w/ many add-ons Disadvantages • Execution can be slow • Somewhat decentralized • Different environment, packages and documentation can be spread out at different places. • Can make it harder to get started. • Mitigated by available bundles (e.g. Anaconda) My Reasons Simply put - I enjoy it more. • Open • Many applications I use prefer Python • ArcMap, QGIS, Blender, …. and Linux • By using GDAL, I can open most data types • Growing community • Works well with other languages C, FORTRAN Python Scientific Add-ons Extensive ecosystem of scientific libraries, including: • GDAL – geospatial raster support • numpy: numpy.scipy.org - Numerical Python • scipy: www.scipy.org - Scientific Python • matplotlib: www.matplotlib.org - graphics library What is GDAL? ✤GDAL library is accessible through C, C++, and Python ✤GDAL is the glue that holds everything together ✤ Reads and writes rasters ✤ Converts image, in memory, into a format Numpy arrays ✤ Propagates projection and transformation information ✤ Handles NoData GDAL Data Formats (120+) Arc/Info ASCII Grid Golden Software Surfer 7 Binary Grid Northwood/VerticalMapper Classified
    [Show full text]
  • Working with Attachments in PLS-CADD
    5400 King James Way, Suite 300 Madison, WI 53719, U.S.A. Phone: 608.238.2171 Fax: 608.238.9241 Email: [email protected] URL: https://www.powerlinesystems.com/ Working with Attachments in PLS-CADD PLS-CADD gives users the ability to import images or drawings to better understand the unique details of their project. Using attachments to create points, overlay ground imagery in the plan view and import proposed earthwork contours are just a few of the ways that attachments can be used to make sure that a PLS-CADD model includes all relevant information. There are several file formats that are compatible with PLS-CADD, which are listed below: Table 1: Attachment File Types Attachment Type Format File Extension Vector Drawings Drawing Exchange Format (ASCII) .dxf Shapefile .shp Windows Bitmap .bmp Tagged Image File Format .tiff (.tif) Joint Photographic Experts Group .jpg Raster Images JPEG 2000 .jp2 Enhanced Compressed Wavelet .ecw Portable Network Graphics .png Managing Attachments To manage attachments in PLS-CADD, use the Attachment Manager dialog box found at Drafting/ Attachments (Raster and Vector)/ Attachment Manager. The Attachment Manager shows the attachment name, file type, and which view the attachment is displayed in. From this the user can perform a variety of functions such as attaching files, adjusting files, and importing imagery through Web Mapping Service (WMS). Attachment Manager Commands Attaching/Detaching/Selecting Attachments Attaching and detaching attachments to the Figure 1: Attachment Manager Window PLS-CADD model can both be done multiple ways. To attach a file, the user can either use the “Attach” button or they can drag and drop an attachment into the Attachment Manage dialog box.
    [Show full text]