Integration of Membrane Distillation and Solar Thermal Systems for Co- Production of Purified Water and Heat

Total Page:16

File Type:pdf, Size:1020Kb

Integration of Membrane Distillation and Solar Thermal Systems for Co- Production of Purified Water and Heat Integration of Membrane Distillation and Solar Thermal Systems for Co- production of Purified Water and Heat Uday Kumar N T Doctoral Thesis 2017 KTH School of Industrial Engineering and Management Department of Energy Technology Division of Heat and power technology SE-100 44 STOCKHOLM To my father Nutakki Subba Rao (Late), my beloved mother Indira and my lovely wife Vyplavi. ISBN: 978-91-7729-581-5 TRITA- KRV-17-10 ISSN 1100-7990 ISRN KTH-KRV-17-10-SE © Uday Kumar N T, 2017 Doctoral Thesis / Uday Kumar N T Page I Abstract In the Middle East and North Africa region fresh water resources are very scarce and the existing sources are depleting rapidly. Desalination is the method to fulfill increasing water demand, and people depend mostly upon bottled water for drinking purposes. Bottled water is resource and energy demanding, hence there is a need for supplying drinkable water in a sustainable way. The main objective of this research is to develop solutions for providing potable water to urban communities through integrating membrane distillation water purification units with solar driven hot water installations. A single-cassette Air Gap Membrane Distillation (AGMD) unit was tested on laboratory scale to investigate the influence of various operating parameters on the distillate production. Particular attention was given for identifying process conditions relevant to the design of solar energy integrated systems. In parallel, a simplified empirical model using response surface methods was developed and validated against bench scale experimental results. The developed model for performance indicators was later employed in dynamic simulations of a solar thermal integrated membrane distillation system. A pilot plant was designed and installed at RAK Research and Innovation Center in UAE. Experimental investigations were conducted on this integrated system for co-production of pure water (around 15-25 l/day) along with hot water production equivalent to the needs of a family of five. A dynamic simulation model was developed in TRNSYS to analyze optimum operating conditions of the system. Economic analysis showed an impressive payback period and savings for the integrated system as compared with standalone counterparts. A second pilot facility using a larger multi-cassette AGMD module and absorption cooler was designed and installed. Performance of this solar co-production system for heat, cooling, and pure water is analyzed for various integration modes. Keywords: Solar Membrane Distillation; Co-production; Domestic Hot water, Dynamic simulation, TRNSYS, Integrated systems Page II Doctoral Thesis / Uday Kumar N T Sammanfattning Integrering av membrandestillering och solvärmesystem för samproduktion av rent vatten och värme Färskvattenresurser är en bristvara i Mellanöstern och Nordafrika, och för dricksvatten är befolkningen beroende av avsaltat vatten på flaskor. Buteljeringen omfattar stora resurser och är energikrävande, därför behövs nya hållbara lösningar för att tillgodose dricksvattenbehoven. Huvudmålet med projektet är att förse dricksvatten till stadsområden genom integrering av membrandestillering och soltappvärmevatten. I detta arbete har laboratorieskaliga experiment genomförts med en membrandestilleringsenhet för att undersöka påverkan av processbetingelser på destillatframställningen. Särskild vikt lades på identifieringen av relevanta processtillstånd för integrerat solvärmesystem. Samtidigt har en enkel empirisk modell, skapad genom responsytortekniker, implementerats och validerats mot experimentella data. Den validerade modellen har sedan använts i dynamiska simuleringar för ett soldrivet membrandestilleringssystem. En pilotanläggning designades och installerades vid RAK Research and Innovation Center i UAE. Experimentella undersökningar genomfördes med detta kombisystem för samproduktion av rent vatten (cirka 15-25 L/dag) och varmvatten för en familj på fem personer. En dynamisk simulering med mjukvaran TRNSYS har utvecklats för att fastställa systemets optimala driftsparametrar. En ekonomisk analys visar goda återbetalningstider för kombisystemet jämfört med separata system. En andra pilotanläggning som integrerade en större membrandestilleringsenhet och absorptionskylare designades och byggdes. Kombisystemets prestanda för samproduktionen av värme, kyla och rent vatten analyserats för olika integreringsalternativ. Nyckelord: soldriven membrandestillering, samproduktion, tappvärmevatten, dynamisk simulering, TRNSYS, kombisystem Doctoral Thesis / Uday Kumar N T Page III Acknowledgments This industrial PhD work is funded by RAK Research and Innovation Center (Previously CSEM-uae), American University of Ras al khaimah under the patronage of Govt. of Ras Al Khamiah, UAE. I sincerely acknowledge and express my gratitude for their financial and moral support. I am indebted to my supervisor Prof. Dr. Andrew Martin, Department of Energy Technology, KTH, Sweden for his continuous support, guidance and valuable suggestions during my PhD studies. Many thanks for your constant help, encouragement and sympathetic attitude during times of distress. I am grateful for providing an opportunity to work with you and sincerely appreciate your patience and motivation. I would like to take this opportunity to express high emotion of benevolence and deepest gratitude to Dr. Hamid Kayal, (Ex-CEO of CSEM-uae) who encouraged and provided me all necessary facilities throughout the course of this investigation. My sincere appreciations are also extended to Prof. Mousa Mohnsen, American University of Ras Al Khaimah, for his extended support during the preparation of this thesis. I acknowledge the support from SCARAB AB especially Aapo Saask for his support, enthusiasm and willingness to explore new thoughts. I would like to express many thanks to Gowtham Mohan for working with me during experimental investigation and appreciate support in publications. I cannot forget Muhammad Asim and Gaurav P Raval who worked in this project and helped me on several occasions. Deepest appreciations are due to all the team of RAKRIC especially Waqar Ullah Kazim for supporting me at both professional and personal level. I would like to extend my special thanks to my friends, Rajesh Reddy, Manoj K Pokhrel, Zaki Iqbal, Ershad Ulla Khan and Daniel for their moral support and encouragement during the course of study. I don’t have suitable words to acknowledge my family members for their patience and unconditional love especially my wife Dr. Vyplavi and my son Aaron. You are my encouragement and hope, Thank you. Uday Kumar October, 2017 Page IV Doctoral Thesis / Uday Kumar N T Preface This doctoral thesis work has been performed at RAK Research and Innovation Center, UAE in collaboration with the Department of Energy Technology (EGI), School of Industrial Engineering and Management (ITM), KTH Royal Institute of Technology, Sweden. Publications included in the thesis The present thesis is based on a summary of the following publications referred to by Roman numerals I–V. The order of these articles is arranged in connection with the results presented in the thesis. The articles are appended at the end of the thesis. Peer-reviewed Journal Papers I. N. T Uday Kumar and M. Andrew. “Experimental modeling of an air-gap membrane distillation module and simulation of a solar thermal integrated system for water purification”. Desalination and Water Treatment, 84 (2017) 123-124. II. N. T Uday Kumar and M. Andrew. “Co-Production Performance Evaluation of a Novel Solar Combi System for Simultaneous Pure Water and Hot Water Supply in Urban Households of UAE”. Energies, 10 (2017) 481. III. N. T Uday Kumar and M. Andrew. “Techno-economic optimization of solar thermal integrated membrane distillation for co-generation of heat and pure water”. Manuscript under review, Desalination and Water Treatment Journal. IV. N. T Uday Kumar, M. Gowtham and M. Andrew. “Performance analysis of solar cogeneration system with different integration strategies for potable water and domestic hot water production”. Applied Energy, 170 (2016) 466–475. V. M. Gowtham, N. T Uday Kumar, P. K Manoj and M. Andrew. “Experimental investigation of a novel solar thermal polygeneration plant in UAE”. Renewable Energy, 91 (2016) 361-373. Contribution of the thesis author: Paper I, II and III: First author led the overall development of the article; conducted field study including data collection and data analysis. System analysis and parametric studies were also conducted by the first author. First author conducted all experimental work, model development, simulation work and subsequent analyses. The second author acted as mentor and reviewer for the conceptual and methodological work. Doctoral Thesis / Uday Kumar N T Page V Paper IV: First author led the overall development of the article; research idea, technical analysis, and system integration strategies were presented and conducted by the first author. Second author was involved in experimental data collection and supported with economic analysis. Third author acted as the main mentor and reviewer for the work. Paper V: Second author provided the research idea, developed experimental system and led first author in developing integrated system. Second author also involved in experimental data collection and analysis. First author developed article and conducted economic analysis. Third author was involved with experimental system integration. Fourth author acted as the main mentor and reviewer. Other publications related to this research but not
Recommended publications
  • Cweee 2020071714005325.Pdf
    Computational Water, Energy, and Environmental Engineering, 2020, 9, 48-74 https://www.scirp.org/journal/cweee ISSN Online: 2168-1570 ISSN Print: 2168-1562 A Review Study of Experimental and Theoretical Humidification Dehumidification Solar Desalination Technology Mohamed M. Khairat Dawood1, Ahmed Amer2, Tamer Mansour1, Mohamed A. Teamah3, Attia Aref1 1Mechanical Engineering Department, Faculty of Engineering, Suez Canal University, Ismailia, Egypt 2Mechanical Engineering Department, College of Engineering and Technology, American University of the Middle East, Egaila, Kuwait 3Mechanical Engineering Department, Faculty of Engineering, Alexandria University, Alexandria, Egypt How to cite this paper: Dawood, M.M.K., Abstract Amer, A., Mansour, T., Teamah, M.A. and Aref, A. (2020) A Review Study of Experi- Most of the desalination technologies consume a huge quantity of energy re- mental and Theoretical Humidification De- sulting from petroleum products in the form of heat or electrical energy. So- humidification Solar Desalination Technolo- lar desalination is a promisingly sustainable freshwater production technolo- gy. Computational Water, Energy, and En- vironmental Engineering, 9, 48-74. gy. Solar desalination humidification dehumidification process showed the https://doi.org/10.4236/cweee.2020.93005 best approach as it is of the highest overall energy efficiency. In this review paper, a detailed study of the previous work is performed on solar humidifi- Received: June 9, 2020 cation dehumidification desalination techniques experimentally and theoret- Accepted: July 17, 2020 Published: July 20, 2020 ically. Also in this review, different types of HDH systems were mentioned. The review showed that the humidification dehumidification desalination Copyright © 2020 by author(s) and systems are suitable for decentralized demand.
    [Show full text]
  • Commercial Thermal Technologies for Desalination of Water from Renewable Energies: a State of the Art Review
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 4 January 2021 doi:10.20944/preprints202101.0033.v1 Review Commercial Thermal Technologies for Desalination of Water from Renewable Energies: A State of the Art Review Jhon Feria-Díaz 1, 2, *, María López-Méndez 1, Juan Rodríguez-Miranda 3, Luis Sandoval-Herazo 1 and Felipe Correa-Mahecha 4 1 Instituto Tecnológico Superior de Misantla, Km 1.8 Carretera Lomas del Cojolite, 93821 Misantla, México; [email protected]; [email protected]; [email protected] 2 Universidad de Sucre, Cra. 28 #5-267, Sincelejo, Colombia; [email protected] 3 Universidad Distrital Francisco José de Caldas, Cra. 7 #40b-53, Bogotá, Colombia; [email protected] 4 Fundación Universidad de América, Avda Circunvalar No. 20-53, Bogotá, Colombia; [email protected] * Correspondence: [email protected] Abstract: Thermal desalination is yet a reliable technology in the treatment of brackish water and seawater; however, its demanding high energy requirements have lagged it compared to other non- thermal technologies such as reverse osmosis. This review provides an outline of the development and trends of the three most commercially used thermal or phase change technologies worldwide: Multi Effect Distillation (MED), Multi Stage Flash (MSF), and Vapor Compression Distillation (VCD). First, state of water stress suffered by regions with little fresh water availability and existing desalination technologies that could become an alternative solution are shown. The most recent studies published for each commercial thermal technology are presented, focusing on optimizing the desalination process, improving efficiencies, and reducing energy demands. Then, an overview of the use of renewable energy and its potential for integration into both commercial and non- commercial desalination systems is shown.
    [Show full text]
  • Desalination Using Membrane Distillation Experimental and Numerical Study
    Desalination Using Membrane Distillation Experimental and Numerical Study Alaa Kullab Doctoral Thesis 2011 Division of Heat and Power Technology Department of Energy Technology Royal Institute of Technology SE-100 44 STOCKHOLM Trita KRV-11-7 ISSN 1100-7990 ISRN KTH-KRV-11-07-SE ISBN 978-91-7501-133-2 © Alaa Kullab 2011 Doctoral Thesis / Alaa Kullab Page I ABSTRACT . Desalination has been increasingly adopted over the last decades as an option, and sometimes as a necessity to overcome water shortages in many areas around the world. Today, several thermal and physical separation technologies are well established in large scale production for domestic and industrial purposes. Membrane distillation is a novel thermally-driven process that can be adapted effectively for water desalination or water treatment in industrial applications, due to its potential lower energy consumption and simplicity. The general objective of this thesis is to contribute to the technical understanding of membrane distillation as a new technology in water treatment for both industrial and drinking water purposes, as a starting point for further improvement. The thesis includes experimental and numerical investigations that highlight some aspects of the technology application and fundamental aspects. In the field of industrial application, an experimental and numerical assessment has been carried out on an Air Gap Membrane Distillation (AGMD) prototype to assess the utilization of the technology in thermal cogeneration plants; in particular, demineralization of water boiler feed water and treating flue gas condensate. The main assessment parameters were water quality and energy consumption. The results from full-scale simulations of a system of 10 m3/hr production capacity, connected to the district heating network were as follows: 5 to 12 kWh/m3 specific thermal energy consumption, and 0,6 to 1,5 kWh/m3 specific electricity consumption, depending upon the heat source (district heat supply line or low-grade steam).
    [Show full text]
  • Exploration of an Innovative Draw Solution for a Forward Osmosis- Membrane Distillation Desalination Process
    University of Wollongong Research Online Faculty of Engineering and Information Faculty of Engineering and Information Sciences - Papers: Part B Sciences 2017 Exploration of an innovative draw solution for a forward osmosis- membrane distillation desalination process Nguyen Cong Nguyen Dalat University, National Taipei University of Technology Shiao-Shing Chen National Taipei University of Technology Shubham Jain VIT University Hau Thi Nguyen Dalat University, National Taipei University of Technology Saikat Sinha Ray National Taipei University of Technology See next page for additional authors Follow this and additional works at: https://ro.uow.edu.au/eispapers1 Part of the Engineering Commons, and the Science and Technology Studies Commons Recommended Citation Nguyen, Nguyen Cong; Chen, Shiao-Shing; Jain, Shubham; Nguyen, Hau Thi; Sinha Ray, Saikat; Ngo, Hao H.; Guo, Wenshan; Lam, Ngoc Tuan; and Duong, Hung, "Exploration of an innovative draw solution for a forward osmosis-membrane distillation desalination process" (2017). Faculty of Engineering and Information Sciences - Papers: Part B. 323. https://ro.uow.edu.au/eispapers1/323 Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: [email protected] Exploration of an innovative draw solution for a forward osmosis-membrane distillation desalination process Abstract Forward osmosis (FO) has emerged as a viable technology to alleviate the global water crisis. The greatest challenge facing the application of FO technology is the lack of an ideal draw solution with high water flux and low er verse salt flux. Hence, the objective of this study was to enhance FO by lowering reverse salt flux and maintaining high water flux; the method involved adding small concentrations of Al2(SO4)3 to a MgCl2 draw solution.
    [Show full text]
  • Chapter 9 Solar Desalination 1. Introduction
    CHAPTER 9 SOLAR DESALINATION John H. Lienhard,1,¤ Mohamed A. Antar,2 Amy Bilton,1 Julian Blanco,3 & Guillermo Zaragoza4 1 Center for Clean Water and Clean Energy, Room 3-162, Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139-4307, USA 2 Department of Mechanical Engineering, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia 3 Plataforma Solar de Almeria, Carretera de Senes s/n, 04200 Tabernas (Almeria), Spain 4 Visiting Professor of Electrical Engineering, King Saud University, Riyadh, Saudi Arabia ¤Address all correspondence to John H. Lienhard E-mail: [email protected] In many settings where freshwater resources or water supply infrastructure are inadequate, fossil energy costs may be high whereas solar energy is abundant. Further, in the industri- alized world, government policies increasingly emphasize the replacement of fossil energy by renewable, low-carbon energy, and so water scarce regions are considering solar-driven desalination systems as a supplement to existing freshwater supplies. Even in regions where petroleum resources are copious, solar-driven desalination is attractive as a means of con- serving fossil fuel resources and limiting the carbon footprint of desalination. Finally, in set- tings that are remote and ‘off-the-grid,” a solar driven desalination system may be more eco- nomical than alternatives such as trucked-in water or desalination driven by diesel-generated electricity. This article reviews various technologies that couple thermal or electrical solar energy to thermal or membrane based desalination systems. Basic principles of desalination are reviewed. Solar stills and humidification-dehumidification desalination systems are dis- cussed.
    [Show full text]
  • Water Desalination by Humidification and Dehumidification of Air, Seawater Greenhouse Process - Karim Bourouni, Mohamed Thameur Chaibi, Ali Al Taee
    SOLAR ENERGY CONVERSION AND PHOTOENERGY SYSTEMS - Water Desalination by Humidification and Dehumidification of Air, Seawater Greenhouse Process - Karim Bourouni, Mohamed Thameur Chaibi, Ali Al Taee WATER DESALINATION BY HUMIDIFICATION AND DEHUMIDIFICATION OF AIR, SEAWATER GREENHOUSE PROCESS Karim Bourouni, Mohamed Thameur Chaibi and Ali Al Taee UR EBSS Ecole Nationale d’Ingénieurs de Tunis, BP 37, 1002 Le Belvédère, Tunisie INGREF Keywords: Water Desalination, Humidification, Dehumidification, Seawater greenhouse Contents 1. Introduction 2. Desalination Process by Humidification and Dehumidification 2.1. Moist Air 2.2. Humidifying with Cooling and Dehumidifying Processes 2.3. Using Humidification Dehumidification (HD) Process in Desalination 2.4. Heat and Mass Transfer in HD Desalination Process 2.5. Overview on Some Desalination HD Projects 3. Seawater Greenhouse Process (SWGH): Principles and Fundamentals 3.1. Process Description 3.2. The Condenser in the SWGH 3.2.1. Different Condenser Layouts in SWGH 3.2.2. Cooling the Condenser 3.3. The Evaporator (Humidifier) in the SWGH 3.4. The planting area in the SWGH 3.5. Construction and Materials 3.6. Energy Requirements 3.7. Economics and Applications 4. Design of SWGH 4.1. Simplified Model of Heat and Mass Transfer inside the SWGH 4.2. Efficiency of the Evaporative cooling 4.3. Design of Condensers 4.4. Venting System 4.5. Detailed Thermodynamic Model for SWGH 5. Overview on the installed SWGH projects: Case Studies 5.1. Case Study 1: The SWGH project in Tenerife 5.1.1. Description of the Pilot Plant 5.1.2. Performances of the SWGH 5.2. Case Study 2: The SWGH Project in UAE 5.2.1.
    [Show full text]
  • Design and Experimental Study on a New Closed-Cycle Desalination System Based on Ambient Temperature
    processes Article Design and Experimental Study on a New Closed-Cycle Desalination System Based on Ambient Temperature Jun Liu 1, Yong Sun 2, Sanjiang Yv 2, Jiaquan Wang 3,* and Kaixuan Hu 1 1 School of Civil Engineering, Hefei University of Technology, Hefei 230009, China; [email protected] (J.L.); hkx1994091066 @163.com (K.H.) 2 Anhui Tongsu Environment Protection Technology Co Ltd., Hefei 230009, China; [email protected] (Y.S.); [email protected] (S.Y.) 3 School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China * Correspondence: [email protected] or [email protected] Received: 7 August 2020; Accepted: 9 September 2020; Published: 10 September 2020 Abstract: The use of seawater desalination technology to solve water shortages in energy- and resource-scarce regions has attracted widespread attention worldwide. In this paper, the performance of a closed-cycle humidification–dehumidification desalination system with a heat pump was experimentally investigated. The system is a closed-cycle system, which includes humidifiers, a heat pump, dehumidifiers, and an air heat exchanger. The heat pump is used by the system to carry energy. The effects of different parameters on the system performance were studied. Scale and economic analyses of the system were conducted to explore the application prospects of the system. The maximum gained output ratio of the system was 4.82. The maximum freshwater production was 960 kg/h, and the cost per kilogram of freshwater was USD 0.03, which are more considerable compared with other systems. This system provides an effective way to save energy in remote areas with energy shortages and freshwater resource shortages.
    [Show full text]
  • An Overview of Industrial Desalination Technologies ASME Industrial Demineralization (Desalination): Best Practices & Future Directions Workshop
    An Overview of Industrial Desalination Technologies ASME Industrial Demineralization (Desalination): Best Practices & Future Directions Workshop Washington, D.C. Shahid Chaudhry January 28-29, 2013 1 • The Challenge: Increasing Demand of Water & Energy Resources; Decreasing Supplies of Conventional Water & Energy Resources. Sustainable Management of Water & Energy Resources 2 • Eight Major Water Using Industries Oil & Gas Refining & Petrochemicals Power Generation Food and Beverage Pharmaceutical Microelectronics Pulp & Paper, and Mining GWI: Industrial Desalination & Water Reuse: Ultrapure water, challenging waste streams and improved efficiency, 3 Strategies: Water Conservation / Water Use Efficiency Unaccounted / Water Losses Water Recycling Desalination - Most Energy Intensive / Expensive Water? 4 • Desalination An Energy Intensive Process, An Integral Part of the Future Water Supply Portfolio Source Waters – Generally Four Types Brackish Ground Water, Surface Water, Municipal WW, Agricultural Runoff, Industrial Effluents, Sea Water, etc. Main Processes Categories: Thermal 4 - 6 kWh / m3 + Steam Heating of Contaminated Water under Vacuum Conditions to Create Pure Water Vapors) Membranes 1 - 6 kWh / m3 Energy Requirements - Function of: Plant Capacity, Feed Water Quality, Pretreatment, Desalination Process/Technology, and Level of Treatment Desalination Technology of Most Interest Today Reverse Osmosis 5 • Desalination Methods Distillation Multi-Stage Flash Distillation (MSF) Multiple-Effect Distillation (MED / ME) Vapor-Compression
    [Show full text]
  • Economic Performance of Membrane Distillation Configurations in Optimal
    Desalination 472 (2019) 114164 Contents lists available at ScienceDirect Desalination journal homepage: www.elsevier.com/locate/desal Economic performance of membrane distillation configurations in optimal solar thermal desalination systems T Vasiliki Karanikolaa,b,1, Sarah E. Moorea,1, Akshay Deshmukhb,c, Robert G. Arnolda, ⁎ ⁎⁎ Menachem Elimelechb,c, , A. Eduardo Sáeza, a Department of Chemical and Environmental Engineering, University of Arizona, Tucson, AZ 85721, USA b Department of Chemical and Environmental Engineering, Yale University, New Haven, CT 06520, USA c Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT), Yale University, New Haven, CT 06520, USA GRAPHICAL ABSTRACT ABSTRACT In this study we provide a comprehensive evaluation of the economic performance and viability of solar membrane distillation (MD). To achieve this goal, process models based on mass and energy balances were used to find the minimum cost of water in MD systems. Three MD configurations: direct contact, sweeping gas, and − vacuum MD, were compared in terms of economic cost and energy requirements in optimized, solar-driven desalination systems constrained to produce 10m3 d 1 of distillate from 3.5% or 15% salinity water. Simulation results were used to calculate the water production cost as a function of 13 decision variables, including equipment size and operational variables. Non-linear optimization was performed using the particle swarm algorithm to minimize water production costs and identify optimal values for all decision variables. Results indicate that vacuum MD outperforms alternative MD configurations both economically and energetically, desalting water at a cost of less than $15 per cubic meter of product water (both initial salt levels).
    [Show full text]
  • Desalination Methods for Producing Drinking Water
    E-249 04-10 Desalination Methods for Producing Drinking Water *Justin K. Mechell and Bruce Lesikar s populations increase and sources of high- Source waters quality fresh drinking water decrease, many Several factors influence the selection of source Acommunities have considered using desalina- waters to feed desalination plants: the location of the tion processes to provide fresh water when other plant in relation to water sources available, the deliv- sources and treatment procedures are uneconomical ery destination of the treated water, the quality of or not environmentally responsible. the source water, the pretreatment options available, Desalination is any process that removes excess and the ecological impacts of the concentrate dis- salts and other minerals from water. In most desali- charge. nation processes, feed water is treated and two streams of water are produced: Seawater • Treated fresh water that has low concentra- Seawater is taken into a desalination plant ei- tions of salts and minerals ther from the water’s surface or from below the sea • Concentrate or brine, which has salt and floor. In the past, large-capacity seawater desalina- mineral concentrations higher than that of tion plants have used surface intakes on the open the feed water sea. The feed water for desalination processes can Although surface water intake can affect and be be seawater or brackish water. Brackish water con- affected by organisms in the ocean, the issues related tains more salt than does fresh water and less than to this method can be minimized or resolved by salt water. It is commonly found in estuaries, which proper intake design, operation, and maintenance of are the lower courses of rivers where they meet the technologies.
    [Show full text]
  • Membrane Distillation: Principles, Applications and Perspectives Criscuoli A* Institute on Membrane Technology (ITM-CNR), Via P
    ane Scien br ce m & e T M e f c o h l n a o Journal of l n o r g u y o J Criscuoli , J Membr Sci Technol 2017, 7:2 Membrane Science & Technology DOI: 10.4172/2155-9589.1000e123 ISSN: 2155-9589 Editorial Open Access Membrane Distillation: Principles, Applications and Perspectives Criscuoli A* Institute on Membrane Technology (ITM-CNR), via P. Bucci 17/C, Rende (CS) 87030, Italy *Corresponding author: Criscuoli A, Institute on Membrane Technology (ITM-CNR), via P. Bucci 17/C, Rende (CS) 87030, Italy, Tel: +39-0984-49211; E-mail: [email protected] Received date: August 29, 2017; Accepted date: August 31, 2017; Published date: September 03, 2017 Copyright: © 2017 Criscuoli A. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Abstract Membrane Distillation (MD) is a membrane-based operation able to give 100% theoretical ions rejection and to efficiently work with high concentrated brines. Both features make MD of interest for the purification of wastewater, the production of ultra-pure water and the concentration of brines produced in desalination. MD, also integrated with other membrane operations, can be a valuable way to improve the performance of separation processes. Keywords Membrane distillation; Wastewater treatment Introduction MD is a thermally-driven membrane operation where the vapor molecules evaporate from the feed thanks to a difference of vapor pressure created across the membrane. Through the evaporation it is possible to produce a pure distillate and to concentrate the feed.
    [Show full text]
  • An Applied Review of Water Desalination Technologies and an Introduction to Capillary-Driven Desalination
    water Article Looking Beyond Energy Efficiency: An Applied Review of Water Desalination Technologies and an Introduction to Capillary-Driven Desalination Seyedsaeid Ahmadvand 1,* , Behrooz Abbasi 1,*, Babak Azarfar 1, Mohammed Elhashimi 2, Xiang Zhang 2 and Bahman Abbasi 2,* 1 Department of Mining and Metallurgical Engineering, University of Nevada, Reno, NV 89557, USA; [email protected] 2 School of Mechanical, Industrial and Manufacturing Engineering, Oregon State University, Bend, OR 97702, USA; [email protected] (M.E.); [email protected] (X.Z.) * Correspondence: [email protected] (S.A.); [email protected] (B.A.); [email protected] (B.A.) Received: 4 March 2019; Accepted: 1 April 2019; Published: 4 April 2019 Abstract: Most notable emerging water desalination technologies and related publications, as examined by the authors, investigate opportunities to increase energy efficiency of the process. In this paper, the authors reason that improving energy efficiency is only one route to produce more cost-effective potable water with fewer emissions. In fact, the grade of energy that is used to desalinate water plays an equally important role in its economic viability and overall emission reduction. This paper provides a critical review of desalination strategies with emphasis on means of using low-grade energy rather than solely focusing on reaching the thermodynamic energy limit. Herein, it is argued that large-scale commercial desalination technologies have by-and-large reached their engineering potential. They are now mostly limited by the fundamental process design rather than process optimization, which has very limited room for improvement without foundational change to the process itself. The conventional approach toward more energy efficient water desalination is to shift from thermal technologies to reverse osmosis (RO).
    [Show full text]