A STUDY of a CLOSED GRAPH THEOREM and THEIR APPLICATIONS in BANACH SPACES for CLOSED LINEAR TRANSFORMATIONS Tsegaye Kebede Irena1, Dr.Tadesse Zegeye2, Dr
A STUDY OF A CLOSED GRAPH THEOREM AND THEIR APPLICATIONS IN BANACH SPACES FOR CLOSED LINEAR TRANSFORMATIONS 1 2 3 Tsegaye Kebede Irena , Dr.Tadesse Zegeye , Dr. Vasudevarao Kota 1Lecturer, 3Assistant Professor, Department of Mathematics, Ambo University, Ambo, Ethiopia. 2Assistant Professor, Department of Mathematics, Bahir Dar University, Bahir Dar, Ethiopia I. INTRODUCTION In this paper we deal with one of the fundamental theorems for Banach spaces, namely, the closed graph theorem and bounded linear operators and have proved some theorems concerning such operators. In applications, therefore, whenever one encounters a map, if one is able to prove that the map is linear and bounded, then one has those theorems at ones disposal. It turns out, however, that some of the important maps which are defined in applications, under certain conditions, are linear but not bounded. In particular, many maps defined in terms of differentiation (ordinary or partial) are discontinuous. Luckily, these operators often posses another property which, in a way, makes up for the fact that they are not bounded. These operators are closed (or have closed graphs ) with the definitions and some properties of closed linear maps, closed graphs and these will lead to one of the key theorems of functional analysis - the closed graph theorem. A mapping from one topological space to another is called an open mapping if the image of each open set is open. Thus a one-to-one continuous open mapping is a homeomorphism. We shall show that a continuous linear transformation of one Banach space onto another is always an open mapping and use this to give criteria for the continuity of linear transformation.
[Show full text]