Radiation Physics for Medical Physicists

Total Page:16

File Type:pdf, Size:1020Kb

Radiation Physics for Medical Physicists +$ '$0#; 4& -404*-0 2# 1$#-0 6+G;-; 2# -41$#-0 $2*-2$$:-2* :$ :4#! 1C0@-#-;-60-2:G 2# #G21-7 +$G 0-$ @ @+$ :4;;:4#; 4& &:42@-$: :$;$:+ -2 6+G;-;! -404*G! +$1-;@:G! 2# 1$#--2$7 +$ -404*-0 2# $#-0 +G;-;! -41$#-0 2*-2$$:-2* $:-$; -; -2@$2#$# @4 $ 416:$+$2;-D$! 4D$:-2* :4# :2*$ 4& @46-; -164:@2@ @4 @+$ ;@C#G 4& @+$ 6+G;-0! +$1-0 2# -404*-0 ;-$2$;7 @; *40 -; @4 6:4D-#$ ;-$2@-;@; 2# $2*-2$$:; E-@+ @$F@44/;! 1424*:6+;! 2# :$&$:$2$ E4:/; @4 ##:$;; @+$ *:4E-2* 2$$# &4: -2&4:1@-427 44/; -2 @+$ ;$:-$; $16+;-H$ $;@0-;+$# 2# $1$:*$2@ :$; 4& ;-$2$ -20C#-2* 140$C0:! 1$1:2$! 2# 1@+$1@-0 -46+G;-;< 6+4@4;G2@+$@- $2$:*G +:D$;@-2* 2# 42D$:;-42< -2&4:1@-42 6:4$;;-2*< 6+G;-0 6:-2-60$; 4& *$2$@-;< ;$2;4:G 411C2-@-42;< C@41@ 2$@E4:/;! 2$C:0 2$@E4:/;! 2# $00C, 0: C@41@7 9C00G -164:@2@ E-00 $ 4D$:*$ 4& 660-$# ;6$@; 4& -404*-0 2# 1$#-0 6+G;-; 2# -41$#-0 $2*-2$$:-2* ;C+ ; 140$C0: $0$@:42- 41642$2@; 2# #$D-$;! -4;$2;4:;! 1$#--2$! -1*, -2*! 6+G;-0 6:-2-60$; 4& :$2$E0$ $2$:*G 6:4#C@-42! #D2$# 6:4;@+$;$;! 2# $2D-:421$2@0 42@:40 2# $2*-2$$:-2*7 #-@4:,-2,+-$& 0-; :$$2C1! / -#*$ @-420 4:@4:G! / -#*$! $22$;;$$! C#-@+ $:H&$0#! $6:@1$2@ 4& +$1-;@:G! #-@4:-0 4:# :2#$-; 2-D$:;-@G! 0@+1! ;;+C;$@@;! ;C4 -HE! $6:@1$2@ 4& -4$2*-2$$:-2*! :/ 7 C1GC2! 4+$2G G$ 2;@-@C@$! 4/G4 2;@-@C@$ 4& $+2404*G! 4/4+1! 62 4; 2*$0$;! 0-&4:2-! 0& 7 2#$:;$2! $6:@1$2@ 4& +G;-404*G! -$::$ 40-4@! 2;@-@C@$ #$ -404*-$ -46+G;-; 40$C0: $#--2$! +G;-4,+-1-9C$! 42#@-42 #142# 4:2$00 2-D$:;-@G! $E 4:/! #$ 4@+;+-0#! :-;! :2$ 4$:@ 7 C;@-2! $6:@1$2@ 4& +G;-;! .4; $;H@+$0G-! 2;@-@C@$ 4& -46+G;-;! C2*:-2 :-2$@42 2-D$:;-@G! :-2$@42! $E $:;$G! #$1G 4& -$2$;! H$*$#! C2*:G 1$; :$:! $6:@1$2@ 4& -4+$1-;@:G! 4$:@ 7 24F! $6:@1$2@ 4& +G;-; 16$:-0 400$*$ 4& -$2$! $+2404*G 2# ;@:4241G! 2-D$:;-@G 4& 4+$;@$:! 4+$;@$:! 2# $#--2$! 42#42! 2*02# $E 4:/! 4E:# 7 $:*! $6:@1$2@ 4& 40$C0: :42 $E-;! $6:@1$2@ 4& 660-$# +G;-;! 2# $00C0: -404*G! :D:# 2-D$:;-@G! $:$E 2-D$:;-@G! $:C;0$1! ;:$0 1:-#*$! ;;+C;$@@;! @C:@ 7 -2#;G! $6:@1$2@ 4& +G;-; -@4: 0441&-$0#! $6:@1$2@ 4& -4+$1-;@:G! 2# ;@:4241G! :-H42 @@$ 2-D$:;-@G! 2-D$:;-@G 4& -22$;4@! @7 C0! -22$;4@! $16$! :-H42! 4$:@ 00$2#$:! $6:@1$2@ 4& -4+$1-;@:G! D-# CH$:00! 4/$&$00$: 2-D$:;-@G! 0$:@ -2;@$-2 400$*$ 4& $#--2$! $E 4:/! $E 4:/! :42F! $E 4:/! C*$2-$ 7 -$0H:$/! $6:@1$2@ 4& +G;-; :-@@42 +2$! $6:@1$2@ 4& -4+$1-;@:G? 2# ;@:4241G! $4:*$ ;42 2-D$:;-@G! -:&F! -46+G;-;! 2-D$:;-@G 4& $22;G0D2-! -:*-2-! +-0#$06+-! $22;G0D2-! :/40& -$1H! 0-2-/C1 22+$-1! @$D$2 +C! $6:@1$2@ 4& +G;-;! 22+$-1! $:12G @2&4:# 2-D$:;-@G! @2&4:#! 0-&4:2-! 7 #:-2 :;$*-2! +G;-0 -$2$ 4:@4:G! 4C-; 7 $$0-$! $6:@1$2@ 4& +:1404*G! @-420 2;@-@C@$; 4& $0@+! $@+$;#! 2#$:-0@ 2-D$:;-@G! ;+D-00$! $22$;;$$! :G02#! 4+22 $-;$2+4&$:! 4E:# C*+$; $#-0 -2# 7 4E$:;! 0$@:-0 2*-2$$:-2*! 2;@-@C@$! +$ 2-D$:;-@G 4& $F;! 00;! @+ @@$ 2-D$:;-@G! 4*2! @+! $F;! :0 7 :4+4&;/G! $6:@1$2@ 4& +G;-;! $4:*$ $+$:! $6:@1$2@ 4& +G;-;! C:#C$ 2-D$:;-@G! $;@ &G$@@$! 2#-2! 2-D$:;-@G 4& 0-&4:2-! 2 -$*4! 400! 2#:$E C-2! $6:@1$2@ 4& -46+G;-;! 4;4E 0-&4:2-! @@$ 2-D$:;-@G! 4;4E! C;;- 2; :C$2&$0#$:! ! B(%! -+$0 $-$:@! @-420 $2$E0$ 2$:*G 4; 014; @-420 4:@4:G! 4; 014;! 4:@4:G! 40#$2! 404:#4! $E $F-4! D-# +41;! $6:@1$2@ 4& -4+$1-;@:G! D: -$D$:! $2;;$0$: 40G@$+2- 2;@-@C@$! 2-D$:;-@G 4& -22$;4@ $#-0 +440! :4G!$E4:/! -22$640-;! -22$;4@! 40 7 :C2$:! $6:@1$2@ 4& +G;-;! 1C$0 7 -00-1;42! $6:@1$2@ 4& +G;-;! :-2$@42 2-D$:;-@G! :-2$@42! $E $:;$G! $E4:/2-D$:;-@G!$E4:/!$E4:/! 774#*4:Å/ -@+55(-*C:$;2#A=0$; *ÁviÄÄÁË ÁÜË ±Ë*`}ÁÅ>]Ë* ± ±]Ë *]Ë*]Ë * iÍÁiËÖÜiÁÄÍ>ÁiË`iËÄ>ÍjËV VË1ÜiÁÄÍßËi>Í Ë iÍÁi i¬>ÁÍiÍËvËi`V>Ë* ßÄVÄ ¤ÉxåË>ÜiÖiË i`>Á ÍÁi>]Ë+ÖA iLiVËÏˤ{]Ë >>`>A i>\Ëi¬`}ÁÄ>Ji`¬ ßıV}±V> -::G4&42*:$;;@04*-2*-2C0-@-42@ BII(3B>>=A 5>5%,=B5I ,5IA,()I,B(I)5,=6:-2*$:$:0-2$-#$0$:*$E4:/ ,5A3=%,A,()I,B(I)5,%6:-2*$:$:0-2$-#$0$:*$E4:/ +-;E4:/-;;C.$@@446G:-*+@700:-*+@;:$:$;$:D$#!E+$@+$:@+$E+40$4:6:@4&@+$1@$:-0-; 42$:2$#!;6$-&-00G@+$:-*+@;4&@:2;0@-42!:$6:-2@-2*!:$C;$4&-00C;@:@-42;!:$-@@-42!:4#;@-2*! :$6:4#C@-42421-:4&-014:-22G4@+$:EG!2#;@4:*$-2#@2/;7C60-@-424&@+-;6C0-@-424: 6:@;@+$:$4&-;6$:1-@@$#420GC2#$:@+$6:4D-;-42;4&@+$$:1246G:-*+@ E4&$6@$1$:3!53>(!-2 -@;C::$2@D$:;-42!2#6$:1-;;-42&4:C;$1C;@0EG;$4@-2$#&:416:-2*$:7-40@-42;:$0-0$@4 6:4;$C@-42C2#$:@+$$:1246G:-*+@ E7 6:-2*$:-;6:@4&6:-2*$:-$2$8C;-2$;; $#- ;6:-2*$:420-2$741 "6:-2*$:,$:0*$:0-2$-#$0$:*BII> :-2@$#-2$:12G +$C;$4&*$2$:0#$;:-6@-D$21$;!:$*-;@$:$#21$;!@:#$1:/;!$@7-2@+-;6C0-@-42#4$;24@-160G! $D$2-2@+$;$2$4&;6$-&-;@@$1$2@!@+@;C+21$;:$$F$16@&:41@+$:$0$D2@6:4@$@-D$0E;2# :$*C0@-42;2#@+$:$&4:$&:$$&4:*$2$:0C;$7 G6$;$@@-2*2#6:4#C@-42 ,$:0-2!:4@*4,,:4#C@-421!$:0-2 4D$:42$6@G$@C#-401:@$-2$2 4D$:6:4#C@-42 1!$-#$0$:* :-2@$#42-#,&:$$66$: (=?A5)5?,()AB5I Mariani za razumevanje in pomoˇc Preface This book is intended as a textbook for a course in radiation physics in aca- demic medical physics graduate programs. The book may also be of interest to the large number of professionals, not only physicists, who in their daily occupations deal with various aspects of medical physics and have a need to improve their understanding of radiation physics. Medical physics is a rapidly growing specialty of physics, concerned with the application of physics to medicine mainly, but not exclusively, in the ap- plication of ionizing radiation to diagnosis and treatment of human disease. In contrast to other physics specialties, such as nuclear physics, solid-state physics, and high-energy physics, studies of modern medical physics attract a much broader base of professionals including graduate students in medi- cal physics, medical residents and technology students in radiation oncology and diagnostic imaging, students in biomedical engineering, and students in radiation safety and radiation dosimetry educational programs. These profes- sionals have diverse background knowledge of physics and mathematics, but they all have a common desire to improve their knowledge of the physics that underlies the application of ionizing radiation in diagnosis and treatment of disease. The main target audience for this book is graduate students in medical physics and these students are assumed to possess the necessary background in physics and mathematics to be able to follow and master the complete textbook. Medical residents, technology students and biomedical engineering students, on the other hand, may find certain sections too challenging or esoteric; however, there are many sections in the book that they may find useful and interesting in their studies. Candidates preparing for professional certification exams in any of the medical physics subspecialties should find the material useful and some of the material would also help candidates preparing for certification examinations in medical dosimetry or radiation- related medical specialties. Numerous textbooks that cover the various subspecialties of medical physics are available but they generally make a transition from elementary basic physics directly to the intricacies of the given medical physics subspe- cialty. The intent of this textbook is to provide the missing link between the elementary physics and the physics of the subspecialties. VIII Preface The textbook is based on notes that I developed over the past 25 years of teaching radiation physics to M.Sc. and Ph.D. students in medical physics at McGill University. It contains eight chapters, each chapter covering a spe- cific group of subjects related to radiation physics that, in my opinion, form the basic knowledge required from professionals working in contemporary medical physics. Most of the subjects covered in this textbook can be found discussed in greater detail in many other specialized physics texts, such as nuclear physics, quantum mechanics, modern physics, etc.; however, these texts are aimed at students in a specific physics specialty. They provide more in-depth knowledge of the particular specialty but provide no evident link with medical physics. Some of these important specialized texts are listed in the bibliography at the end of this book for the benefit of readers who wish to attain a better insight into the subjects discussed. To recognize the impor- tance of relevant history for understanding of modern physics, Appendix 1 provides short biographies on scientists whose work is discussed in this book.
Recommended publications
  • Charged-Particle (Proton Or Helium Ion) Radiotherapy for Neoplastic Conditions
    Charged-Particle (Proton or Helium Ion) Radiotherapy for Neoplastic Conditions Policy Number: Original Effective Date: MM.05.005 07/01/2009 Line(s) of Business: Current Effective Date: HMO; PPO; QUEST Integration 07/28/2017 Section: Radiology Place(s) of Service: Outpatient I. Description Charged-particle beams consisting of protons or helium ions are a type of particulate radiation therapy (RT). Treatment with charged-particle radiotherapy is proposed for a large number of indications, often for tumors that would benefit from the delivery of a high dose of radiation with limited scatter that is enabled by charged-particle beam radiotherapy. For individuals who have uveal melanoma(s) who receive charged-particle (proton or helium ion) radiotherapy, the evidence includes RCTs and systematic reviews. Relevant outcomes are overall survival, disease-free survival, change in disease status, and treatment-related morbidity. Systematic reviews, including a 1996 TEC Assessment and a 2013 review of randomized and non- randomized studies, concluded that the technology is at least as effective as alternative therapies for treating uveal melanomas and is better at preserving vision. The evidence is sufficient to determine qualitatively that the technology results in a meaningful improvement in the net health outcome. For individuals who have skull-based tumor(s) (i.e., cervical chordoma and chondrosarcoma) who receive charged-particle (proton or helium ion) radiotherapy, the evidence includes observational studies and systematic reviews. Relevant outcomes are overall survival, disease-free survival, change in disease status, and treatment-related morbidity. A 1996 TEC Assessment concluded that the technology is at least as effective as alternative therapies for treating skull-based tumors.
    [Show full text]
  • Potentialities of a Low-Energy Detector Based on $^ 4$ He Evaporation to Observe Atomic Effects in Coherent Neutrino Scattering and Physics Perspectives
    Potentialities of a low-energy detector based on 4He evaporation to observe atomic effects in coherent neutrino scattering and physics perspectives M. Cadeddu,1, ∗ F. Dordei,2, y C. Giunti,3, z K. A. Kouzakov,4, x E. Picciau,1, { and A. I. Studenikin5, 6, ∗∗ 1Universit`adegli studi di Cagliari and Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Cagliari, Complesso Universitario di Monserrato - S.P. per Sestu Km 0.700, 09042 Monserrato (Cagliari), Italy 2Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Cagliari, Complesso Universitario di Monserrato - S.P. per Sestu Km 0.700, 09042 Monserrato (Cagliari), Italy 3Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Torino, Via P. Giuria 1, I{10125 Torino, Italy 4Department of Nuclear Physics and Quantum Theory of Collisions, Faculty of Physics, Lomonosov Moscow State University, Moscow 119991, Russia 5Department of Theoretical Physics, Faculty of Physics, Lomonosov Moscow State University, Moscow 119991, Russia 6Joint Institute for Nuclear Research, Dubna 141980, Moscow Region, Russia We propose an experimental setup to observe coherent elastic neutrino-atom scattering (CEνAS) using electron antineutrinos from tritium decay and a liquid helium target. In this scattering process with the whole atom, that has not beeen observed so far, the electrons tend to screen the weak charge of the nucleus as seen by the electron antineutrino probe. The interference between the nucleus and the electron cloud produces a sharp dip in the recoil spectrum at atomic recoil energies of about 9 meV, reducing sizeably the number of expected events with respect to the coherent elastic neutrino-nucleus scattering case. We estimate that with a 60 g tritium source surrounded by 500 kg of liquid helium in a cylindrical tank, one could observe the existence of CEνAS processes at 3σ in 5 years of data taking.
    [Show full text]
  • Plasma Heating by Intense Charged Particle-Beams Injected on Solid Targets T
    PLASMA HEATING BY INTENSE CHARGED PARTICLE-BEAMS INJECTED ON SOLID TARGETS T. Okada, T. Shimojo, K. Niu To cite this version: T. Okada, T. Shimojo, K. Niu. PLASMA HEATING BY INTENSE CHARGED PARTICLE-BEAMS INJECTED ON SOLID TARGETS. Journal de Physique Colloques, 1988, 49 (C7), pp.C7-185-C7-189. 10.1051/jphyscol:1988721. jpa-00228205 HAL Id: jpa-00228205 https://hal.archives-ouvertes.fr/jpa-00228205 Submitted on 1 Jan 1988 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. JOURNAL DE PHYSIQUE Colloque C7, supplgment au n012, Tome 49, dbcembre 1988 PLASMA HEATING BY INTENSE CHARGED PARTICLE-BEAMS INJECTED ON SOLID TARGETS T. OKADA, T. SHIMOJO* and K. NIU* ' Department of Applied Physics, Tokyo University of Agriculture and Technology, Koganei-shi, Tokyo 184, Japan *~epartmentof Physics, Tokyo Gakugei University, Koganei-shi, Tokyo 184, Japan Department of Energy Sciences, Tokyo Institute of Technology, Midori-ku, Yokohama 227, Japan Rbsunb - La production et le chauffage du plasma sont estimbs numbriquement B l'aide d'un modele simple pour l'interaction de faisceaux intenses d'blectrons ou protons avec plusieurs cibles solides. On obtient ainsi les longueurs d'ionisation et la temperature du plasma produit.
    [Show full text]
  • Metallurgy Materials Programs
    WASH-1181-72 METALLURGY and MATERIALS PROGRAMS UNITED STATES ATOMIC ENERGY COMMISSION DIVISION of PHYSICAL RESEARCH LEGAL NOTICE This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor tlhe United States Atomic Energy Commission, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty. express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights. WASH-1181-72 METALLURGY AND MATERIALS PROGRAMS Fiscal Year 1972 July 1972 U. S. Atomic Energy Commission Division of Physical Research FOREWORD The Metallurgy and Materials Program constitutes one portion of a wide range of research supported by the AEC Division of Physical Research. Other programs are administered by the Division's Chemistry, High Energy Physics, and Physics and Mathematics Offices. Metallurgy and Materials research is supported primarily at AEC National Laboratories and Univer- sities. The research covers a wide spectrum of scientific and engineering areas of interest to the Atomic Energy Commission and is conducted generally by personnel trained in the disciplines of Solid State Physics, Metallurgy, Ceramics, and Physical Chemistry. This report contains a listing of all research underway in FY 1972 together with a convenient index to the program. Donald K. Stevens Assistant Director (for Metallurgy and Materials Programs) Division of Physical Research i INTRODUCTION The purpose of this report is to provide a convenient compilation and index of the AEC's Metallurgy and Materials Programs.
    [Show full text]
  • Production of Radioactive Isotopes: Cyclotrons and Accelerators Numbers of Accelerators Worldwide: Type and Application
    Isotopes: production and application Kornoukhov Vasily Nikolaevich [email protected] Lecture No 5 Production of radioactive isotopes: cyclotrons and accelerators Numbers of accelerators worldwide: type and application TOTAL TOTAL ~ 42 400 ~ 42 400 Electron Protons and ions Science Industry Accelerators Accelerators ~ 1 200 ~ 27 000 27 000 12 000 Medicine Protons ~ 14 200 Accelerators Ion implantation in 4 000 microelectronics ~ 1.5 B$/year Cost of food after sterilization ~ 500 B$/year 20.11.2020 Lecture No 5: Production of radioactive isotopes: cyclotrons and accelerators V.N. Kornoukhov 2 Accelerators for radionuclide production Characterization of accelerators for radionuclide production General cross-sectional behavior for nuclear reactions as a function of the The number of charged particles is usually measured as an electric current incident particle energy. Since the proton has to overcome the Coulomb in microamperes (1 μA = 6 × 1012 protons/s = 3 × 1012 alpha/s) barrier, there is a threshold that is not present for the neutron. Even very low energy neutrons can penetrate into the nucleus to cause a nuclear reaction. In the classic sense, a reaction between a charged particle and a nucleus cannot take place if the center of mass energy of the two particles is less than the Coulomb barrier. It implies that the charged particle must have an energy greater than the electrostatic repulsion, which is given by the following B = Zˑzˑe2/R where B is the barrier to the reaction; Z and z are the atomic numbers of the two species; R is the separation of the two species (cm). 20.11.2020 Lecture No 5: Production of radioactive isotopes: cyclotrons and accelerators V.N.
    [Show full text]
  • Protocol for Heavy Charged-Particle Therapy Beam Dosimetry
    AAPM REPORT NO. 16 PROTOCOL FOR HEAVY CHARGED-PARTICLE THERAPY BEAM DOSIMETRY Published by the American Institute of Physics for the American Association of Physicists in Medicine AAPM REPORT NO. 16 PROTOCOL FOR HEAVY CHARGED-PARTICLE THERAPY BEAM DOSIMETRY A REPORT OF TASK GROUP 20 RADIATION THERAPY COMMITTEE AMERICAN ASSOCIATION OF PHYSICISTS IN MEDICINE John T. Lyman, Lawrence Berkeley Laboratory, Chairman Miguel Awschalom, Fermi National Accelerator Laboratory Peter Berardo, Lockheed Software Technology Center, Austin TX Hans Bicchsel, 1211 22nd Avenue E., Capitol Hill, Seattle WA George T. Y. Chen, University of Chicago/Michael Reese Hospital John Dicello, Clarkson University Peter Fessenden, Stanford University Michael Goitein, Massachusetts General Hospital Gabrial Lam, TRlUMF, Vancouver, British Columbia Joseph C. McDonald, Battelle Northwest Laboratories Alfred Ft. Smith, University of Pennsylvania Randall Ten Haken, University of Michigan Hospital Lynn Verhey, Massachusetts General Hospital Sandra Zink, National Cancer Institute April 1986 Published for the American Association of Physicists in Medicine by the American Institute of Physics Further copies of this report may be obtained from Executive Secretary American Association of Physicists in Medicine 335 E. 45 Street New York. NY 10017 Library of Congress Catalog Card Number: 86-71345 International Standard Book Number: 0-88318-500-8 International Standard Serial Number: 0271-7344 Copyright © 1986 by the American Association of Physicists in Medicine All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise) without the prior written permission of the publisher. Published by the American Institute of Physics, Inc., 335 East 45 Street, New York, New York 10017 Printed in the United States of America Contents 1 Introduction 1 2 Heavy Charged-Particle Beams 3 2.1 ParticleTypes .........................
    [Show full text]
  • Potentialities of a Low-Energy Detector Based on He4 Evaporation to Observe Atomic Effects in Coherent Neutrino Scattering and P
    PHYSICAL REVIEW D 100, 073014 (2019) Potentialities of a low-energy detector based on 4He evaporation to observe atomic effects in coherent neutrino scattering and physics perspectives † ‡ ∥ M. Cadeddu,1,* F. Dordei,2, C. Giunti ,3, K. A. Kouzakov ,4,§ E. Picciau ,1, and A. I. Studenikin5,6,¶ 1Universit`a degli studi di Cagliari and Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Cagliari, Complesso Universitario di Monserrato—S.P. per Sestu Km 0.700, 09042 Monserrato (Cagliari), Italy 2Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Cagliari, Complesso Universitario di Monserrato—S.P. per Sestu Km 0.700, 09042 Monserrato (Cagliari), Italy 3Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Torino, Via P. Giuria 1, I-10125 Torino, Italy 4Department of Nuclear Physics and Quantum Theory of Collisions, Faculty of Physics, Lomonosov Moscow State University, Moscow 119991, Russia 5Department of Theoretical Physics, Faculty of Physics, Lomonosov Moscow State University, Moscow 119991, Russia 6Joint Institute for Nuclear Research, Dubna 141980, Moscow Region, Russia (Received 14 July 2019; published 29 October 2019) We propose an experimental setup to observe coherent elastic neutrino-atom scattering (CEνAS) using electron antineutrinos from tritium decay and a liquid helium target. In this scattering process with the whole atom, that has not been observed so far, the electrons tend to screen the weak charge of the nucleus as seen by the electron antineutrino probe. The interference between the nucleus and the electron cloud produces a sharp dip in the recoil spectrum at atomic recoil energies of about 9 meV, reducing sizably the number of expected events with respect to the coherent elastic neutrino-nucleus scattering case.
    [Show full text]
  • The Treatment of Electronic Excitations in Atomistic Models of Radiation Damage in Metals
    REVIEW ARTICLE The treatment of electronic excitations in atomistic models of radiation damage in metals C P Race1, D R Mason1, M W Finnis1 2, W M C Foulkes1, A P Horsfield2 and A P Sutton1 1 Department of Physics, Imperial College, London SW7 2AZ, UK 2 Department of Materials, Imperial College, London SW7 2AZ, UK Abstract. Atomistic simulations are a primary means of understanding the damage done to metallic materials by high energy particulate radiation. In many situations the electrons in a target material are known to exert a strong influence on the rate and type of damage. The dynamic exchange of energy between electrons and ions can act to damp the ionic motion, to inhibit the production of defects or to quench in damage, depending on the situation. Finding ways to incorporate these electronic effects into atomistic simulations of radiation damage is a topic of current major interest, driven by materials science challenges in diverse areas such as energy production and device manufacture. In this review, we discuss the range of approaches that have been used to tackle these challenges. We compare augmented classical models of various kinds and consider recent work applying semi-classical techniques to allow the explicit incorporation of quantum mechanical electrons within atomistic simulations of radiation damage. We also outline the body of theoretical work on stopping power and electron-phonon coupling used to inform efforts to incorporate electronic effects in atomistic simulations and to evaluate their performance. Contents 1 Introduction 3 1.1 The radiation damage cascade . .4 1.2 Transfer of energy between ions and electrons in radiation damage .
    [Show full text]
  • Arxiv:2005.08389V1 [Physics.Acc-Ph] 17 May 2020
    Proceedings of the 2018 CERN–Accelerator–School course on Beam Instrumentation, Tuusula, (Finland) Beam Diagnostic Requirements: an Overview G. Kube Deutsches Elektronen Synchrotron (DESY), Hamburg, Germany Abstract Beam diagnostics and instrumentation are an essential part of any kind of ac- celerator. There is a large variety of parameters to be measured for observation of particle beams with the precision required to tune, operate, and improve the machine. In the first part, the basic mechanisms of information transfer from the beam particles to the detector are described in order to derive suitable per- formance characteristics for the beam properties. However, depending on the type of accelerator, for the same parameter, the working principle of a monitor may strongly differ, and related to it also the requirements for accuracy. There- fore, in the second part, selected types of accelerators are described in order to illustrate specific diagnostics needs which must be taken into account before designing a related instrument. Keywords Particle field; beam signal; electron/hadron accelerator; instrumentation. 1 Introduction Nowadays particle accelerators play an important role in a wide number of fields, the number of acceler- ators worldwide is of the order of 30000 and constantly growing. While most of these devices are used for industrial and medical applications (ion implantation, electron beam material processing and irradia- tion, non-destructive inspection, radiotherapy, medical isotopes production, :::), the share of accelerators used for basic science is less than 1 % [1]. In order to cover such a wide range of applications different accelerator types are required. As an example, in the arts, the Louvre museum utilizes a 2 MV tandem Pelletron accelerator for ion beam anal- ysis studies [2].
    [Show full text]
  • The OPAL Framework (Object Oriented Parallel Accelerator Library) Version 1.1.9 User's Reference Manual
    PSI-PR-08-02 The OPAL Framework (Object Oriented Parallel Accelerator Library) Version 1.1.91 User’s Reference Manual Andreas Adelmann, Achim Gsell, Christof Kraus (PSI) Yves Ineichen (IBM), Steve Russell (LANL), Yuanjie Bi, Chuan Wang, Jianjun Yang (CIAE), Hao Zha (Thinghua University) Suzanne Sheehy, Chris Rogers (RAL) and Christopher Mayes (Cornell) Abstract OPAL is a tool for charged-particle optics in accelerator structures and beam lines. Using the MAD language with extensions, OPAL is derived from MAD9P and is based on the CLASSIC class library, which was started in 1995 by an international collaboration. IPPL (Independent Parallel Par- ticle Layer) is the framework which provides parallel particles and fields using data parallel ansatz. OPAL is built from the ground up as a parallel application exemplifying the fact that HPC (High Performance Computing) is the third leg of science, complementing theory and the experiment. HPC is made possible now through the increasingly sophisticated mathematical models and evolving com- puter power available on the desktop and in super computer centres. OPAL runs on your laptop as well as on the largest HPC clusters available today. The OPAL framework makes it easy to add new features in the form of new C++ classes. It comes in the following flavours: OPAL-CYCL tracks particles with 3D space charge including neighbouring turns in cyclotrons with time as the independent variable. OPAL-T is a superset of IMPACT-T [40] and can be used to model guns, injectors and complete XFEL’s excluding the undulator. It should be noted that not all features of OPAL are available in all flavours.
    [Show full text]
  • Earth-Bound Millicharge Relics
    PHYSICAL REVIEW D 103, 115031 (2021) Earth-bound millicharge relics Maxim Pospelov1,2 and Harikrishnan Ramani 3,* 1School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455, USA 2William I. Fine Theoretical Physics Institute, School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455, USA 3Stanford Institute for Theoretical Physics, Stanford University, Stanford, California 94305, USA (Received 29 March 2021; accepted 31 May 2021; published 25 June 2021) Dark sector particles with small electric charge, or millicharge, (mCPs) may lead to a variety of diverse phenomena in particle physics, astrophysics, and cosmology. Assuming their possible existence, we investigate the accumulation and propagation of mCPs in matter, specifically inside the Earth. Even small values of millicharge lead to sizeable scattering cross sections on atoms, resulting in complete thermal- ization, and as a consequence, considerable build-up of number densities of mCPs, especially for the values of masses of GeV and higher when the evaporation becomes inhibited. Enhancement of mCP densities compared to their galactic abundance, that can be as big as 1014, leads to the possibility of new experimental probes for this model. The annihilation of pairs of mCPs will result in new signatures for the large volume detectors (such as Super-Kamiokande). Formation of bound states of negatively charged mCPs with nuclei can be observed by direct dark matter detection experiments. A unique probe of mCP can be developed using underground electrostatic accelerators that can directly accelerate mCPs above the experimental thresholds of direct dark matter detection experiments. DOI: 10.1103/PhysRevD.103.115031 I. INTRODUCTION millicharge dark matter or mCDM with their abundance set by the freeze-out or freeze-in.
    [Show full text]
  • LHC Beam Stability and Feedback Control
    LHC Beam Stability and Feedback Control Von der Fakult¨at fur¨ Mathematik, Informatik und Naturwissenschaften der Rheinisch-Westf¨alischen Technischen Hochschule Aachen zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften genehmigte Dissertation vorgelegt von Diplom-Physiker Ralph Steinhagen aus Bonn Berichter: Universit¨atsprofessor Dr. A. B¨ohm Universit¨atsprofessor Dr. T. Hebbeker Tag der mundlichen¨ Prufung:¨ 20 Juli 2007 Diese Dissertation ist auf den Internetseiten der Hochschulbibliothek online verfugbar.¨ Why lovest thou so this brittle world’s joy? Take all the mirth, take all the fantasies, Take every game, take every wanton toy, Take every sport that men can thee devise: And among them all on warrantise Thou shalt no pleasure comparable find To th’ inward gladness of a virtuous mind. Thomas More Zusammenfassung Die vorliegende Arbeit befaßt sich mit der Strahlstabilit¨at und der Kontrolle der beiden Protonenstrahlen des LHC Beschleunigers (Large Hadron Collider), der sich am CERN im Bau befindet und Ende 2007 in in Betrieb genommen wird. Der Schwerpunkt dieser Arbeit liegt in der Analyse m¨oglicher dynamischer St¨orungen der mittleren Strahlposition (dem sog. Orbit), der Strahlenergie und deren Kontrolle durch ruckgekoppelte¨ Regelungssysteme (engl. feedbacks). Das Ziel dieser Arbeit ist zu einem guten Start und zuverl¨assigen Betrieb des LHCs beizutragen. Im LHC werden zwei Protonenstrahlen auf eine Schwerpunktsenergie von 14 TeV beschleunigt und 34 2 1 Protonen-Protonen Kollisionen mit einer nominalen Luminosit¨at von L = 10 cm− s− den Experimen- ten zur Verfugung¨ gestellt. Die Verwendung zweier Strahlen mit sowohl hoher gespeicherter Intensit¨at als auch hoher Energie in einer supraleitenden Umgebung bedarf einer ausgezeichneten Kontrolle der Strahl- verlusten, die durch die LHC Collimations und Schutzsysteme gew¨ahrleistet werden wird.
    [Show full text]