Bayesian Coalitional Rationality and Rationalizability∗

Total Page:16

File Type:pdf, Size:1020Kb

Bayesian Coalitional Rationality and Rationalizability∗ Bayesian coalitional rationality and rationalizability a a b Xiao Luo ,yYongchuan Qiao , Chih-Chun Yang aDepartment of Economics, National University of Singapore, Singapore 117570 bInstitute of Economics, Academia Sinica, Taipei 115, Taiwan October 2017 Abstract We offer an epistemic definition of “Bayesian coalitional rationality”(i.e., Bayesian c-rationality) in strategic environments by a mode of behavior that no group of players wishes to change. In a semantic framework in which each player is endowed with a CPS belief at a state, we characterize the game-theoretic solution concept of “Bayesian coalitional rationalizability”(i.e., Bayesian c-rationalizability) in [32] by means of common knowledge of Bayesian c-rationality. We also formulate and show Bayesian c-rationalizability is outcome equivalent to a coalitional version of a posteriori equilibrium. Our analysis provides the epistemic foundation of the solution concept of Bayesian c-rationalizability. JEL Classification: C70, C72, D81. Keywords: Bayesian c-rationality, Bayesian c-rationalizability, common knowledge, a posteriori Bayesian c-equilibrium, conditional probability system (CPS) This paper is based on part of an earlier manuscript “Bayesian Coalitional Rationalizability.” We thank Adam Brandenburger, Yi-Chun Chen, Yossi Greenberg, Takashi Kunimoto, Shravan Luckraz, Xuewen Qian, Chen Qu, Yang Sun, Satoru Takahashi, Licun Xue, Junjian Yi, Shmuel Zamir, Shenghao Zhu, and seminar participants at National University of Singapore and Academia Sinica. The earlier version of the paper was presented at International Conference on Game Theory, SAET Conference on Current Trends in Economics, and China Meeting of the Econometric Society. Financial support from the National University of Singapore and the National Science Council of Taiwan is gratefully acknowledged. The usual disclaimer applies. y Corresponding author. Fax:+65 6775 2646. E-mail: [email protected] (X. Luo); qiaoyongchuan@ gmail.com (Y. Qiao); [email protected] (C.C. Yang). 1 1 Introduction In their seminal papers, Bernheim [14] and Pearce [40] proposed the game-theoretic solution concept of “rationalizability”as the logical implication of common knowledge of “Bayesian rationality”(cf. also Tan and Werlang [45]). Notably, in a standard textbook, Osborne and Rubinstein [39, Section 5.4] presented an epistemic characterization of rationalizability by common knowledge of Bayesian rationality within a semantic framework. The definition of “Bayesian rationality” here requires a player to adopt a strategy that maximizes his expected utility under his subjective probabilistic belief about the other players’strategies; in particular, each player, in a strategic situation, makes his own optimal decision in the absence of coalition considerations. The collective and coalitional behavior has been recognized as an important issue in real- life examples such as cartels, trade blocs, political party formation, special interest groups, public goods provision, social networks and matchings, and so on. To cope with coalitional aspects of strategic interactions, Ambrus [2] first offered a well-defined solution concept of “coalitional rationalizability” by using an iterative procedure of restrictions, in which members of a coalition are willing to confine their play to a subset of their strategies if doing so is in their mutual interest; see, for example, Acemoglu et al. [1], Ambrus and Argenziano [4], Jullien [28], Newton [37], and Grandjean et al. [26] for interesting applications.1 This concept is based on the crucial and novel idea that the players go through an “internal reasoning procedure”: The coalitional agreements players can consider in this context take the form of re- strictions of the strategy space. This means that players look for agreements to avoid certain strategies, without specifying play within the set of non-excluded strategies. ... A restriction is supported if every group member always (for every possible expec- tation) expects a higher payoff if the agreement is made than if he instead chooses to play a strategy outside the agreement. (Ambrus [2, p.904]) Ambrus [2] showed that, in contrast to an equilibrium approach, allowing coalitions to make set-valued restrictions (agreements) in the concept of rationalizability runs into no logical inconsistencies; that is, the solution set of coalitionally rationalizable strategies is never empty in the class of finite games. 1 Liu et al. [31] adopted the idea of (coalitional) rationalizability to define a stable matching with in- complete information, which requires to attain common knowledge among a blocking pair that no profitable pairwise deviation exists. Their analysis, however, refrains from considering deviations by larger groups of agents. Kobayashi [29] made use of the similar idea to study equilibrium contracts for syndicates with differential information, by assuming “an agent declares his intention to join a blocking coalition only when it is common knowledge for the coalition members that he would intend to join.” 2 Along the lines of Ambrus’s [2] approach, Luo and Yang [32] took a traditional game- theoretic approach to define an alternative solution concept of “Bayesian coalitional ratio- nalizability”(henceforth, Bayesian c-rationalizability) from the Bayesian point of view. The alternative notion extends Ambrus’soriginal one to situations in which, in pursuit of mutu- ally beneficial interests, the players in a coalition (i) evaluate their payoff expectations by Bayesian updating, if an agreement is made, instead of holding fixed the marginal expecta- tions concerning the behavior of nonmembers as in Ambrus [2], and (ii) contemplate various plausible deviations —that is, the validity of deviation is checked not only against restricted subsets of strategies as in Ambrus [2], but also against arbitrary sets of strategies. They showed that all the major features and properties of the conventional rationalizability, as a special case of Bayesian c-rationalizability with the restriction of singleton coalitions only, are essentially preserved. However, what exact epistemic conditions lead to the solution con- cept of Bayesian c-rationalizability is a bit subtle and unclear, especially in highly complex coalitional environments. We aim to fill that gap. In this paper, we carry out the epistemic game theory program to formally express the epistemic assumptions behind the notion of Bayesian c-rationalizability, in terms of what each player knows and believes about the information, knowledge, and rationality of coalitions. More specifically, we put forth a novel epistemic definition of “Bayesian coalitional rationality” (henceforth, Bayesian c-rationality) that identifies a mode of behavior that no group of players wishes to change —that is, a truism among coalition members: no credible coalitional gains exist. The main results of this paper are as follows: (1) Bayesian c-rationalizability is characterized by common knowledge of Bayesian c-rationality (Theorem 1); (2) Bayesian c-rationalizability is outcome equivalent to a posteriori Bayesian c- equilibrium, a coalitional version of a posteriori equilibrium in Brandenburger and Dekel [16] (Theorem 2). Thus, our analysis provides the epistemic foundation of the solution concept of Bayesian c-rationalizability in Luo and Yang [32]. One key ingredient to our approach is the epistemic definition of Bayesian c-rationality (Definition 2), which is the coalitional counterpart of Bayesian rationality. From an epistemic perspective, Bayesian rationality is referred to an epistemic state in which a player atten- tively awares that no alternative choice of strategy can attain a higher expected payoff. The coalitional version of Bayesian rationality captures the similar idea for coalitional reason- ing: coalition members share a common knowledge that improving every coalition member’s expected payoff by coordinating their moves in a credible way is impossible. The notion 3 of coalitional rationality needs to call for the coalition-wise common-knowledge assumption that no coalitional gains exist, because each coalition member’sbehavior and beliefs will be typically affected if a new agreement is made.2 In fact, actions undertaken deliberately by a group of players are related to some particular epistemic state, which often interferes with the other states under consideration of players in the group. That is, each player in the group has to think about what would happen in hypothetical circumstances, in one of which every player takes into account what the group of players would do and what the group would contemplate in the hypothetical circumstances.3 Thus, it is epistemically important and necessary to consider not only what a coalition member knows about the contemplation of joint movements, but also what the player knows about what the other coalition members know and do not know. Our study contributes to a better understanding of the concept of coalitional rationality in complex social interactions. Moreover, according to the notion of Bayesian c-rationality, we need to check 2n 1 feasible coalitions (i.e., all subsets of n players Sj except the empty set) and, for a coalition J, j J 2j j 1 possible coalitional deviations (i.e., all restrictions of strategies in S for each2 coalition member j J except the empty j set). Due to the enormous complexity of coalitional reasoning, exploring2 how to make such desirable epistemic states possible is fascinating and intriguing. Our work is closely related to Ambrus [3] and provides
Recommended publications
  • Lecture 4 Rationalizability & Nash Equilibrium Road
    Lecture 4 Rationalizability & Nash Equilibrium 14.12 Game Theory Muhamet Yildiz Road Map 1. Strategies – completed 2. Quiz 3. Dominance 4. Dominant-strategy equilibrium 5. Rationalizability 6. Nash Equilibrium 1 Strategy A strategy of a player is a complete contingent-plan, determining which action he will take at each information set he is to move (including the information sets that will not be reached according to this strategy). Matching pennies with perfect information 2’s Strategies: HH = Head if 1 plays Head, 1 Head if 1 plays Tail; HT = Head if 1 plays Head, Head Tail Tail if 1 plays Tail; 2 TH = Tail if 1 plays Head, 2 Head if 1 plays Tail; head tail head tail TT = Tail if 1 plays Head, Tail if 1 plays Tail. (-1,1) (1,-1) (1,-1) (-1,1) 2 Matching pennies with perfect information 2 1 HH HT TH TT Head Tail Matching pennies with Imperfect information 1 2 1 Head Tail Head Tail 2 Head (-1,1) (1,-1) head tail head tail Tail (1,-1) (-1,1) (-1,1) (1,-1) (1,-1) (-1,1) 3 A game with nature Left (5, 0) 1 Head 1/2 Right (2, 2) Nature (3, 3) 1/2 Left Tail 2 Right (0, -5) Mixed Strategy Definition: A mixed strategy of a player is a probability distribution over the set of his strategies. Pure strategies: Si = {si1,si2,…,sik} σ → A mixed strategy: i: S [0,1] s.t. σ σ σ i(si1) + i(si2) + … + i(sik) = 1. If the other players play s-i =(s1,…, si-1,si+1,…,sn), then σ the expected utility of playing i is σ σ σ i(si1)ui(si1,s-i) + i(si2)ui(si2,s-i) + … + i(sik)ui(sik,s-i).
    [Show full text]
  • Learning and Equilibrium
    Learning and Equilibrium Drew Fudenberg1 and David K. Levine2 1Department of Economics, Harvard University, Cambridge, Massachusetts; email: [email protected] 2Department of Economics, Washington University of St. Louis, St. Louis, Missouri; email: [email protected] Annu. Rev. Econ. 2009. 1:385–419 Key Words First published online as a Review in Advance on nonequilibrium dynamics, bounded rationality, Nash equilibrium, June 11, 2009 self-confirming equilibrium The Annual Review of Economics is online at by 140.247.212.190 on 09/04/09. For personal use only. econ.annualreviews.org Abstract This article’s doi: The theory of learning in games explores how, which, and what 10.1146/annurev.economics.050708.142930 kind of equilibria might arise as a consequence of a long-run non- Annu. Rev. Econ. 2009.1:385-420. Downloaded from arjournals.annualreviews.org Copyright © 2009 by Annual Reviews. equilibrium process of learning, adaptation, and/or imitation. If All rights reserved agents’ strategies are completely observed at the end of each round 1941-1383/09/0904-0385$20.00 (and agents are randomly matched with a series of anonymous opponents), fairly simple rules perform well in terms of the agent’s worst-case payoffs, and also guarantee that any steady state of the system must correspond to an equilibrium. If players do not ob- serve the strategies chosen by their opponents (as in extensive-form games), then learning is consistent with steady states that are not Nash equilibria because players can maintain incorrect beliefs about off-path play. Beliefs can also be incorrect because of cogni- tive limitations and systematic inferential errors.
    [Show full text]
  • Lecture Notes
    GRADUATE GAME THEORY LECTURE NOTES BY OMER TAMUZ California Institute of Technology 2018 Acknowledgments These lecture notes are partially adapted from Osborne and Rubinstein [29], Maschler, Solan and Zamir [23], lecture notes by Federico Echenique, and slides by Daron Acemoglu and Asu Ozdaglar. I am indebted to Seo Young (Silvia) Kim and Zhuofang Li for their help in finding and correcting many errors. Any comments or suggestions are welcome. 2 Contents 1 Extensive form games with perfect information 7 1.1 Tic-Tac-Toe ........................................ 7 1.2 The Sweet Fifteen Game ................................ 7 1.3 Chess ............................................ 7 1.4 Definition of extensive form games with perfect information ........... 10 1.5 The ultimatum game .................................. 10 1.6 Equilibria ......................................... 11 1.7 The centipede game ................................... 11 1.8 Subgames and subgame perfect equilibria ...................... 13 1.9 The dollar auction .................................... 14 1.10 Backward induction, Kuhn’s Theorem and a proof of Zermelo’s Theorem ... 15 2 Strategic form games 17 2.1 Definition ......................................... 17 2.2 Nash equilibria ...................................... 17 2.3 Classical examples .................................... 17 2.4 Dominated strategies .................................. 22 2.5 Repeated elimination of dominated strategies ................... 22 2.6 Dominant strategies ..................................
    [Show full text]
  • Economics 201B Economic Theory (Spring 2021) Strategic Games
    Economics 201B Economic Theory (Spring 2021) Strategic Games Topics: terminology and notations (OR 1.7), games and solutions (OR 1.1-1.3), rationality and bounded rationality (OR 1.4-1.6), formalities (OR 2.1), best-response (OR 2.2), Nash equilibrium (OR 2.2), 2 2 examples × (OR 2.3), existence of Nash equilibrium (OR 2.4), mixed strategy Nash equilibrium (OR 3.1, 3.2), strictly competitive games (OR 2.5), evolution- ary stability (OR 3.4), rationalizability (OR 4.1), dominance (OR 4.2, 4.3), trembling hand perfection (OR 12.5). Terminology and notations (OR 1.7) Sets For R, ∈ ≥ ⇐⇒ ≥ for all . and ⇐⇒ ≥ for all and some . ⇐⇒ for all . Preferences is a binary relation on some set of alternatives R. % ⊆ From % we derive two other relations on : — strict performance relation and not  ⇐⇒ % % — indifference relation and ∼ ⇐⇒ % % Utility representation % is said to be — complete if , or . ∀ ∈ % % — transitive if , and then . ∀ ∈ % % % % can be presented by a utility function only if it is complete and transitive (rational). A function : R is a utility function representing if → % ∀ ∈ () () % ⇐⇒ ≥ % is said to be — continuous (preferences cannot jump...) if for any sequence of pairs () with ,and and , . { }∞=1 % → → % — (strictly) quasi-concave if for any the upper counter set ∈ { ∈ : is (strictly) convex. % } These guarantee the existence of continuous well-behaved utility function representation. Profiles Let be a the set of players. — () or simply () is a profile - a collection of values of some variable,∈ one for each player. — () or simply is the list of elements of the profile = ∈ { } − () for all players except . ∈ — ( ) is a list and an element ,whichistheprofile () .
    [Show full text]
  • Interim Correlated Rationalizability
    Interim Correlated Rationalizability The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Dekel, Eddie, Drew Fudenberg, and Stephen Morris. 2007. Interim correlated rationalizability. Theoretical Economics 2, no. 1: 15-40. Published Version http://econtheory.org/ojs/index.php/te/article/view/20070015 Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:3196333 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA Theoretical Economics 2 (2007), 15–40 1555-7561/20070015 Interim correlated rationalizability EDDIE DEKEL Department of Economics, Northwestern University, and School of Economics, Tel Aviv University DREW FUDENBERG Department of Economics, Harvard University STEPHEN MORRIS Department of Economics, Princeton University This paper proposes the solution concept of interim correlated rationalizability, and shows that all types that have the same hierarchies of beliefs have the same set of interim-correlated-rationalizable outcomes. This solution concept charac- terizes common certainty of rationality in the universal type space. KEYWORDS. Rationalizability, incomplete information, common certainty, com- mon knowledge, universal type space. JEL CLASSIFICATION. C70, C72. 1. INTRODUCTION Harsanyi (1967–68) proposes solving games of incomplete
    [Show full text]
  • Tacit Collusion in Oligopoly"
    Tacit Collusion in Oligopoly Edward J. Green,y Robert C. Marshall,z and Leslie M. Marxx February 12, 2013 Abstract We examine the economics literature on tacit collusion in oligopoly markets and take steps toward clarifying the relation between econo- mists’analysis of tacit collusion and those in the legal literature. We provide examples of when the economic environment might be such that collusive pro…ts can be achieved without communication and, thus, when tacit coordination is su¢ cient to elevate pro…ts versus when com- munication would be required. The authors thank the Human Capital Foundation (http://www.hcfoundation.ru/en/), and especially Andrey Vavilov, for …nancial support. The paper bene…tted from discussions with Roger Blair, Louis Kaplow, Bill Kovacic, Vijay Krishna, Steven Schulenberg, and Danny Sokol. We thank Gustavo Gudiño for valuable research assistance. [email protected], Department of Economics, Penn State University [email protected], Department of Economics, Penn State University [email protected], Fuqua School of Business, Duke University 1 Introduction In this chapter, we examine the economics literature on tacit collusion in oligopoly markets and take steps toward clarifying the relation between tacit collusion in the economics and legal literature. Economists distinguish between tacit and explicit collusion. Lawyers, using a slightly di¤erent vocabulary, distinguish between tacit coordination, tacit agreement, and explicit collusion. In hopes of facilitating clearer communication between economists and lawyers, in this chapter, we attempt to provide a coherent resolution of the vernaculars used in the economics and legal literature regarding collusion.1 Perhaps the easiest place to begin is to de…ne explicit collusion.
    [Show full text]
  • Mean Field Equilibrium in Dynamic Games with Complementarities
    Mean Field Equilibrium in Dynamic Games with Complementarities Sachin Adlakha Department of Electrical Engineering, Stanford University, Stanford, CA, 94305, [email protected] Ramesh Johari Department of Management Science and Engineering, Stanford University, Stanford, CA, 94305, [email protected] We study a class of stochastic dynamic games that exhibit strategic complementarities between players; formally, in the games we consider, the payoff of a player has increasing differences between her own state and the empirical distribution of the states of other players. Such games can be used to model a diverse set of applications, including network security models, recommender systems, and dynamic search in markets. Stochastic games are generally difficult to analyze, and these difficulties are only exacerbated when the number of players is large (as might be the case in the preceding examples). We consider an approximation methodology called mean field equilibrium to study these games. In such an equilibrium, each player reacts to only the long run average state of other players. We find necessary conditions for the existence of a mean field equilibrium in such games. Furthermore, as a simple consequence of this existence theorem, we obtain several natural monotonicity properties. We show that there exist a “largest” and a “smallest” equilibrium among all those where the equilibrium strategy used by a player is nondecreasing, and we also show that players converge to each of these equilibria via natural myopic learning dynamics; as we argue, these dynamics are more reasonable than the standard best response dynamics. We also provide sensitivity results, where we quantify how the equilibria of such games move in response to changes in parameters of the game (e.g., the introduction of incentives to players).
    [Show full text]
  • Interim Correlated Rationalizability in Infinite Games
    INTERIM CORRELATED RATIONALIZABILITY IN INFINITE GAMES JONATHAN WEINSTEIN AND MUHAMET YILDIZ Abstract. In a Bayesian game, assume that the type space is a complete, separable metric space, the action space is a compact metric space, and the payoff functions are continuous. We show that the iterative and fixed-point definitions of interim correlated rationalizability (ICR) coincide, and ICR is non-empty-valued and upper hemicontinuous. This extends the finite-game results of Dekel, Fudenberg and Morris (2007), who introduced ICR. Our result applies, for instance, to discounted infinite-horizon dynamic games. JEL Numbers: C72, C73. 1. Introduction Interim correlated rationalizability (henceforth ICR) has emerged as the main notion of rationalizability for Bayesian games. Among other reasons, it has the following two desirable properties: Firstly, it is upper hemicontinuous in types, i.e., one cannot obtain a substantially new ICR solution by perturbing a type. Secondly, two distinct definitions of ICR coincide: The fixed-point definition states that ICR is the weakest solution concept with a specific best-response property, and this is the definition that gives ICR its epistemological meaning, as a characterization of actions that are consistent with common knowledge of rationality. Under an alternate definition, ICR is computed by iteratively eliminating the actions that are never a best response (type by type), and this iterative definition is often more amenable for analysis. The above properties were originally proven for games with finite action spaces and finite sets of payoff parameters (by Dekel, Fudenberg, and Morris (2006, 2007), who introduced ICR). However, in many important games these sets are quite large.
    [Show full text]
  • A Constructive Study of Stochastic Games with Strategic
    A Constructive Study of Markov Equilibria in Stochastic Games with Strategic Complementarities∗ Lukasz Balbusy Kevin Reffettz Lukasz Wo´znyx December 2011 Abstract We study a class of discounted infinite horizon stochastic games with strategic complementarities. We first characterize the set of all Markovian equilibrium values by developing a new Abreu, Pearce, and Stacchetti(1990) type procedure (monotone method in function spaces under set inclusion orders). Secondly, using monotone operators on the space of values and strategies (under pointwise orders), we prove exis- tence of a Stationary Markov Nash equilibrium via constructive meth- ods. In addition, we provide monotone comparative statics results for ordered perturbations of the space of stochastic games. Under slightly stronger assumptions, we prove the stationary Markov Nash equilib- rium values form a complete lattice, with least and greatest equilibrium value functions being the uniform limit of successive approximations from pointwise lower and upper bounds. We finally discuss the rela- tionship between both monotone methods presented in a paper. 1 Introduction and related literature Since the class of discounted infinite horizon stochastic games was introduced by Shapley(1953), and subsequently extended to more general n-player set- tings (e.g., Fink(1964)), the question of existence and characterization of (stationary) Markov Nash equilibrium (henceforth, (S)MNE) has been the object of extensive study in game theory.1 Further, and perhaps more cen- ∗We thank Rabah Amir, Andy Atkeson, Eric Maskin, Andrzej Nowak, Frank Page, Adrian Peralta-Alva, Ed Prescott, Manuel Santos and Jan Werner as well as participants of 10th Society for the Advancement in Economic Theory Conference in Singapore 2010 and 2011 NSF/NBER/CEME conference in Mathematical Economics and General Equilibrium Theory in Iowa, for helpful discussions during the writing of this paper.
    [Show full text]
  • Understanding Perpetual R&D Races
    Centre for Decision Research and Experimental Economics Discussion Paper Series ISSN 1749-3293 CeDEx Discussion Paper No. 2008–04 Understanding Perpetual R&D Races Yves Breitmoser, Jonathan H.W. Tan and Daniel John Zizzo March 2008 The Centre for Decision Research and Experimental Economics was founded in 2000, and is based in the School of Economics at the University of Nottingham. The focus for the Centre is research into individual and strategic decision-making using a combination of theoretical and experimental methods. On the theory side, members of the Centre investigate individual choice under uncertainty, cooperative and non-cooperative game theory, as well as theories of psychology, bounded rationality and evolutionary game theory. Members of the Centre have applied experimental methods in the fields of Public Economics, Individual Choice under Risk and Uncertainty, Strategic Interaction, and the performance of auctions, markets and other economic institutions. Much of the Centre's research involves collaborative projects with researchers from other departments in the UK and overseas. Please visit http://www.nottingham.ac.uk/economics/cedex/ for more information about the Centre or contact Karina Whitehead Centre for Decision Research and Experimental Economics School of Economics University of Nottingham University Park Nottingham NG7 2RD Tel: +44 (0) 115 95 15620 Fax: +44 (0) 115 95 14159 [email protected] The full list of CeDEx Discussion Papers is available at http://www.nottingham.ac.uk/economics/cedex/papers/index.html Understanding Perpetual R&D Races Yves Breitmoser Institute of Microeconomics European University Viadrina Frankfurt-Oder 15230, Germany [email protected] Jonathan H.W.
    [Show full text]
  • Rationalizability
    Rationalizability G5212: Game Theory Mark Dean Spring 2017 Rationalizability Rationalizability So far I have cheated you (a bit) in my description of dominance I motivated this section by describing rationality as A player has some belief over the actions of others Plays a strategy which is a best response to that belief But then I started talking about players never playing a strategy which is strictly dominated Are these the same thing? i.e. are the following sets equivalent? The set of strategies that are strictly dominated The set of strategies that cannot be rationalized as a best response? Rationalizability Never-Best Response Lp R1 p Player 1’spayoff from T,M,B T 2, 0 1, 1 UT = 2p (1 p) = 3p 1 M 0, 10 0, 0 !!! UM = 0 B 1, 6 2, 0 UB = p + 2(1 p) = 2 3p Rationalizability Never-Best Response UM (p) < max UT (p) ,UB (p) for any p [0, 1], i.e., M is never a best responsef to any beliefg about2 his opponent’s play. Rationalizability Never-Best Response Definition A strategy si Si is a best response against a belief 2 i (S i) if ui (si, i) ui (si0 , i) for any si0 Si. 2 ≥ 2 Note (1) belief i could be correlated: (S i) = j=i (Sj); (2) u (s , ) = u (s , s ) (s ) . 6 6 i i i s i S i i i i i i 2 Q Definition P A strategy si Si is a never-best response if it is not a best 2 response against any belief i (S i) .
    [Show full text]
  • Equilibrium Existence and Approximation of Regular Discontinuous Games∗
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Research Papers in Economics Equilibrium Existence and Approximation of Regular Discontinuous Games∗ forthcoming, Economic Theory Luciano I. de Castroy First version: May 2009 This version: August 2010 Abstract Many conditions have been introduced to ensure equilibrium existence in games with discontinuous payoff functions. This paper introduces a new condition, called regularity, that is simple and easy to verify. Regularity requires that if there is a sequence of strategies converging to s∗ such that the players’ payoffs along the sequence converge to the best-reply payoffs at s∗, then s∗ is an equilibrium. We show that regularity is implied both by Reny’s better-reply security and Simon and Zame’s endogenous sharing rule approach. This allows us to explore a link between these two distinct meth- ods. Although regularity implies that the limits of -equilibria are equilibria, it is in general too weak for implying equilibrium existence. However, we are able to identify extra conditions that, together with regularity, are suffi- cient for equilibrium existence. In particular, we show how regularity allows the technique of approximating games both by payoff functions and space of strategies. Keywords: Discontinuous games; weak payoff security; better-reply security; regularity; regular games; epsilon-equilibria; approximating se- quence; approximating games. JEL classification numbers: C72; C73. ∗I am grateful to Guilherme Carmona and Philip Reny for their helpful comments. yDepartment of Managerial Economics and Decisions Sciences, Kellogg School of Manage- ment, Northwestern University, Evanston, IL 60201, USA. E-mail: [email protected] 1 1 Introduction Many classical problems in economics are modeled as games with a continuum of actions, but discontinuous payoffs.
    [Show full text]