<<

2.8 II.2.8 by Akira Ishii and Yoshinao Katsumata

Introduction

Phencyclidine ( PCP) (> Fig. 8.1), a synthetic , had been fi rst applied as an anaesthetic to animals and then to humans for a short period. PCP is known by street names of “angel dust” and “crystal”. Illicit use of PCP fi rst appeared during mid-1960s along the West Coast, and then peaked in the United States in 1979; illicit PCP use declined by 1992. However, daily use of PCP has remained stable among young school seniors over the past decade; PCP is thus being an important of abuse [1–3]. It is being regulated as a subclass compound of and (DEA Class II). PCP in both antemortem and postmortem specimens is being analyzed by immunoassays [4–9], GC [10–13], GC/MS [14–18], GC/MS/MS [19, 20], HPLC [21] and CE [22]. In this chapter, a detailed procedure for simple GC/MS analysis of PCP in and urine is pre- sented.

⊡ Figure 8.1

Structures of PCP and pethidine (IS).

Reagents and their preparation i. Reagents PCP hydrochloride and pethidine (meperidine) hydrochloride (internal standard, IS) can be purchased from Sigma (St. Louis, MO, USA) with suitable legal documentation. Bond Elut Glass columns are obtained from Varian (Harbor City, CA, USA). Other chemicals to be used are of analytical grade.

© Springer-Verlag Berlin Heidelberg 2005 242 Phencyclidine

ii. Preparation • PCP and pethidine solutions: the compounds are separately dissolved in appropriate amounts of methanol; a 10–20 µL aliquot is spiked into 1 mL of a whole blood or urine specimen. • 1 M NaHCO3 solution: 8.4 g of NaHCO3 is dissolved in distilled water to prepare 100 mL solution. • /methanol (9:1, v/v): a 100-mL volume of the mixture is prepared.

GC/MS conditions

GC columna: a FactorFour VF-5ms fused-silica capillary column (30 m × 0.25 mm i. d., fi lm thickness 0.25 µm, Varian, Harbor City, CA, USA). GC conditions; instrument: a Varian CP-3800 gas chromatograph with a split-splitless in- jector (Walnut Creek, CA, USA); column (oven) temperature: 100 °C (1 min)→ 20 °C/min→ 300 °C; injection temperature: 250 °C; carrier gas: He; its fl ow rate: 1.0 mL/min; injection: splitless mode for 1 min, followed by the split mode (split ratio: 50). MS conditions; instrument: a Varian Saturn 2000 ion-trap tandem mass spectrometer b connected with the above GC; ionization: positive ion EI; electron energy: 70 eV; emission cur- rent: 10 A; multiplier off set: 230 V; detector voltage: 1.6 kV; scan time: 0.6 s; transfer tempera- ture: 240 °C; manifold temperature: 45 °C; trap temperature: 210 °C.

Procedure [18]

i. To 1 mL of whole blood or urine specimen containing PCP, are added 100 ng of pethidine (IS, methanolic solution) and 8 mL distilled water, followed by mixing well. For a whole blood specimen, it is necessary to confi rm the complete hemolysis. A 1-mL volume of 1 M

NaHCO3 solution is added to the above mixture to bring its pH to about 8. ii. A 10-mL volume of methanol and 10 mL distilled water are passed through a Bond Elut Glass column to activate it. Th is procedure is repeated at least twice. iii. Th e above mixture is loaded onto the column, and the column is washed with 20 mL dis- tilled water. iv. PCP and IS are slowly eluted with 3 mL of chloroform/methanol (9:1) into a glass vial. v. A small amount of upper aqueous layer is carefully removed by aspiration with a Pasteur pipette. Th e organic layer (chloroform) is evaporated to dryness under a stream of nitro- gen. Th e residue is dissolved in 50 µL methanol; a 2-µL aliquot of it is injected into GC/MS being operated in the mass chromatographic mode. vi. Combined ions at m/z 242 plus 200 are analyzed for PCP and those at m/z 246 plus 232 plus 218 are analyzed for IS from 4 to 12 min of retention time. vii. A calibration curve is constructed by adding various concentrations of PCP and 100 ng IS to the vials containing 1 mL of blank whole blood or urine and 8 mL distilled water each, followed by the above procedure. Th e number of diff erent concentrations of PCP should not be smaller than 4. Th e calibration curve is composed of PCP concentration on the horizontal axis and peak area ratio of PCP to IS on the vertical axis. Th e peak ar- ea ratio of a test specimen is applied to the calibration curve to calculate its concentra- tion. Phencyclidine 243

⊡ Table 8.1 EI mass spectra of PCP and pethidine (IS)

Compound m/z (% peak intensitiy) PCP 200 (100) 242 (84) 84 (24) 91 (18) 186 (13) IS 246 (100) 71 (98) 172 (84) 232 (63) 218 (46)

Assessment of the method

> Table 8.1 shows EI mass spectra of PCP and IS. In this method, combined ions at m/z 242 ([M–1]+) plus 200 and those at m/z 246 ([M–1]+) plus 232 plus 218 are used for PCP and IS, respectively. Th e mass chromatograms of PCP and IS are shown > Fig. 8.2. Th e detection limit (S/N = 3) was about 5 ng/mL for PCP. According to NIDA guidelines, the cutoff level of PCP in urine samples is 25 ng/mL. Th e toxic concentrations of PCP in blood were reported to be 7–240 ng/mL; the fatal blood levels were 1–5 µg/mL [23]. Th us, the present meth- od can be suffi ciently applicable for detection and quantitation of toxic levels of PCP in blood. Th e recoveriy of PCP using the Bond Elut Glass column was about 100 % for whole blood [18].

⊡ Figure 8.2

Mass chromatograms for PCP and pethidine (IS) extracted from whole blood. In this system, ions at m/z 200 plus 242 (PCP) and at m/z 246 plus 232 plus 218 (IS) were used at the retention time of 4–12 min. The amounts of PCP and IS spiked into 1 mL blank whole blood were 25 and 100 ng, respectively.

Poisoning case, and toxic and fatal concentrations

A 28-year-old white man [24], who had had a history of drug abuse, exhibited bizarre behav- ior on an airline fl ight; he was transferred to the University of California, San Diego Medical 244 Phencyclidine

Center. At admission, he stared straight ahead, following commands but not responding verbally; the levels of serum creatinin kinase and aspartate aminotransferase were more than 100-times the normal limits. On hospital day 2, he became rigid, diaphoretic and had a temperature reaching 39.2 °C; he was treated for neuroleptic malignant syndrome. On day 4, the serum PCP concentration reached 1,879 ng/mL, the highest level during the course. On day 8, he required intubation due to respiratory failure; his temperature increased to 41.4 °C. On day 11 (13 days aft er ingestion), he was found to pass two plastic bags through his rectum; one bag had been ruptured. He had probably swallowed the two plastic bags contain- ing PCP powder, one of which had been ruptured to cause the PCP poisoning. On hospital day 12, he made a rapid neurologic recovery; he was discharged with clear on day 24. A similar case of protracted coma, caused by an intestinal deposit containing PCP, was also reported; the highest PCP concentration in serum reached 1,690 ng/mL [25]. A fatal PCP poisoning case associated with hypertensive crisis [26], and two sudden death cases during arrest associated with PCP poisoning [27] were reported. Th ree death cases, resulting from the PCP use, were reported in Los Angeles County, 1976; PCP concentrations in blood and the ranged from 2.0 to 19.0 µg/mL and from 1.7 to 32.7 µg/g, respectively [28]. Cravey et al. reported nine PCP-related deaths; the concentrations in blood and the ranged from 0.3 to 12 µg/mL (average: 2.4 µg/mL) and from 0.9 to 80 µg/g (average: 20.1 µg/g), respectively [29].

Notes

a) Any capillary column of 5 % phenylsiloxane/95 % dimethylsiloxane stationary phase can be used, regardless of manufacturers; but GC/MS grade columns are recommendable. b) Any modern type of GC/MS instruments can be used. Th e present instrument can be used as a GC/MS/MS system; the better selectivity can be obtained in the tandem mode.

References

1) Zukin SR, Sloboda Z, Javitt DC (1997) Phencyclidine (PCP) In: Lowinson JH, Ruiz P, Millman RB (eds) : A Comprehensive Textbook, 3rd edn. Williams & Wilkins, Baltimore, pp 238–246 2) Gorelick DA, Balster RL (1996) Phencyclidine (PCP). In: Bloom FE, Kupfer DJ (eds) : The Forth Generation of Progress. Raven Press, New York, pp 1767–1776 3) Schneider S, Kuffer P, Wennig R (1998) Determination of lysergide (LSD) and phencyclidine in biosamples. J Chromatogr B 713:189–200 4) ElSohly MA, Stanford DF (1990) Cutoff of 25 ng/mL for the EMIT d.a.u. phencyclidine assay. J Anal Toxicol 14:192–193 5) Armbruster DA, Krolak JM (1992) Screening for of abuse with Roche ONTRAK assays. J Anal Toxicol 16:172–175 6) Asselin WM, Leslie JM (1992) Modification of EMIT assay reagents for improved sensitivity and cost effective- ness in the analysis of hemolyzed whole blood. J Anal Toxicol 16: 381–388 7) Sneath TC, Jain NC (1992) Evaluation of phencyclidine by EMIT® d.a.u.™ utilizing the ETS® analyzer and a 25-ng/ mL cutoff. J Anal Toxicol 16:107–108 8) Diosi DT, Harvey DC (1993) Analysis of whole blood for drugs of abuse using EMIT d.a.u. reagents and a Mon- arch 1000 chemistry analyzer. J Anal Toxicol 17:133–137 Phencyclidine 245

9) Parsons RG, Kowal R, LeBlond D et al. (1993) Multianalyte assay system developed for drugs of abuse. Clin Chem 39:1899–1903 10) Kandiko CT, Browning S, Cooper T et al. (1990) Detection of low nanogram quantities of phencyclidine extract- ed from human urine preparation of an acetylated column packing material for use in gas chromatography with -phosphorus detection. J Chromatogr 528:208–213 11) Werner M, Hertzman M, Pauley CJ (1986) Gas-liquid chromatography of phencyclidine in serum, with nitrogen- phosphorus detection. Clin Chem 32:1921–1924 12) Ishii A, Seno H, Kumazawa T et al. (1996) Simple and sensitive detection of phencyclidine in body fluids by gas chromatography with surface ionization detection. Int J Legal Med 108:244–247 13) Ishii A, Seno H, Kumazawa T et al. (1996) Simple extraction of phencyclidine from human body fluids by head- space solid-phase microextraction (SPME). Chromatographia 43:331–333 14) Nakahara Y, Takahashi K, Sakamoto T et al. (1997) analysis for drugs of abuse X VII. Simultaneous detection of PCP, PCHP, and PCPdiol in human hair for confirmation of PCP use. J Anal Toxicol 21:356–362 15) ElSohly MA, Little TL Jr, Mitchell JM et al. (1988) GC/MS analysis of phencyclidine acid metabolite in human urine. J Anal Toxicol 12:180–182 16) Slawson MH, Wilkins DG, Foltz RL et al. (1996) Quantitative determination of phencyclidine in pigmented and nonpigmented hair by ion-trap mass spectrometry. J Anal Toxicol 20:350–354 17) Stevenson CC, Cibull DL, Platoff GE et al. (1992) Solid phase extraction of phencyclidine from urine followed by capillary gas chromatography/mass spectrometry. J Anal Toxicol 16:337–339 18) Ishii A, Seno H, Watanabe-Suzuki K et al. (2000) Ultrasensitive determination of phencyclidine in body fluids by surface ionization organic mass spectrometry. Anal Chem 72:404–407 19) Kidwell DA (1993) Analysis of phencyclidine and in human hair by tandem mass spectrometry. J Forensic Sci 38:272–284 20) Moore CM, Lewis DE, Leikin JB (1996) The determination of phencyclidine in meconium using ion trap mass spectrometry. J Forensic Sci 41:1057–1059 21) Cook CE, Brine DR, Jeffcoat AR et al. (1982) Phencyclidine disposition after intravenous and oral doses. Clin Pharmacol Ther 31:625–634 22) Chen F-TA, Evangelista RA (1994) Feasibility studies for simulatneous immunochemical multianalyte drug as- say by capillary electrophoresis with laser-induced fluorescence. Clin Chem 40:1819–1822 23) Schulz M, Schmoldt A (2003) Therapeutic and toxic blood concentrations of more than 800 drugs and other xenobiotics. Pharmazie 58:447–474 24) Jackson JE (1989) Phencyclidine pharmacokinetics after a massive overdose. Ann Intern Med 111:613–615 25) Young JD, Crapo LM (1992) Protracted phencyclidine coma from an intestinal deposit. Arch Intern Med 152:859–860 26) Eastman JW, Cohen SN (1975) Hypertensive crisis and death associated with phencyclidine poisoning. JAMA 231:1270–1271 27) Pestaner JP, Southall PE (2003) Sudden death during arrest and phencyclidine intoxication. Am J Forensic Med Pathol 24:119–122 28) Noguchi TT, Nakamura GR (1978) Phencyclidine-related deaths in Los Angeles County, 1976. J Forensic Sci 23:503–507 29) Cravey RH, Reed D, Ragle JL (1979) Phencyclidine-related deaths: a report of nine fatal cases. J Anal Toxicol 3:199–201