Detection of the Dipicolinic Acid Biomarker in Bacillus Spores Using Curie-Point Pyrolysis Mass Spectrometry and Fourier Transform Infrared Spectroscopy
Anal. Chem. 2000, 72, 119-127 Detection of the Dipicolinic Acid Biomarker in Bacillus Spores Using Curie-Point Pyrolysis Mass Spectrometry and Fourier Transform Infrared Spectroscopy Royston Goodacre,*,² Beverley Shann,² Richard J. Gilbert,² EÄ adaoin M. Timmins,² Aoife C. McGovern,² Bjùrn K. Alsberg,²,³ Douglas B. Kell,² and Niall A. Logan§ Institute of Biological Sciences, University of Wales, Aberystwyth, Ceredigion, SY23 3DD, Wales, U.K., Department of Computer Sciences, University of Wales, Aberystwyth, Ceredigion, SY23 3DB, Wales, U.K., and School of Biological and Biomedical Sciences, Glasgow Caledonian University, Cowcaddens Road, Glasgow, G4 0BA, Scotland, U.K. Thirty-six strains of aerobic endospore-forming bacteria biochemical changes in the developing spore. It becomes encased confirmed by polyphasic taxonomic methods to belong to in two novel layers, a peptidoglycan layer (the spore cortex) and Bacillus amyloliquefaciens, Bacillus cereus, Bacillus a number of layers of spore coats that contain proteins unique to licheniformis, Bacillus megaterium, Bacillus subtilis spores.1 The spore also accumulates a substantial deposit (5- (including Bacillus niger and Bacillus globigii), Bacil- 14% of dry weight) of pyridine-2,6-dicarboxylic acid (dipicolinic lus sphaericus, and Brevi laterosporus were grown acid; DPA), which is unique to spores, as well as a large amount axenically on nutrient agar, and vegetative and sporulated of divalent cations.2 biomasses were analyzed by Curie-point pyrolysis mass Members of the genus Bacillus are
[Show full text]