Gauge Dependence of the Gauge Boson Projector

Total Page:16

File Type:pdf, Size:1020Kb

Gauge Dependence of the Gauge Boson Projector Tutorial Gauge Dependence of the Gauge Boson Projector Priidik Gallagher, Stefan Groote * and Maria Naeem Institute of Physics, University of Tartu, W. Oswaldi 1, 50411 Tartu, Estonia; [email protected] (P.G.); [email protected] (M.N.) * Correspondence: [email protected] Received: 5 June 2020; Accepted: 24 July 2020; Published: 28 July 2020 Abstract: The propagator of a gauge boson, like the massless photon or the massive vector bosons W± and Z of the electroweak theory, can be derived in two different ways, namely via Green’s functions (semi-classical approach) or via the vacuum expectation value of the time-ordered product of the field operators (field theoretical approach). Comparing the semi-classical with the field theoretical approach, the central tensorial object can be defined as the gauge boson projector, directly related to the completeness relation for the complete set of polarisation four-vectors. In this paper we explain the relation for this projector to different cases of the Rx gauge and explain why the unitary gauge is the default gauge for massive gauge bosons. Keywords: massive gauge fields; Green’s functions; unitary gauge; completeness relations 1. Introduction As it is familiar for the scalar and Dirac propagators, the propagator of the vector boson V between two space-time locations x and y can be considered as a two-point correlator, that is, as the vacuum expectation value of the time ordered product of the vector potential at these two locations, mn m n DV (x − y) = h0jT fV (x)V (y)gj0i. (1) However, in order to get to the momentum space representation of this propagator, one needs to use the completeness relation for the polarisation four-vectors. This is not an easy task, as this completeness relation is not given uniquely for a complete set of four polarisation states. As it is well known, a massless vector boson like the photon has two polarisation states. For a massive vector boson (W± or Z), in addition there is a longitudinal polarisation state. However, the addition of a time-like polarisation state is not unique and depends on the gauge we use, as we will show in this paper. In order to get to this point, we construct the propagator of the vector boson in a semi-classical way as Green’s function obeying the canonical equation of motion, derived as Euler–Lagrange equation from the Lagrange density containing a gauge fixing term, 1 m n n m 1 2 m 1 m 2 L = − ¶mVn(¶ V − ¶ V ) + mVVmV − (¶mV ) , (2) 2 2 2xV a result which will be derived in Section5. xV is the gauge parameter in general Rx gauge. The solution of the Euler–Lagrange equation leads to a propagator 4 mn −ik(x−y) m n mn Z d k −iP (k)e mn k k D (x − y) = , P (k) := hmn − (1 − x ) , (3) V ( )4 2 2 V V 2 2 2p k − mV + ie k − xV mV mn mn with a definite second rank tensor structure PV which we call the gauge boson projector. (h ) = diag(1; −1, −1, −1) is the Minkowski metric. Particles 2020, 3, 543–561; doi:10.3390/particles3030037 www.mdpi.com/journal/particles Particles 2020, 3 544 The paper is organised as follows. In Section2 we introduce the gauge boson projector. As a naive extension of the completeness relation for the polarisation vectors fails, we offer a pragmatic solution which will be explained in the following. In Section3 we start with the Lagrange density of the photon and explain why the solution of the corresponding Euler–Lagrange equation needs a gauge fixing term. For a general Rx gauge we solve the equation for the Green’s function. A recourse to historical approaches is needed to understand the occurence of primary and secondary constraints. In Section4 the quantisation of the photon field is continued in a covariant manner. In Section5 we explain the appearance of a mass term via the Higgs mechanism and the restriction of the gauge degrees of freedom in this case, leading to the unitary gauge as the default setting for massive vector bosons. In Section6 we explain and give an example for the gauge independence of physical processes. Our conclusions and outlook are found in Section7. For the basics we refer to References [1–5]. 2. The Gauge Boson Projector mn The gauge boson projector as central tensorial object PV (k) in Equation (3) takes the simplest mn mn form PV (k) = h for the Feynman gauge (xV = 1). For Landau gauge xV = 0 one obtains a mn mn m n 2 purely transverse projector PV (k) = h − k k /k , and for the unitary gauge xV ! ¥ one has mn mn m n 2 2 2 PV (k) = h − k k /mV which is transverse only on the mass shell k = mV. But why do we talk about a projector at all? A comparison with the construction of the fermion propagator can help to explain the conceptual approach employed in this paper. 2.1. Construction of the Fermion Propagator As for the gauge boson propagator, there are in principle two ways to construct the fermion propagator. As a Green’s function the fermion propagator has to solve the equation m (4) (ig ¶m − m)S(x − y) = id (x − y), (4) m equivalent to the Dirac equation (ig ¶m − m)y(x) = 0 as the corresponding Euler–Lagrange equation. m In momentum space this equation reads (p/ − m)S˜(p) = i (with p/:= g pm) which can be solved by S˜(p) = i/(p/ − m). Note that the inverse of the matrix (p/ − m) is well defined, since (p/ − m)(p/ + m) = p2 − m2. Back to configuration space one has Z d4 p ie−ip(x−y) S(x − y) = (p/ + m), (5) (2p)4 p2 − m2 + ie where we have added an infinite imaginary shift +ie to obtain a Feynman propagator. On the other hand, the fermion propagator is defined again as two-point correlator, that is, as the vacuum expectation value of the time-ordered product of the spinor and the adjoint spinor, Particles 2020, 3 545 Sab(x − y) = h0jT fya(x)y¯b(y)gj0i 2 Z 3 d p 1 h −ip(x−y) ip(x−y)i = ui(~p )u¯i(~p )e + vi(~p )v¯i(~p )e ∑ ( )3 (~ ) ab i=1 2p 2E p Z 3 d p 1 h m −ip(x−y) m ip(x−y)i = (g pm + m)e + (g pm − m)e (2p)3 2E(~p ) ab Z 3 m d p 1 h −ip(x−y) ip(x−y)i = (ig ¶m + m) e − e ab (2p)3 2E(~p ) Z 3 Z 0 −ip(x−y) m d p dp −e = (ig ¶m + m) ab (2p)3 2pi p2 − m2 + ie Z 4 −ip(x−y) m d p ie = (ig ¶m + m) ab (2p)4 p2 − m2 + ie Z d4 p ie−ip(x−y) = (p/ + m) , (6) (2p)4 ab p2 − m2 + ie where we have started with the field operators 2 Z d3 p 1 y(x) = b (~p )u (~p )e−ipx + b˜†(~p )v (~p )eipx (7) ∑ ( )3 p i i i i i=1 2p 2E(~p ) and y¯(x) = y†(x)g0 with the only non-vanishing antimutators † 0 3 (3) 0 ˜ ˜† 0 3 (3) 0 fbi(~p ), bj (~p )g = (2p) dijd (~p − ~p ), fbi(~p ), bj (~p )g = (2p) dijd (~p − ~p ), (8) where we have used the completeness relations 2 2 m m ∑ ui(~p )u¯i(~p ) = g pm + m, ∑ vi(~p )v¯i(~p ) = g pm − m, (9) i=1 i=1 and, finally, where we have used Cauchy’s theorem to write the integral in a compact four-dimensional form. The result is quite obviously the same as the one obtained via the Green’s function. Still, one might become aware of the central link, given by the completeness relations. A similar construction should work also for the gauge boson propagator. 2.2. Construction of the Gauge Boson Propagator As for the quantisation of the fermion field operator we summed over the spin polarisation states i = 1, 2 (corresponding to up and down spin), it is natural to assume that for quantisation of the gauge boson field operator we have to sum over the polarisations l. Still, the (silent) assumption that the summation runs over all possible (four) polarisation states will have to be looked over again, as it will turn out. Up to that point, we use the summation sign indexed by l without specifying the set of polarisations it runs over. Therefore, starting with Z d3k 1 h i Vm(x) = #m(~k, l)a(~k, l)e−ikx + #m∗(~k, l)a†(~k, l)eikx , (10) ∑ (2p)3 q l 2w(~k ) Particles 2020, 3 546 ~ † ~ 0 0 3 (3) ~ ~ 0 2 ~ ~ 2 2 with [a(k, l), a (k , l )] = (2p) dll0 d (k − k ) and w (k ) = k + mV, the calculation of the two-point correlator leads to mn m n DV (x − y) = h0jT fV (x)V (y)gj0i Z d3k 1 h i = #m(~k, l)#n∗(~k, l)e−ik(x−y) − #n(~k, l)#m∗(~k, l)eik(x−y) . (11) ∑ ( )3 ~ l 2p 2w(k ) However, what kind of completeness relation we can use in this case? We know that there are at least two physical polarisation directions which are orthogonal to each other and at the same time orthogonal to the wave vector~k, ~ ~ ~ ~ 0 k ·~#(k, l) = 0, ~#(k, l) ·~#(k, l ) = dll0 (12) (l, l0 = 1, 2).
Recommended publications
  • Higgs Bosons and Supersymmetry
    Higgs bosons and Supersymmetry 1. The Higgs mechanism in the Standard Model | The story so far | The SM Higgs boson at the LHC | Problems with the SM Higgs boson 2. Supersymmetry | Surpassing Poincar´e | Supersymmetry motivations | The MSSM 3. Conclusions & Summary D.J. Miller, Edinburgh, July 2, 2004 page 1 of 25 1. Electroweak Symmetry Breaking in the Standard Model 1. Electroweak Symmetry Breaking in the Standard Model Observation: Weak nuclear force mediated by W and Z bosons • M = 80:423 0:039GeV M = 91:1876 0:0021GeV W Z W couples only to left{handed fermions • Fermions have non-zero masses • Theory: We would like to describe electroweak physics by an SU(2) U(1) gauge theory. L ⊗ Y Left{handed fermions are SU(2) doublets Chiral theory ) right{handed fermions are SU(2) singlets f There are two problems with this, both concerning mass: gauge symmetry massless gauge bosons • SU(2) forbids m)( ¯ + ¯ ) terms massless fermions • L L R R L ) D.J. Miller, Edinburgh, July 2, 2004 page 2 of 25 1. Electroweak Symmetry Breaking in the Standard Model Higgs Mechanism Introduce new SU(2) doublet scalar field (φ) with potential V (φ) = λ φ 4 µ2 φ 2 j j − j j Minimum of the potential is not at zero 1 0 µ2 φ = with v = h i p2 v r λ Electroweak symmetry is broken Interactions with scalar field provide: Gauge boson masses • 1 1 2 2 MW = gv MZ = g + g0 v 2 2q Fermion masses • Y ¯ φ m = Y v=p2 f R L −! f f 4 degrees of freedom., 3 become longitudinal components of W and Z, one left over the Higgs boson D.J.
    [Show full text]
  • Theoretical and Experimental Aspects of the Higgs Mechanism in the Standard Model and Beyond Alessandra Edda Baas University of Massachusetts Amherst
    University of Massachusetts Amherst ScholarWorks@UMass Amherst Masters Theses 1911 - February 2014 2010 Theoretical and Experimental Aspects of the Higgs Mechanism in the Standard Model and Beyond Alessandra Edda Baas University of Massachusetts Amherst Follow this and additional works at: https://scholarworks.umass.edu/theses Part of the Physics Commons Baas, Alessandra Edda, "Theoretical and Experimental Aspects of the Higgs Mechanism in the Standard Model and Beyond" (2010). Masters Theses 1911 - February 2014. 503. Retrieved from https://scholarworks.umass.edu/theses/503 This thesis is brought to you for free and open access by ScholarWorks@UMass Amherst. It has been accepted for inclusion in Masters Theses 1911 - February 2014 by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact [email protected]. THEORETICAL AND EXPERIMENTAL ASPECTS OF THE HIGGS MECHANISM IN THE STANDARD MODEL AND BEYOND A Thesis Presented by ALESSANDRA EDDA BAAS Submitted to the Graduate School of the University of Massachusetts Amherst in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE September 2010 Department of Physics © Copyright by Alessandra Edda Baas 2010 All Rights Reserved THEORETICAL AND EXPERIMENTAL ASPECTS OF THE HIGGS MECHANISM IN THE STANDARD MODEL AND BEYOND A Thesis Presented by ALESSANDRA EDDA BAAS Approved as to style and content by: Eugene Golowich, Chair Benjamin Brau, Member Donald Candela, Department Chair Department of Physics To my loving parents. ACKNOWLEDGMENTS Writing a Thesis is never possible without the help of many people. The greatest gratitude goes to my supervisor, Prof. Eugene Golowich who gave my the opportunity of working with him this year.
    [Show full text]
  • Triple Vector Boson Production at the LHC
    Triple Vector Boson Production at the LHC Dan Green Fermilab - CMS Dept. ([email protected]) Introduction The measurement of the interaction among vector bosons is crucial to understanding electroweak symmetry breaking. Indeed, data from LEP-II have already determined triple vector boson couplings and a first measurement of quartic couplings has been made [1]. It is important to explore what additional information can be supplied by future LHC experiments. One technique is to use “tag” jets to identify vector boson fusion processes leading to two vector bosons and two tag jets in the final state. [2] However, the necessity of two quarks simultaneously radiating a W boson means that the cross section is rather small. Another approach is to study the production of three vector bosons in the final state which are produced by the Drell- Yan mechanism. There is a clear tradeoff, in that valence-valence processes are not allowed, which limits the mass range which can be explored using this mechanism, although the cross sections are substantially larger than those for vector boson fusion. Triple Vector Boson Production A Z boson decaying into lepton pairs is required in the final state in order to allow for easy triggering at the LHC and to insure a clean sample of Z plus four jets. Possible final states are ZWW, ZWZ and ZZZ. Assuming that the second and third bosons are reconstructed from their decay into quark pairs, the W and Z will not be easily resolved given the achievable dijet mass resolution. Therefore, the final states of interest contain a Z which decays into leptons and four jets arising for the quark decays of the other two vector bosons.
    [Show full text]
  • 3. Models of EWSB
    The Higgs Boson and Electroweak Symmetry Breaking 3. Models of EWSB M. E. Peskin Chiemsee School September 2014 In this last lecture, I will take up a different topic in the physics of the Higgs field. In the first lecture, I emphasized that most of the parameters of the Standard Model are associated with the couplings of the Higgs field. These parameters determine the Higgs potential, the spectrum of quark and lepton masses, and the structure of flavor and CP violation in the weak interactions. These parameters are not computable within the SM. They are inputs. If we want to compute these parameters, we need to build a deeper and more predictive theory. In particular, a basic question about the SM is: Why is the SU(2)xU(1) gauge symmetry spontaneously broken ? The SM cannot answer this question. I will discuss: In what kind of models can we answer this question ? For orientation, I will present the explanation for spontaneous symmetry breaking in the SM. We have a single Higgs doublet field ' . It has some potential V ( ' ) . The potential is unknown, except that it is invariant under SU(2)xU(1). However, if the theory is renormalizable, the potential must be of the form V (')=µ2 ' 2 + λ ' 4 | | | | Now everything depends on the sign of µ 2 . If µ2 > 0 the minimum of the potential is at ' =0 and there is no symmetry breaking. If µ 2 < 0 , the potential has the form: and there is a minimum away from 0. That’s it. Don’t ask any more questions.
    [Show full text]
  • Vector Boson Scattering Processes: Status and Prospects
    Vector Boson Scattering Processes: Status and Prospects Diogo Buarque Franzosi (ed.)g,d, Michele Gallinaro (ed.)h, Richard Ruiz (ed.)i, Thea K. Aarrestadc, Mauro Chiesao, Antonio Costantinik, Ansgar Dennert, Stefan Dittmaierf, Flavia Cetorellil, Robert Frankent, Pietro Govonil, Tao Hanp, Ashutosh V. Kotwala, Jinmian Lir, Kristin Lohwasserq, Kenneth Longc, Yang Map, Luca Mantanik, Matteo Marchegianie, Mathieu Pellenf, Giovanni Pellicciolit, Karolos Potamianosn,Jurgen¨ Reuterb, Timo Schmidtt, Christopher Schwanm, Michał Szlepers, Rob Verheyenj, Keping Xiep, Rao Zhangr aDepartment of Physics, Duke University, Durham, NC 27708, USA bDeutsches Elektronen-Synchrotron (DESY) Theory Group, Notkestr. 85, D-22607 Hamburg, Germany cEuropean Organization for Nuclear Research (CERN) CH-1211 Geneva 23, Switzerland dDepartment of Physics, Chalmers University of Technology, Fysikgården 1, 41296 G¨oteborg, Sweden eSwiss Federal Institute of Technology (ETH) Z¨urich, Otto-Stern-Weg 5, 8093 Z¨urich, Switzerland fUniversit¨atFreiburg, Physikalisches Institut, Hermann-Herder-Straße 3, 79104 Freiburg, Germany gPhysics Department, University of Gothenburg, 41296 G¨oteborg, Sweden hLaborat´oriode Instrumenta¸c˜aoe F´ısicaExperimental de Part´ıculas(LIP), Lisbon, Av. Prof. Gama Pinto, 2 - 1649-003, Lisboa, Portugal iInstitute of Nuclear Physics, Polish Academy of Sciences, ul. Radzikowskiego, Cracow 31-342, Poland jUniversity College London, Gower St, Bloomsbury, London WC1E 6BT, United Kingdom kCentre for Cosmology, Particle Physics and Phenomenology (CP3), Universit´eCatholique de Louvain, Chemin du Cyclotron, B-1348 Louvain la Neuve, Belgium lMilano - Bicocca University and INFN, Piazza della Scienza 3, Milano, Italy mTif Lab, Dipartimento di Fisica, Universit`adi Milano and INFN, Sezione di Milano, Via Celoria 16, 20133 Milano, Italy nDepartment of Physics, University of Oxford, Clarendon Laboratory, Parks Road, Oxford OX1 3PU, UK oDipartimento di Fisica, Universit`adi Pavia, Via A.
    [Show full text]
  • Goldstone Theorem, Higgs Mechanism
    Introduction to the Standard Model Lecture 12 Classical Goldstone Theorem and Higgs Mechanism The Classical Goldstone Theorem: To each broken generator corresponds a massless field (Goldstone boson). Proof: 2 ∂ V Mij = ∂φi∂φj φ~= φ~ h i V (φ~)=V (φ~ + iεaT aφ~) ∂V =V (φ~)+ iεaT aφ~ + ( ε 2) ∂φj O | | ∂ ∂V a Tjlφl =0 ⇒∂φk ∂φj 2 ∂ ∂V a ∂ V a ∂V a Til φl = Tjlφl + Tik ∂φk ∂φi ∂φi∂φj ∂φi φ~= φ~ h i 0= M T a φ +0 ki il h li =~0i | 6 {z } If T a is a broken generator one has T a φ~ = ~0 h i 6 ⇒ Mik has a null eigenvector null eigenvalues massless particle since the eigenvalues of the mass matrix are the particle⇒ masses. ⇒ We now combine the concept of a spontaneously broken symmetry to a gauge theory. The Higgs Mechanism for U(1) gauge theory Consider µ 2 2 1 µν = D φ∗ D φ µ φ∗φ λ φ∗φ F F L µ − − − 4 µν µν µ ν ν µ with Dµ = ∂µ + iQAµ and F = ∂ A ∂ A . Gauge symmetry here means invariance under Aµ Aµ ∂µΛ. − → − 2 2 2 case a) unbroken case, µ > 0 : V (φ)= µ φ∗φ + λ φ∗φ with a minimum at φ = 0. The ground state or vaccuum is U(1) symmetric. The corresponding theory is known as Scalar Electrodynamics of a massive spin-0 boson with mass µ and charge Q. 1 case b) nontrivial vaccuum case 2 µ 2 v iα V (φ) has a minimum for 2 φ∗φ = − = v which gives φ = e .
    [Show full text]
  • Basic Ideas of the Standard Model
    BASIC IDEAS OF THE STANDARD MODEL V.I. ZAKHAROV Randall Laboratory of Physics University of Michigan, Ann Arbor, Michigan 48109, USA Abstract This is a series of four lectures on the Standard Model. The role of conserved currents is emphasized. Both degeneracy of states and the Goldstone mode are discussed as realization of current conservation. Remarks on strongly interact- ing Higgs fields are included. No originality is intended and no references are given for this reason. These lectures can serve only as a material supplemental to standard textbooks. PRELIMINARIES Standard Model (SM) of electroweak interactions describes, as is well known, a huge amount of exper- imental data. Comparison with experiment is not, however, the aspect of the SM which is emphasized in present lectures. Rather we treat SM as a field theory and concentrate on basic ideas underlying this field theory. Th Standard Model describes interactions of fields of various spins and includes spin-1, spin-1/2 and spin-0 particles. Spin-1 particles are observed as gauge bosons of electroweak interactions. Spin- 1/2 particles are represented by quarks and leptons. And spin-0, or Higgs particles have not yet been observed although, as we shall discuss later, we can say that scalar particles are in fact longitudinal components of the vector bosons. Interaction of the vector bosons can be consistently described only if it is highly symmetrical, or universal. Moreover, from experiment we know that the corresponding couplings are weak and can be treated perturbatively. Interaction of spin-1/2 and spin-0 particles are fixed by theory to a much lesser degree and bring in many parameters of the SM.
    [Show full text]
  • Three Lectures on Meson Mixing and CKM Phenomenology
    Three Lectures on Meson Mixing and CKM phenomenology Ulrich Nierste Institut f¨ur Theoretische Teilchenphysik Universit¨at Karlsruhe Karlsruhe Institute of Technology, D-76128 Karlsruhe, Germany I give an introduction to the theory of meson-antimeson mixing, aiming at students who plan to work at a flavour physics experiment or intend to do associated theoretical studies. I derive the formulae for the time evolution of a neutral meson system and show how the mass and width differences among the neutral meson eigenstates and the CP phase in mixing are calculated in the Standard Model. Special emphasis is laid on CP violation, which is covered in detail for K−K mixing, Bd−Bd mixing and Bs−Bs mixing. I explain the constraints on the apex (ρ, η) of the unitarity triangle implied by ǫK ,∆MBd ,∆MBd /∆MBs and various mixing-induced CP asymmetries such as aCP(Bd → J/ψKshort)(t). The impact of a future measurement of CP violation in flavour-specific Bd decays is also shown. 1 First lecture: A big-brush picture 1.1 Mesons, quarks and box diagrams The neutral K, D, Bd and Bs mesons are the only hadrons which mix with their antiparticles. These meson states are flavour eigenstates and the corresponding antimesons K, D, Bd and Bs have opposite flavour quantum numbers: K sd, D cu, B bd, B bs, ∼ ∼ d ∼ s ∼ K sd, D cu, B bd, B bs, (1) ∼ ∼ d ∼ s ∼ Here for example “Bs bs” means that the Bs meson has the same flavour quantum numbers as the quark pair (b,s), i.e.∼ the beauty and strangeness quantum numbers are B = 1 and S = 1, respectively.
    [Show full text]
  • Doi:10.5281/Zenodo.2566644
    Higgs, dark sector and the vacuum: From Nambu-Goldstone bosons to massive particles via the hydrodynamics of a doped vacuum. Marco Fedi * v2, February 16, 2019 Abstract is the energy density of the vacuum, whose units corre- spond to pressure (J=m3 = Pa), hence justifying the re- Here the physical vacuum is treated as a superfluid, fun- pulsive action of dark energy. One can describe the damental quantum scalar field, coinciding with dark en- virtual pairs forming and annihilating in quantum vac- ergy and doped with particle dark matter, able to pro- uum – considered as a fundamental, scalar, quantum duce massive particles and interactions via a hydrody- field – as vortex-antivortex pairs of vacuum’s quanta, namic reinterpretation of the Higgs mechanism. Here via a mechanism analogous to the Higgs mechanism, the Nambu-Goldstone bosons are circularly polarized where phonons in the superfluid vacuum are the Nambu- phonons around the edge of the Brillouin zone of vac- Goldstone bosons, which here trigger quantized vortices uum’s quasi-lattice and they give mass to particles by trig- and the mass-acquisition process, due to the interaction gering quantized vortices, whose dynamics reproduces with diffused particle dark matter [2], which acts as a any possible spin. Doped vortices also exert hydrody- dopant of the superfluid vacuum and that could be the rea- namic forces which may correspond to fundamental in- son for vacuum dilatancy, described and proven in [22]. teractions. Hence, is the Higgs field really something different or along with the dark sector and quantum vacuum we are Keywords— quantum vacuum; dilatant vacuum; dark en- using different names to refer to the same thing? Dilatant ergy; dark matter; Higgs mechanism; spin; fundamental vacuum [22] could refer to the possible apparent viscosity interactions.
    [Show full text]
  • Exotic Goldstone Particles: Pseudo-Goldstone Boson and Goldstone Fermion
    Exotic Goldstone Particles: Pseudo-Goldstone Boson and Goldstone Fermion Guang Bian December 11, 2007 Abstract This essay describes two exotic Goldstone particles. One is the pseudo- Goldstone boson which is related to spontaneous breaking of an approximate symmetry. The other is the Goldstone fermion which is a natural result of spontaneously broken global supersymmetry. Their realization and implication in high energy physics are examined. 1 1 Introduction In modern physics, the idea of spontaneous symmetry breaking plays a crucial role in understanding various phenomena such as ferromagnetism, superconductivity, low- energy interactions of pions, and electroweak unification of the Standard Model. Nowadays, broken symmetry and order parameters emerged as unifying theoretical concepts are so universal that they have become the framework for constructing new theoretical models in nearly all branches of physics. For example, in particle physics there exist a number of new physics models based on supersymmetry. In order to explain the absence of superparticle in current high energy physics experiment, most of these models assume the supersymmetry is broken spontaneously by some underlying subtle mechanism. Application of spontaneous broken symmetry is also a common case in condensed matter physics [1]. Some recent research on high Tc superconductor [2] proposed an approximate SO(5) symmetry at least over part of the theory’s parameter space and the detection of goldstone bosons resulting from spontaneous symmetry breaking would be a ’smoking gun’ for the existence of this SO(5) symmetry. From the Goldstone’s Theorem [3], we know that there are two explicit common features among Goldstone’s particles: (1) they are massless; (2) they obey Bose-Einstein statistics i.e.
    [Show full text]
  • Introduction to Supersymmetry
    Introduction to Supersymmetry Pre-SUSY Summer School Corpus Christi, Texas May 15-18, 2019 Stephen P. Martin Northern Illinois University [email protected] 1 Topics: Why: Motivation for supersymmetry (SUSY) • What: SUSY Lagrangians, SUSY breaking and the Minimal • Supersymmetric Standard Model, superpartner decays Who: Sorry, not covered. • For some more details and a slightly better attempt at proper referencing: A supersymmetry primer, hep-ph/9709356, version 7, January 2016 • TASI 2011 lectures notes: two-component fermion notation and • supersymmetry, arXiv:1205.4076. If you find corrections, please do let me know! 2 Lecture 1: Motivation and Introduction to Supersymmetry Motivation: The Hierarchy Problem • Supermultiplets • Particle content of the Minimal Supersymmetric Standard Model • (MSSM) Need for “soft” breaking of supersymmetry • The Wess-Zumino Model • 3 People have cited many reasons why extensions of the Standard Model might involve supersymmetry (SUSY). Some of them are: A possible cold dark matter particle • A light Higgs boson, M = 125 GeV • h Unification of gauge couplings • Mathematical elegance, beauty • ⋆ “What does that even mean? No such thing!” – Some modern pundits ⋆ “We beg to differ.” – Einstein, Dirac, . However, for me, the single compelling reason is: The Hierarchy Problem • 4 An analogy: Coulomb self-energy correction to the electron’s mass A point-like electron would have an infinite classical electrostatic energy. Instead, suppose the electron is a solid sphere of uniform charge density and radius R. An undergraduate problem gives: 3e2 ∆ECoulomb = 20πǫ0R 2 Interpreting this as a correction ∆me = ∆ECoulomb/c to the electron mass: 15 0.86 10− meters m = m + (1 MeV/c2) × .
    [Show full text]
  • Goldstone Bosons in a Crystalline Chiral Phase
    Goldstone Bosons in a Crystalline Chiral Phase Goldstone Bosonen in einer Kristallinen Chiralen Phase Zur Erlangung des Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.) genehmigte Dissertation von M.Sc. Marco Schramm, Tag der Einreichung: 29.06.2017, Tag der Prüfung: 24.07.2017 Darmstadt 2017 — D 17 1. Gutachten: PD Dr. Michael Buballa 2. Gutachten: Prof. Dr. Jens Braun Fachbereich Physik Institut für Kernphysik NHQ Goldstone Bosons in a Crystalline Chiral Phase Goldstone Bosonen in einer Kristallinen Chiralen Phase Genehmigte Dissertation von M.Sc. Marco Schramm, 1. Gutachten: PD Dr. Michael Buballa 2. Gutachten: Prof. Dr. Jens Braun Tag der Einreichung: 29.06.2017 Tag der Prüfung: 24.07.2017 Darmstadt 2017 — D 17 Bitte zitieren Sie dieses Dokument als: URN: urn:nbn:de:tuda-tuprints-66977 URL: http://tuprints.ulb.tu-darmstadt.de/6697 Dieses Dokument wird bereitgestellt von tuprints, E-Publishing-Service der TU Darmstadt http://tuprints.ulb.tu-darmstadt.de [email protected] Die Veröffentlichung steht unter folgender Creative Commons Lizenz: Namensnennung – Keine kommerzielle Nutzung – Keine Bearbeitung 4.0 International https://creativecommons.org/licenses/by-nc-nd/4.0/ Abstract The phase diagram of strong interaction matter is expected to exhibit a rich structure. Different models have shown, that crystalline phases with a spatially varying chiral condensate can occur in the regime of low temperatures and moderate densities, where they replace the first-order phase transition found for spatially constant order parameters. We investigate this inhomogeneous phase, where in addition to the chiral symmetry, transla- tional and rotational symmetry are broken as well, in a two flavor Nambu–Jona-Lasinio model.
    [Show full text]