«Algebraic and Geometric Methods of Analysis»

Total Page:16

File Type:pdf, Size:1020Kb

«Algebraic and Geometric Methods of Analysis» International scientific conference «Algebraic and geometric methods of analysis» Book of abstracts May 31 - June 5, 2017 Odessa Ukraine http://imath.kiev.ua/~topology/conf/agma2017/ LIST OF TOPICS • Algebraic methods in geometry • Differential geometry in the large • Geometry and topology of differentiable manifolds • General and algebraic topology • Dynamical systems and their applications • Geometric problems in mathematical analysis • Geometric and topological methods in natural sciences • History and methodology of teaching in mathematics ORGANIZERS • The Ministry of Education and Science of Ukraine • Odesa National Academy of Food Technologies • The Institute of Mathematics of the National Academy of Sciences of Ukraine • Taras Shevchenko National University of Kyiv • The International Geometry Center PROGRAM COMMITTEE Chairman: Prishlyak A. Maksymenko S. Rahula M. (Kyiv, Ukraine) (Kyiv, Ukraine) (Tartu, Estonia) Balan V. Matsumoto K. Sabitov I. (Bucharest, Romania) (Yamagata, Japan) (Moscow, Russia) Banakh T. Mashkov O. Savchenko A. (Lviv, Ukraine) (Kyiv, Ukraine) (Kherson, Ukraine) Fedchenko Yu. Mykytyuk I. Sergeeva А. (Odesa, Ukraine) (Lviv, Ukraine) (Odesa, Ukraine) Fomenko A. Milka A. Strikha M. (Moscow, Russia) (Kharkiv, Ukraine) (Kyiv, Ukraine) Fomenko V. Mikesh J. Shvets V. (Taganrog, Russia) (Olomouc, Czech Republic) (Odesa, Ukraine) Glushkov A. Mormul P. Shelekhov A. (Odesa, Ukraine) (Warsaw, Poland) (Tver, Russia) Haddad М. Moskaliuk S. Shurygin V. (Wadi al-Nasara, Syria) (Wien, Austri) (Kazan, Russia) Herega A. Panzhenskiy V. Vlasenko I. (Odesa, Ukraine) (Penza, Russia) (Kyiv, Ukraine) Khruslov E. Pastur L. Zadorozhnyj V. (Kharkiv, Ukraine) (Kharkiv, Ukraine) (Odesa, Ukraine) Kirichenko V. Plachta L. Zarichnyi M. (Moscow, Russia) (Krakov, Poland) (Lviv, Ukraine) Kirillov V. Pokas S. Zelinskiy Y. (Odesa, Ukraine) (Odesa, Ukraine) (Kyiv, Ukraine) Konovenko N. Polulyakh E. (Odesa, Ukraine) (Kyiv, Ukraine) 1 2 ADMINISTRATIVE COMMITTEE • Egorov B., chairman, rector of the ONAFT; • Povarova N., deputy chairman, Pro-rector for scientific work of the ONAFT; • Mardar M., Pro-rector for scientific-pedagogical work and international communications of the ONAFT; • Fedosov S., Director of the International Cooperation Center of the ONAFT; • Volkov V., Director of the Educational Research Institute of Mechanics, Automation and Com- puter Systems named after P. M. Platonov; • Bukaros A., Dean of the Faculty of automation, mechatronics and robotics ORGANIZING COMMITEE Kirillov V. Hladysh B. Maksymenko S. Konovenko N. Nuzhnaya N. Khudenko N. Fedchenko Yu. Osadchuk E. Cherevko E. 3 Про біортогональні сітки ліній пари поверхонь Л. Л. Безкоровайна (Одеський національний університет імені І. І. Мечникова) E-mail: liliyabezk@gmail.com Нехай дві поверхні S і S∗ тривимірного евклідового простору задані векторно - параметричними рівняннями. Припустимо, що встановлено відображення цих поверхонь (за допомогою рівнянь, що однозначно виражають криволінійні координати однієї поверхні через координати іншої поверхні). Віднесемо ці поверхні до спільних координат u; v. Тоді, за теоремою Тіссо [1], існує одна і лише одна система ліній, що є ортогональною і на поверхні S, і на поверхні S∗, яка визначається рівнянням Edu + F dv F du + Gdv = 0; (1) E0du + F 0dv F 0du + G0dv де E; F; G і E0;F 0;G0 - коефіцієнти перших квадратичних форм заданих поверхонь. Розгорнемо рівняння (1) до вигляду (EF 0 − E0F )du2 + (EG0 − E0G)dudv + (FG0 − F 0G)dv2 = 0: (2) Отже, диференціальне рівняння (2) визначає дійсну ортогональну регулярну сітку ліній, спільну для двох різних поверхонь. Такі сітки ліній в даній роботі називаються біортогональними. Дослі- джуються властивості біортогональних сіток для деяких пар поверхонь, віднесених до спільних координат. Насамперед виникає необхідність у явному вираженні сіткового тензора для біортогональної сітки. Має місце Теорема 1. Сітковий тензор біортогональної сітки ліній для пари поверхонь можна подати у вигляді γδ Jαβ = (cαγaβδ + cβγaαδ) g ; де cαγ - дискримінантний тензор поверхні S з компонентами p − − 2 c11 = c22 = 0; c12 = c21 = g; g = g11g22 g12: Для того, щоб здобути тензор біортогональної сітки, передусім необхідно від гаусових позначень 1 2 геометричних величин в рівнянні (2) перейти до індексних позначень u = x ; v = x ;E = g11;F = 0 0 0 g12;G = g22;E = a11;F = a12;G = a22: Безпосередньою перевіркою можна переконатися, що рівняння (2) набуває інваріантного вигляду α β Jαβdx dx = 0 або, що те ж саме, γδ α β (cαγaβδ + cβγaαδ) g dx dx = 0: Доведено, що біортогональна сітка є спільною як для пар паралельних поверхонь, так і для сімейства паралельних поверхонь у цілому. При цьому вона збігається з сіткою ліній кривини. Знайдено рівняння біортогональної сітки деформованої поверхні S та здеформованої поверхні S∗ за умови, що їх радіус-вектори пов’язані рівністю (t ! 0) r∗(x1; x2; t) = r(x1; x2) + tU(x1; x2): Встановлено, що у випадку ареальної нескінченно малої деформації біортогональна сітка поверхонь S і S∗ збігається з сіткою головних ліній деформації. Ряд властивостей цієї сітки при ареальній нескінченно малій деформації сформульовано в [2]. ЛІТЕРАТУРА [1] M. Tissot. Memoire sur la representation des surfaces et les projections des eartes geographiques.Paris, 1881, p.337. [2] Л. Л. Безкоровайна. Головна сітка нескіченно малих деформацій із стаціонарною площею.Тези доповідей 5-ої між- народної конференції з геометрії та топології. Пам’яті О. В. Погорєлова, Черкаси 2003, ст. 12-13. 4 Про ізотопність функцій леми Морса Бондар О. П. (КЛА НАУ, Кропивницький) E-mail: bondarkla@ukr.net В. В. Шарко [1] дав означення ізотопних функцій Морса, за допомогою яких вивчались вла- стивості многовидів, на яких було задано ці функції. З метою розширення можливостей вивчення зв’язку топології многовидів із заданими на них функціями було узагальнено поняття ізотопних функцій Морса, а саме, введено означення ізотопних функцій, [2]. Це означення, зокрема, дозво- лило побудувати шлях, [1], що поєднує функції леми Морса, показавши їх ізотопність. n ! 1 n Твердження 1. Нехай f0 : R R — диференційовна функція і x0 = (x0; : : : ; x0 ) — невироджена критична точка цієї функції. Тоді можна вказати координатні подання ізотопії H : U0 × [0; k] ! Uk ! [0; k]; k 2 N; n околу U0 точки x0 на деякий окіл Uk початку координат 0 простору R та ізотопії h : V0 × [0; k] ! Vk ! [0; k]; k 2 N; околу V0 точки f0(x0) на окіл Vk початку координат 0 простору R, такі, що диференційовні відображення ⊂ Hk Iso0(Uk);H0 = idUk ; ⊂ + hk Iso0 (Vk); h0 = idVk ; 1 n i і для всіх точок y = (y ; : : : ; y ) 2 Uk, для яких y (x0) = 0; i = 1; : : : ; n, функція 1 2 λ 2 λ+1 2 n 2 fk = −(y ) − ::: − (y ) + (y ) + ::: + (y ) буде локально ізотопною функції f0: ◦ ◦ −1 fk = hk f0 Hk ; тобто можна вказати такі локальні ізотопні перетворення систем координат, що функція f0 буде локально диференційовно ізотопна функції fk. Існування локальної системи координат (y1; : : : ; yn), в якій справедлива тотожність 1 n 1 n f0(x ; : : : ; x ) = f0(x0) + fk(y ; : : : ; y ); є лемою Морса. Координатне подання необхідних ізотопій полягає у побудованій послідовності елементарних ізотопій i H : Ui−1 × [0; 1] ! Ui × [0; 1]; i = 1; : : : ; k; Ui ⊆ Ui−1; i = 2; : : : ; k i ⊂ i 2 Ht Iso0(Uk);H0 = idUi−1 ; для всіх t [0; 1]; і елементарних ізотопій i h : Vi−1 × [0; 1] ! Vi × [0; 1]; i = 1; : : : ; k; Vi ⊆ Vi−1; i = 2; : : : ; k; i ⊂ + i 2 ht Iso0 (Vk); h0 = idVi−1 ; для всіх t [0; 1]; для яких кінцеве відображення попередньої елементарної ізотопії є початковим — тотожним — від- ображенням наступної, а композиції відповідних елементарних ізотопій є потрібними ізотопіями Hk і hk. ЛІТЕРАТУРА [1] В. В. Шарко. Функции на многообразиях (алгебраические и топологические аспекты). Киев: Наук. думка, 1990. [2] О. П. Бондарь. Об определении изотопных функций. Тези доповідей міжнародної конференції ”Геометрія в Одесі- 2015, (2015), С.67. 5 Інфінітезимальні деформації кругового циліндра зі стаціонарною рімановою зв’язністю Вашпанова Н.В. (Одеська національна академія харчових технологій, Одеса, Україна) E-mail: vasha_nina@mail.ru Потапенко І.В. (Одеський національний університет ім.І.І. Мечникова, Одеса, Україна) E-mail: igopotapenko@yandex.ru У теперішній час нерідко можна спостерігати застосування кругового циліндра як в техніці, так і в медицині. Саме від технічного стану магістральних труб (мають форму циліндра) в першу чергу залежить стабільне транспортування газу, нафти та різних нафтопродуктів. Особливо це стосується тих ділянок, де труби деформуються під деяким зовнішнім навантаженням. Відомо [1], що течія крові у великих кровоносних судинах характеризується відносно слабким впливом реологічних властивостей разом із сильним впливом механічних характеристик судиної стінки, в якості якої розглядають гіперпружну ізотропну трубку, яка в початковий момент часу має циліндричну форму, а потім деформується з часом. У роботі [2] задача про існування інфінітезимальної деформації певного класу поверхонь оберта- ння з фіксованою рімановою зв’язністю зведена до дослідження і розв’язування диференціального рівняння другого порядку в частинних похідних відносно невідомої функції '(x1; x2) класу C2 (в лініях кривини): @2' @2' @' b + b + a + b' = F; 11 (@x2)2 22 (@x1)2 @x1 де bij(i = 1; 2) - коефіцієнти другої квадратичної форми поверхні, a; b; F - відомі функції. Розглянемо нескінченно малі деформації кругового циліндра зі стаціонарною рімановою зв’язністю. Нехай круговий циліндр заданий рівнянням r = fR cos v; R sin v; ug; де R - радіус основи циліндра. Слід відзначити, що циліндр не належить до класу поверхонь, що розглядалися
Recommended publications
  • Counterexamples in Topology
    Counterexamples in Topology Lynn Arthur Steen Professor of Mathematics, Saint Olaf College and J. Arthur Seebach, Jr. Professor of Mathematics, Saint Olaf College DOVER PUBLICATIONS, INC. New York Contents Part I BASIC DEFINITIONS 1. General Introduction 3 Limit Points 5 Closures and Interiors 6 Countability Properties 7 Functions 7 Filters 9 2. Separation Axioms 11 Regular and Normal Spaces 12 Completely Hausdorff Spaces 13 Completely Regular Spaces 13 Functions, Products, and Subspaces 14 Additional Separation Properties 16 3. Compactness 18 Global Compactness Properties 18 Localized Compactness Properties 20 Countability Axioms and Separability 21 Paracompactness 22 Compactness Properties and Ts Axioms 24 Invariance Properties 26 4. Connectedness 28 Functions and Products 31 Disconnectedness 31 Biconnectedness and Continua 33 VII viii Contents 5. Metric Spaces 34 Complete Metric Spaces 36 Metrizability 37 Uniformities 37 Metric Uniformities 38 Part II COUNTEREXAMPLES 1. Finite Discrete Topology 41 2. Countable Discrete Topology 41 3. Uncountable Discrete Topology 41 4. Indiscrete Topology 42 5. Partition Topology 43 6. Odd-Even Topology 43 7. Deleted Integer Topology 43 8. Finite Particular Point Topology 44 9. Countable Particular Point Topology 44 10. Uncountable Particular Point Topology 44 11. Sierpinski Space 44 12. Closed Extension Topology 44 13. Finite Excluded Point Topology 47 14. Countable Excluded Point Topology 47 15. Uncountable Excluded Point Topology 47 16. Open Extension Topology 47 17. Either-Or Topology 48 18. Finite Complement Topology on a Countable Space 49 19. Finite Complement Topology on an Uncountable Space 49 20. Countable Complement Topology 50 21. Double Pointed Countable Complement Topology 50 22. Compact Complement Topology 51 23.
    [Show full text]
  • CERTAIN FUNDAMENTAL CONGRUENCES on a REGULAR SEMIGROUP! by J
    CERTAIN FUNDAMENTAL CONGRUENCES ON A REGULAR SEMIGROUP! by J. M. HOWIE and G. LALLEMENT (Received 21 June, 1965) In recent developments in the algebraic theory of semigroups attention has been focussing increasingly on the study of congruences, in particular on lattice-theoretic properties of the lattice of congruences. In most cases it has been found advantageous to impose some re- striction on the type of semigroup considered, such as regularity, commutativity, or the property of being an inverse semigroup, and one of the principal tools has been the consideration of special congruences. For example, the minimum group congruence on an inverse semigroup has been studied by Vagner [21] and Munn [13], the maximum idempotent-separating con- gruence on a regular or inverse semigroup by the authors separately [9, 10] and by Munn [14], and the minimum semilattice congruence on a general or commutative semigroup by Tamura and Kimura [19], Yamada [22], Clifford [3] and Petrich [15]. In this paper we study regular semigroups and our primary concern is with the minimum group congruence, the minimum band congruence and the minimum semilattice congruence, which we shall con- sistently denote by a, P and t] respectively. In § 1 we establish connections between /? and t\ on the one hand and the equivalence relations of Green [7] (see also Clifford and Preston [4, § 2.1]) on the other. If for any relation H on a semigroup S we denote by K* the congruence on S generated by H, then, in the usual notation, In § 2 we show that the intersection of a with jS is the smallest congruence p on S for which Sip is a UBG-semigroup, that is, a band of groups [4, p.
    [Show full text]
  • EMBEDDING ANY COUNTABLE SEMIGROUP WITHOUT IDEMPOTENTS in a 2-GENERATED SIMPLE SEMIGROUP WITHOUT IDEMPOTENTS by KARL BYLEEN (Received 2 June, 1986)
    EMBEDDING ANY COUNTABLE SEMIGROUP WITHOUT IDEMPOTENTS IN A 2-GENERATED SIMPLE SEMIGROUP WITHOUT IDEMPOTENTS by KARL BYLEEN (Received 2 June, 1986) Although the classes of regular simple semigroups and simple semigroups without idempotents are evidently at opposite ends of the spectrum of simple semigroups, their theories involve some interesting connections. Jones [5] has obtained analogues of the bicyclic semigroup for simple semigroups without idempotents. Megyesi and Polldk [7] have classified all combinatorial simple principal ideal semigroups on two generators, showing that all are homomorphic images of one such semigroup Po which has no idempotents. In an earlier paper [1] a construction designed to produce regular simple semigroups was used to show that any countable semigroup can be embedded in a 2-generated bisimple monoid. In this paper a modification of the earlier construction is employed to prove that any countable semigroup without idempotents can be embedded in a 2-generated simple semigroup without idempotents, and to produce certain 2-generated congruence-free semigroups. The reader is referred to the survey paper by Hall [3] and to Chapter 4 of Lyndon and Schupp [6] for discussions of related embedding theorems for semigroups, inverse semigroups, and groups. These references also contain extensive bibliographies. Clifford and Preston [2] or Howie [4] may be consulted for standard definitions and results from the theory of semigroups. The author thanks Peter R. Jones for many helpful discussions. 1. The construction. Let (S, •) be any semigroup and let A and B be nonempty sets which are disjoint from each other and from S. Let a:A x S—*A be a right action of S on A (i.e., a\>(s • t) = (aV>s)\>t for all a eA and s, teS, where a\>s denotes (a, s)a).
    [Show full text]
  • Green's Relations and Dimension in Abstract Semi-Groups
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 8-1964 Green's Relations and Dimension in Abstract Semi-groups George F. Hampton University of Tennessee - Knoxville Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss Part of the Mathematics Commons Recommended Citation Hampton, George F., "Green's Relations and Dimension in Abstract Semi-groups. " PhD diss., University of Tennessee, 1964. https://trace.tennessee.edu/utk_graddiss/3235 This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact trace@utk.edu. To the Graduate Council: I am submitting herewith a dissertation written by George F. Hampton entitled "Green's Relations and Dimension in Abstract Semi-groups." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the requirements for the degree of Doctor of Philosophy, with a major in Mathematics. Don D. Miller, Major Professor We have read this dissertation and recommend its acceptance: Accepted for the Council: Carolyn R. Hodges Vice Provost and Dean of the Graduate School (Original signatures are on file with official studentecor r ds.) July 13, 1962 To the Graduate Council: I am submitting herewith a dissertation written by George Fo Hampton entitled "Green's Relations and Dimension in Abstract Semi­ groups.-" I recommend that it be accepted in partial fulfillment of the requirements for the degree of Doctor of Philosop�y, with a major in Mathematics.
    [Show full text]
  • Inverse Semigroups by Adam Gaffney Statement of Work in Project
    Inverse Semigroups by Adam Gaffney Statement of work in project The work contained in this project is that of the author and where material from other sources has been incorporated full acknowledgement is made. 1 Contents 1 Introduction 3 2 History 3 3 Basics of Semigroup Theory 4 3.1 Basic Definitions . .5 3.2 Partial Order . .7 3.3 Faithful Representations . .9 4 Inverse Semigroup Theory 13 4.1 Basics of Inverse Semigroups . 13 4.2 Natural Partial Order . 18 5 The Wagner-Preston Representation Theorem 20 5.1 Symmetric Inverse Monoid . 20 5.2 Seirpinski Triangle . 25 5.3 Bicyclic Semigroup . 28 6 Conclusion 30 2 1 Introduction Semigroup theory, and subsequently inverse semigroup theory, is a broad field that is part of many different areas due to its generality. For example, it can be found in parts of computer science, more specifically the concepts of finite state automata and the study of formal languages[1]. This project shall discuss the history of the field, and then we shall discuss some basic definitions of groups and semigroups to lay the foundations needed for the rest of this report. From there we will discuss the partial order, which is a concept that arises often in regards to semigroups and inverse semigroups. Then we shall discuss some well-known theorems, namely Cayley's theorem, an important theorem for groups, and the semigroup analogue in the faithful representation theorem for full transformation monoids. After this we shall discuss inverse semigroups, explore the natural partial order, which is a partial order restricted to E(S) which works very nicely in inverse semigroups.
    [Show full text]
  • Properties of Relatively Free Inverse Semigroups by N
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 294, Number 1, March 1986 PROPERTIES OF RELATIVELY FREE INVERSE SEMIGROUPS BY N. R. REILLY AND P. G. TROTTER ABSTRACT. The objective of this paper is to study structural properties of relatively free inverse semigroups in varieties of inverse semigroups. It is shown, for example, that if S is combinatorial (i.e., X is trivial), completely semisimple (i.e., every principal factor is a Brandt semigroup or, equivalently, S does not contain a copy of the bicyclic semigroup) or F-unitary (i.e., E(S) is the kernel of the minimum group congruence) then the relatively free inverse semigroup F"Vx on the set X in the variety "V generated by S is also combinatorial, completely semisimple or F-unitary, respectively. If 5 is a fundamental (i.e., the only congruence contained in M is the identity- congruence) and \X\ > No, then FVx ia a'so fundamental. FVx may not be fundamental if |^f| < No- It is also shown that for any variety of groups U and for |X| > No, there exists a variety of inverse semigroups "V which is minimal with respect to the properties (i) FVx ls fundamental and (ii) "V n Q = U, where Q is the variety of groups. In the main result of the paper it is shown that there exists a variety V for which FVx 's not completely semisimple, thereby refuting a long standing conjecture. 1. Summary. In general, the relatively free objects in any variety of algebras are important in the study of that variety and this has been true, in particular, in the study of inverse semigroups.
    [Show full text]
  • A First Course in Topology: Explaining Continuity (For Math 112, Spring 2005)
    A FIRST COURSE IN TOPOLOGY: EXPLAINING CONTINUITY (FOR MATH 112, SPRING 2005) PAUL BANKSTON CONTENTS (1) Epsilons and Deltas ................................... .................2 (2) Distance Functions in Euclidean Space . .....7 (3) Metrics and Metric Spaces . ..........10 (4) Some Topology of Metric Spaces . ..........15 (5) Topologies and Topological Spaces . ...........21 (6) Comparison of Topologies on a Set . ............27 (7) Bases and Subbases for Topologies . .........31 (8) Homeomorphisms and Topological Properties . ........39 (9) The Basic Lower-Level Separation Axioms . .......46 (10) Convergence ........................................ ..................52 (11) Connectedness . ..............60 (12) Path Connectedness . ............68 (13) Compactness ........................................ .................71 (14) Product Spaces . ..............78 (15) Quotient Spaces . ..............82 (16) The Basic Upper-Level Separation Axioms . .......86 (17) Some Countability Conditions . .............92 1 2 PAUL BANKSTON (18) Further Reading . ...............97 TOPOLOGY 3 1. Epsilons and Deltas In this course we take the overarching view that the mathematical study called topology grew out of an attempt to make precise the notion of continuous function in mathematics. This is one of the most difficult concepts to get across to beginning calculus students, not least because it took centuries for mathematicians themselves to get it right. The intuitive idea is natural enough, and has been around for at least four hundred years. The mathematically precise formulation dates back only to the ninteenth century, however. This is the one involving those pesky epsilons and deltas, the one that leaves most newcomers completely baffled. Why, many ask, do we even bother with this confusing definition, when there is the original intuitive one that makes perfectly good sense? In this introductory section I hope to give a believable answer to this quite natural question.
    [Show full text]
  • Introduction to Topological Groups
    Introduction to Topological Groups Dikran Dikranjan To the memory of Ivan Prodanov Abstract These notes provide a brief introduction to topological groups with a special emphasis on Pontryagin- van Kampen’s duality theorem for locally compact abelian groups. We give a completely self-contained elementary proof of the theorem following the line from [36]. According to the classical tradition, the structure theory of the locally compact abelian groups is built parallelly. 1 Introduction Let L denote the category of locally compact abelian groups and continuous homomorphisms and let T = R/Z be the unit circle group. For G ∈ L denote by Gb the group of continuous homomorphisms (characters) G → T equipped with the compact-open topology1. Then the assignment G 7→ Gb is a contravariant endofunctor b: L → L. The celebrated Pontryagin-van Kampen duality theorem ([82]) says that this functor is, up to natural equivalence, an involution i.e., Gb =∼ G (see Theorem 7.36 for more detail). Moreover, this functor sends compact groups to discrete ones and viceversa, i.e., it defines a duality between the subcategory C of compact abelian groups and the subcategory D of discrete abelian groups. This allows for a very efficient and fruitful tool for the study of compact abelian groups, reducing all problems to the related problems in the category of discrete groups. The reader is advised to give a look at the Mackey’s beautiful survey [75] for the connection of charactres and Pontryagin-van Kampen duality to number theory, physics and elsewhere. This duality inspired a huge amount of related research also in category theory, a brief comment on a specific categorical aspect (uniqueness and representability) can be found in §8.1 of the Appendix.
    [Show full text]
  • Counterexamples in Topology
    Lynn Arthur Steen J. Arthur Seebach, Jr. Counterexamples in Topology Second Edition Springer-Verlag New York Heidelberg Berlin Lynn Arthur Steen J. Arthur Seebach, Jr. Saint Olaf College Saint Olaf College Northfield, Minn. 55057 Northfield, Minn. 55057 USA USA AMS Subject Classification: 54·01 Library of Congress Cataloging in Publication Data Steen, Lynn A 1941· Counterexamples in topology. Bibliography: p. Includes index. 1. Topological spaces. I. Seebach, J. Arthur, joint author. II. Title QA611.3.S74 1978 514'.3 78·1623 All rights reserved. No part of this book may be translated or reproduced in any form without written permission from Springer.Verlag Copyright © 1970, 1978 by Springer·Verlag New York Inc. The first edition was published in 1970 by Holt, Rinehart, and Winston Inc. 9 8 7 6 5 4 321 ISBN-13: 978-0-387-90312-5 e-ISBN-13:978-1-4612-6290-9 DOl: 1007/978-1-4612-6290-9 Preface The creative process of mathematics, both historically and individually, may be described as a counterpoint between theorems and examples. Al­ though it would be hazardous to claim that the creation of significant examples is less demanding than the development of theory, we have dis­ covered that focusing on examples is a particularly expeditious means of involving undergraduate mathematics students in actual research. Not only are examples more concrete than theorems-and thus more accessible-but they cut across individual theories and make it both appropriate and neces­ sary for the student to explore the entire literature in journals as well as texts. Indeed, much of the content of this book was first outlined by under­ graduate research teams working with the authors at Saint Olaf College during the summers of 1967 and 1968.
    [Show full text]
  • Univerzita Komenského V Bratislave Fakulta
    UNIVERZITA KOMENSKEHO´ V BRATISLAVE FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY Katedra algebry, geometrie a didaktiky matematiky HEREDITY, HEREDITARY COREFLECTIVE HULLS AND OTHER PROPERTIES OF COREFLECTIVE SUBCATEGORIES OF CATEGORIES OF TOPOLOGICAL SPACES Dediˇcnost’, dediˇcn´ekoreflekt´ıvneobaly a d’alˇsie vlastnosti koreflekt´ıvnych podkategori´ıkategori´ı topologick´ych priestorov Dizertaˇcn´apr´aca RNDr. Martin Sleziak Skolitel’:ˇ Doc. RNDr. Juraj Cinˇcura,CSc.ˇ Odbor doktorandsk´ehoˇst´udia: 11-16-9 Geometria a topol´ogia BRATISLAVA 2006 Acknowledgments I am very grateful to my supervisor Doc. RNDr. Juraj Cinˇcura,ˇ CSc., for intro- ducing me to the topic of this thesis and for his endless patience while he was carefully reading drafts of this thesis and my another papers and correcting my frequent mistakes. I am also indebted to Prof. Horst Herrlich for his careful reading of draft of the paper [Sl4] and for many priceless advices given to me. Last but not least, my thanks belong to my family, my friends and also to countless people which helped me in one or the other way, sometimes even without me noticing it. i Abstract This thesis deals mainly with hereditary coreflective subcategories of the cat- egory Top of topological spaces. After preparing the basic tools used in the rest of thesis we start by a question which coreflective subcategories of Top have the property SA = Top (i.e., every topological space can be embedded in a space from A). We characterize such classes by finding generators of the smallest coreflective subcategory of Top with this property. In particular we show that this holds for the category PsRad of the pseudoradial spaces and by modification of the proof of this result we get that the pseudoradial spaces have similar property also in the category Top1 of T1-spaces.
    [Show full text]
  • On Semigroups with Lower Semimodular Lattice of Subsemigroups Peter R
    Marquette University e-Publications@Marquette Mathematics, Statistics and Computer Science Mathematics, Statistics and Computer Science, Faculty Research and Publications Department of 11-1-2010 On Semigroups with Lower Semimodular Lattice of Subsemigroups Peter R. Jones Marquette University, peter.jones@marquette.edu Accepted version. Journal of Algebra, Vol. 324, No. 9 (November 1, 2010). DOI. © 2010 Elsevier. Used with permission. On semigroups with lower semimodular lattice of subsemigroups. Peter R. Jones January 11, 2010 Abstract The question of which semigroups have lower semimodular lattice of subsemigroups has been open since the early 1960's, when the corresponding question was answered for modularity and for upper semimodularity. We provide a characterization of such semigroups in the language of principal factors. Since it is easily seen (and has long been known) that semigroups for which Green's relation J is trivial have this property, a description in such terms is natural. In the case of periodic semigroups | a case that turns out to include all eventually regular semigroups | the characterization becomes quite explicit and yields interesting consequences. In the general case, it remains an open question whether there exists a simple, but not completely simple, semigroup with this property. Any such semigroup must at least be idempotent-free and D-trivial. 1 Introduction. The lattice L(S) of subsemigroups of a semigroup S has been a topic of intense study since the 1960's [11]. Those semigroups for which this lattice satisfies common lattice-theoretic properties such as distributivity, modularity and upper semimodularity were determined in the early years of that decade. As noted in [11, x5.14], little is known | or at least little is published | about lower semimodularity in this context, other than that an apparently diverse array of semigroups do have subsemigroup lattices with this property.
    [Show full text]
  • THE FREE MONOGENIC INVERSE SEMIGROUP and the BICYCLIC MULTIPLICATION 1. Introduction
    Ann. Sci. Math. Québec 36, No 1, (2012), 235–243 THE FREE MONOGENIC INVERSE SEMIGROUP AND THE BICYCLIC MULTIPLICATION EMIL DANIEL SCHWAB RÉSUMÉ. Dans la théorie des semi-groupes inverses, une attention spéciale est donnée aux semi-groupes inverses libres, et plus particulièrement au semi-groupe in- verse libre monogénique. Celui-ci admet un nombre intéressant de copies isomorphes et Petrich a présenté la construction de cinq d’entre elles. Dans cet article, nous pré- sentons la construction d’une nouvelle copie isomorphe du semi-groupe inverse libre monogénique dont le produit implique uniquement la multiplication bicyclique. La construction est élémentaire et fait appel à la propriété universelle d’un objet libre. Ceci permet à l’article d’être indépendant des autres constructions apparaissant dans la littérature en lien avec la théorie des semi-groupes inverses libres. ABSTRACT. In the theory of inverse semigroups, a special attention is given to free inverse semigroups, in particular to the free monogenic inverse semigroup. The free monogenic inverse semigroup admits a number of interesting isomorphic copies. Petrich has presented the constructions of five isomorphic copies of the free monogenic inverse semigroup. In this paper we give a new isomorphic copy of the free monogenic inverse semigroup with a product involving only the bicyclic multiplication. Using an elementary way based on the universal property of a free object, the paper is organized so as to be self-contained; it is not dependent on other constructions from the theory of free inverse semigroups. 1. Introduction An inverse semigroup S is a semigroup in which every element s in S has a unique generalized inverse x in S, in the sense that s = sxs and x = xsx.
    [Show full text]