Original Article Screening of Autophagy Genes As Prognostic Indicators for Glioma Patients

Total Page:16

File Type:pdf, Size:1020Kb

Original Article Screening of Autophagy Genes As Prognostic Indicators for Glioma Patients Am J Transl Res 2020;12(9):5320-5331 www.ajtr.org /ISSN:1943-8141/AJTR0113418 Original Article Screening of autophagy genes as prognostic indicators for glioma patients Shanqiang Qu1,2*, Shuhao Liu3*, Weiwen Qiu4, Jin Liu5, Huafu Wang6 1Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China; 2Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; 3De- partment of Gastrointestinal Surgery, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, China; Departments of 4Neurology, 5Neurosurgery, 6Clinical Pharmacy, Lishui People’s Hospital (The Sixth Affili- ated Hospital of Wenzhou Medical University), Lishui 323000, China. *Equal contributors. Received April 27, 2020; Accepted July 31, 2020; Epub September 15, 2020; Published September 30, 2020 Abstract: Although autophagy is reported to be involved in tumorigenesis and cancer progression, its correlation with the prognosis of glioma patients remains unclear. Thus, the aim of this study was to identify prognostic au- tophagy-related genes, analyze their correlation with clinicopathological features of glioma, and further construct a prognostic model for glioma patients. After 139 autophagy-related genes were obtained from the GeneCards database, their expression data in glioma patients were extracted from the Chinese Glioma Genome Atlas data- base. Univariate and multivariate COX regression analyses were performed to identify prognostic autophagy-related genes. Ten hub autophagy-related genes associated with prognosis were identified. The autophagy risk score (ARS) was only positively correlated with histopathology (P = 0.000) and World Health Organization grade (P = 0.000). Kaplan-Meier analysis showed that the overall survival of patients with a high ARS was significantly worse than that of patients with a low ARS (hazard ratio = 1.59, 95% confidence interval = 1.25-2.03, P = 0.0001). In addition, Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses revealed several common biological pro- cesses and signaling pathways related to the 10 hub genes in glioblastoma. A prediction model was developed for glioma patients, which demonstrated high prediction efficiency on calibration.Moreover, the area under the receiver operating characteristic curve values for 1-, 3- and 5-year survival probabilities were 0.790, 0.861, and 0.853, re- spectively. In conclusion, we identified 10 autophagy-related genes that can serve as novel prognostic biomarkers for glioma patients. Our prediction model accurately predicted patient outcomes, and thus, may be a valuable tool in clinical practice. Keywords: Neoplasms, survival, nomograms Introduction of gliomas has been improved to some extent, the prognosis of glioma patients continues to Glioma of the brain is a common human malig- not be satisfactory. Notably, overall survival nancy that is harmful to human health globally. (OS) varies greatly among patients with the With the development of imaging technologies, same pathological diagnosis [3], which shows the overall incidence of gliomas in the past that the traditional pathological diagnosis is decades has continued to increase [1]. Accor- insufficient for judging patients’ prognosis. In ding to an analysis of the Central Brain Tumor addition, the common clinical prognostic mark- Registry of the United States (CBTRUS) data, an ers (e.g., isocitrate dehydrogenase [IDH] muta- estimated 87,240 cases of primary central ner- tion 1p/19q co-deletion) only distinguish two vous system (CNS) tumors will be diagnosed in subgroups of patients with the same histopa- the United States in 2020, including 25,800 thology. These markers are still not sufficient malignant tumors and 61430 non-malignant for more subtle stratification and cannot reflect tumors [2]. At present, the main treatment str- the individual prognosis of each patient. There- ategy for gliomas worldwide remains surgery fore, there is an urgent need for a new predic- followed by postoperative adjuvant radiothera- tion model that offers greater accuracy for glio- py and chemotherapy. Although the treatment ma patient prognosis. Moreover, such a model Clinical value of autophagy-related genes would be valuable for guiding personalized me- ecards.org/). Genes with a relevance score >8 dicine for glioma patients [4]. were screened as autophagy-related genes in this study. Research in recent years has demonstrated that autophagy is a process of degradation and Patient selection reuse of cellular components that plays a key role in tumorigenesis, cancer development, First, we extracted the data for all patients in and metastasis [5]. Studies have also shown the dataset 4 cohort of the CGGA (http://cgga. that tumor cells, especially under stress condi- org.cn/index.jsp) [10], which is a database for tions, can obtain the energy and substances storing clinical and pathological information on necessary for survival through autophagy, and glioma patients in China. Second, patients with thus, autophagy is a type of survival mecha- missing data were excluded. Finally, we inclu- nism for tumor cells [6]. Thus, the inhibition of ded data for 269 glioma patients in our an- autophagy can reduce the tolerance of tumor alysis. cells to stress, increase the sensitivity of tu- mor cells to anti-tumor drugs, and improve the Identification of prognostic genes effect of anticancer therapy [7]. Notably, multi- First, univariate Cox regression analysis was ple preclinical studies have found that knock- performed to screen autophagy-related genes out of the key autophagy genes (e.g., beclin-1, significantly associated with the prognosis of Atg12, Atg5) can improve the killing ability of glioma patients. The autophagy-related genes antineoplastic drugs, which indicates that au- for which P<0.05 were further included in mul- tophagy can protect cancer cells and inhibit tivariate regression analysis, and independent the efficacy of antineoplastic drugs [8, 9]. prognostic autophagy-related genes were iden- These findings further suggest that autophagy- tified. related genes play a key role in tumorigenesis and development and have a significant impact Oncomine database and human protein atlas on the prognosis of cancer patients. As such, (HPA) analysis these genes may also provide prognostic mark- The Oncomine gene expression array database ers. However, autophagy is a complex biologi- (www.oncomine.org) was used to assess the cal process involving hundreds of genes that is mRNA expression levels of the identified prog- common in the life processes of eukaryotes. nostic genes. In addition, the expression levels The prognostic value of autophagy genes in gli- of the corresponding proteins in gliomas and oma patients remains unclear, and investi- normal tissues were reviewed in the HPA gation of which autophagy-related genes have (http://www.proteinatlas.org/) [11]. the potential to become prognostic markers is worthwhile. Pathway analysis Toward this end, we obtained the expression From the prognostic autophagy-related genes, profile data for autophagy-related genes and we determined the nine most relevant coex- the clinicopathological data of patients from pression genes in the TCGA-CNS/Brain data- the Chinese Glioma Genome Atlas (CGGA) da- base (http://www.cbioportal.org/). Gene Onto- taset in order to search for independent prog- logy (GO) analysis of all prognostic genes nostic factors by analyzing the correlations and coexpression genes was performed using between autophagy-related genes and patien- the DAVID [12] database (https://david.ncifcrf. ts’ prognosis. Additionally, from the identified gov/), including biological process, cellular genes, we constructed a new prediction model component, and molecular function. The Cyto- for glioma patients’ prognosis. scape tool [13] was used to implement the Materials and methods Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. We used Screening of autophagy-related genes the String database [14, 15] to observe prote- in-protein interaction between the proteins en- The genes related to autophagy were searched coded by the prognostic genes (https://string- in the GeneCards database (https://www.gen- db.org/). 5321 Am J Transl Res 2020;12(9):5320-5331 Clinical value of autophagy-related genes Correlations between autophagy risk score patients are summarized in Table S1. The aver- (ARS) and clinicopathological features of age age of all patients was 42.58±11.83 years. patients The incidence of glioma was higher in males than in females, and the median survival time The ARS was constructed according to the of all patients was 31.2 months (interquartile expression of a prognostic gene and a correla- range, 0.7-138.1 months). The 1-, 3-, and 5- tion risk coefficient for the gene. The formula year survival rates for all glioma patients were for the ARS is as follows: ARS = gene1*β1 + 77.32%, 46.84%, and 34.94%, respectively. gene2*β2 + gene3*β3…….gene (n)*β (n). Chi- square test was performed to explore correla- Screening of prognostic autophagy-related tions between clinical parameters and the ARS. genes in 269 glioma patients The relationship of the ARS to the prognosis of glioma patients was analyzed by Kaplan-Meier To search for prognostic autophagy-related ge- survival curve analysis. nes of glioma patients, all candidate genes related to autophagy were searched through Development and validation of nomogram the GeneCards database. A total of 139 auto- phagy-related
Recommended publications
  • Anti-ATG9B Antibody (ARG59749)
    Product datasheet [email protected] ARG59749 Package: 50 μg anti-ATG9B antibody Store at: -20°C Summary Product Description Rabbit Polyclonal antibody recognizes ATG9B Tested Reactivity Hu Predict Reactivity Ms, Rat Tested Application ICC/IF, WB Host Rabbit Clonality Polyclonal Isotype IgG Target Name ATG9B Antigen Species Human Immunogen A 17 amino acid peptide within aa. 850 - 900 of Human ATG9B. Conjugation Un-conjugated Alternate Names APG9-like 2; SONE; NOS3AS; Autophagy-related protein 9B; Protein sONE; APG9L2; Nitric oxide synthase 3-overlapping antisense gene protein Application Instructions Application table Application Dilution ICC/IF 10 - 20 µg/ml WB 1 - 2 µg/ml Application Note * The dilutions indicate recommended starting dilutions and the optimal dilutions or concentrations should be determined by the scientist. Positive Control HeLa Calculated Mw 101 kDa Properties Form Liquid Purification Affinity purification with immunogen. Buffer PBS and 0.02% Sodium azide Preservative 0.02% Sodium azide Concentration 1 mg/ml Storage instruction For continuous use, store undiluted antibody at 2-8°C for up to a week. For long-term storage, aliquot and store at -20°C or below. Storage in frost free freezers is not recommended. Avoid repeated freeze/thaw cycles. Suggest spin the vial prior to opening. The antibody solution should be gently mixed before use. www.arigobio.com 1/3 Note For laboratory research only, not for drug, diagnostic or other use. Bioinformation Gene Symbol ATG9B Gene Full Name autophagy related 9B Background This gene functions in the regulation of autophagy, a lysosomal degradation pathway. This gene also functions as an antisense transcript in the posttranscriptional regulation of the endothelial nitric oxide synthase 3 gene, which has 3' overlap with this gene on the opposite strand.
    [Show full text]
  • Wnt/Β-Catenin Signaling Pathway Induces Autophagy
    Yun et al. Cell Death and Disease (2020) 11:771 https://doi.org/10.1038/s41419-020-02988-8 Cell Death & Disease ARTICLE Open Access Wnt/β-catenin signaling pathway induces autophagy-mediated temozolomide-resistance in human glioblastoma Eun-Jin Yun 1,SangwooKim2,Jer-TsongHsieh3,4 and Seung Tae Baek 5,6 Abstract Temozolomide (TMZ) is widely used for treating glioblastoma multiforme (GBM), however, the treatment of such brain tumors remains a challenge due to the development of resistance. Increasing studies have found that TMZ treatment could induce autophagy that may link to therapeutic resistance in GBM, but, the precise mechanisms are not fully understood. Understanding the molecular mechanisms underlying the response of GBM to chemotherapy is paramount for developing improved cancer therapeutics. In this study, we demonstrated that the loss of DOC-2/DAB2 interacting protein (DAB2IP) is responsible for TMZ-resistance in GBM through ATG9B. DAB2IP sensitized GBM to TMZ and suppressed TMZ-induced autophagy by negatively regulating ATG9B expression. A higher level of ATG9B expression was associated with GBM compared to low-grade glioma. The knockdown of ATG9B expression in GBM cells suppressed TMZ-induced autophagy as well as TMZ-resistance. Furthermore, we showed that DAB2IP negatively regulated ATG9B expression by blocking the Wnt/β-catenin pathway. To enhance the benefit of TMZ and avoid therapeutic resistance, effective combination strategies were tested using a small molecule inhibitor blocking the Wnt/ β-catenin pathway in addition to TMZ. The combination treatment synergistically enhanced the efficacy of TMZ in GBM cells. In conclusion, the present study identified the mechanisms of TMZ-resistance of GBM mediated by DAB2IP 1234567890():,; 1234567890():,; 1234567890():,; 1234567890():,; and ATG9B which provides insight into a potential strategy to overcome TMZ chemo-resistance.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • TMEM59 (NM 004872) Human Recombinant Protein Product Data
    OriGene Technologies, Inc. 9620 Medical Center Drive, Ste 200 Rockville, MD 20850, US Phone: +1-888-267-4436 [email protected] EU: [email protected] CN: [email protected] Product datasheet for TP305624 TMEM59 (NM_004872) Human Recombinant Protein Product data: Product Type: Recombinant Proteins Description: Recombinant protein of human transmembrane protein 59 (TMEM59) Species: Human Expression Host: HEK293T Tag: C-Myc/DDK Predicted MW: 36 kDa Concentration: >50 ug/mL as determined by microplate BCA method Purity: > 80% as determined by SDS-PAGE and Coomassie blue staining Buffer: 25 mM Tris.HCl, pH 7.3, 100 mM glycine, 10% glycerol Preparation: Recombinant protein was captured through anti-DDK affinity column followed by conventional chromatography steps. Storage: Store at -80°C. Stability: Stable for 12 months from the date of receipt of the product under proper storage and handling conditions. Avoid repeated freeze-thaw cycles. RefSeq: NP_004863 Locus ID: 9528 UniProt ID: Q9BXS4 RefSeq Size: 1709 Cytogenetics: 1p32.3 RefSeq ORF: 972 Synonyms: C1orf8; DCF1; HSPC001; PRO195; UNQ169 Summary: This gene encodes a protein shown to regulate autophagy in response to bacterial infection. This protein may also regulate the retention of amyloid precursor protein (APP) in the Golgi apparatus through its control of APP glycosylation. Overexpression of this protein has been found to promote apoptosis in a glioma cell line. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Feb 2015] Protein Families: Transmembrane This product is to be used for laboratory only. Not for diagnostic or therapeutic use. View online » ©2021 OriGene Technologies, Inc., 9620 Medical Center Drive, Ste 200, Rockville, MD 20850, US 1 / 2 TMEM59 (NM_004872) Human Recombinant Protein – TP305624 Product images: Coomassie blue staining of purified TMEM59 protein (Cat# TP305624).
    [Show full text]
  • Autophagy Suppresses Ras-Driven Epithelial Tumourigenesis by Limiting the Accumulation of Reactive Oxygen Species
    OPEN Oncogene (2017) 36, 5576–5592 www.nature.com/onc ORIGINAL ARTICLE Autophagy suppresses Ras-driven epithelial tumourigenesis by limiting the accumulation of reactive oxygen species This article has been corrected since Advance Online Publication and a corrigendum is also printed in this issue. J Manent1,2,3,4,5,12, S Banerjee2,3,4,5, R de Matos Simoes6, T Zoranovic7,13, C Mitsiades6, JM Penninger7, KJ Simpson4,5, PO Humbert3,5,8,9,10 and HE Richardson1,2,5,8,11 Activation of Ras signalling occurs in ~ 30% of human cancers; however, activated Ras alone is not sufficient for tumourigenesis. In a screen for tumour suppressors that cooperate with oncogenic Ras (RasV12)inDrosophila, we identified genes involved in the autophagy pathway. Bioinformatic analysis of human tumours revealed that several core autophagy genes, including GABARAP, correlate with oncogenic KRAS mutations and poor prognosis in human pancreatic cancer, supporting a potential tumour- suppressive effect of the pathway in Ras-driven human cancers. In Drosophila, we demonstrate that blocking autophagy at any step of the pathway enhances RasV12-driven epithelial tissue overgrowth via the accumulation of reactive oxygen species and activation of the Jun kinase stress response pathway. Blocking autophagy in RasV12 clones also results in non-cell-autonomous effects with autophagy, cell proliferation and caspase activation induced in adjacent wild-type cells. Our study has implications for understanding the interplay between perturbations in Ras signalling and autophagy in tumourigenesis,
    [Show full text]
  • Downloaded Using the R Package Cgdsr [40] and Were Used
    Cai et al. BMC Medical Genomics (2020) 13:33 https://doi.org/10.1186/s12920-020-0695-0 RESEARCH ARTICLE Open Access Specific chromatin landscapes and transcription factors couple breast cancer subtype with metastatic relapse to lung or brain Wesley L. Cai1, Celeste B. Greer1,2, Jocelyn F. Chen1, Anna Arnal-Estapé1,3, Jian Cao1,3,4, Qin Yan1,3,5,6*† and Don X. Nguyen1,3,5,6,7*† Abstract Background: Few somatic mutations have been linked to breast cancer metastasis, whereas transcriptomic differences among primary tumors correlate with incidence of metastasis, especially to the lungs and brain. However, the epigenomic alterations and transcription factors (TFs) which underlie these alterations remain unclear. Methods: To identify these, we performed RNA-seq, Chromatin Immunoprecipitation and sequencing (ChIP-seq) and Assay for Transposase-Accessible Chromatin using sequencing (ATAC-seq) of the MDA-MB-231 cell line and its brain (BrM2) and lung (LM2) metastatic sub-populations. We incorporated ATAC-seq data from TCGA to assess metastatic open chromatin signatures, and gene expression data from human metastatic datasets to nominate transcription factor biomarkers. Results: Our integrated epigenomic analyses found that lung and brain metastatic cells exhibit both shared and distinctive signatures of active chromatin. Notably, metastatic sub-populations exhibit increased activation of both promoters and enhancers. We also integrated these data with chromosome conformation capture coupled with ChIP-seq (HiChIP) derived enhancer-promoter interactions to predict enhancer-controlled pathway alterations. We found that enhancer changes are associated with endothelial cell migration in LM2, and negative regulation of epithelial cell proliferation in BrM2. Promoter changes are associated with vasculature development in LM2 and homophilic cell adhesion in BrM2.
    [Show full text]
  • Aneuploidy: Using Genetic Instability to Preserve a Haploid Genome?
    Health Science Campus FINAL APPROVAL OF DISSERTATION Doctor of Philosophy in Biomedical Science (Cancer Biology) Aneuploidy: Using genetic instability to preserve a haploid genome? Submitted by: Ramona Ramdath In partial fulfillment of the requirements for the degree of Doctor of Philosophy in Biomedical Science Examination Committee Signature/Date Major Advisor: David Allison, M.D., Ph.D. Academic James Trempe, Ph.D. Advisory Committee: David Giovanucci, Ph.D. Randall Ruch, Ph.D. Ronald Mellgren, Ph.D. Senior Associate Dean College of Graduate Studies Michael S. Bisesi, Ph.D. Date of Defense: April 10, 2009 Aneuploidy: Using genetic instability to preserve a haploid genome? Ramona Ramdath University of Toledo, Health Science Campus 2009 Dedication I dedicate this dissertation to my grandfather who died of lung cancer two years ago, but who always instilled in us the value and importance of education. And to my mom and sister, both of whom have been pillars of support and stimulating conversations. To my sister, Rehanna, especially- I hope this inspires you to achieve all that you want to in life, academically and otherwise. ii Acknowledgements As we go through these academic journeys, there are so many along the way that make an impact not only on our work, but on our lives as well, and I would like to say a heartfelt thank you to all of those people: My Committee members- Dr. James Trempe, Dr. David Giovanucchi, Dr. Ronald Mellgren and Dr. Randall Ruch for their guidance, suggestions, support and confidence in me. My major advisor- Dr. David Allison, for his constructive criticism and positive reinforcement.
    [Show full text]
  • Identification of Differentially Expressed Genes in Human Bladder Cancer Through Genome-Wide Gene Expression Profiling
    521-531 24/7/06 18:28 Page 521 ONCOLOGY REPORTS 16: 521-531, 2006 521 Identification of differentially expressed genes in human bladder cancer through genome-wide gene expression profiling KAZUMORI KAWAKAMI1,3, HIDEKI ENOKIDA1, TOKUSHI TACHIWADA1, TAKENARI GOTANDA1, KENGO TSUNEYOSHI1, HIROYUKI KUBO1, KENRYU NISHIYAMA1, MASAKI TAKIGUCHI2, MASAYUKI NAKAGAWA1 and NAOHIKO SEKI3 1Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8520; Departments of 2Biochemistry and Genetics, and 3Functional Genomics, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan Received February 15, 2006; Accepted April 27, 2006 Abstract. Large-scale gene expression profiling is an effective CKS2 gene not only as a potential biomarker for diagnosing, strategy for understanding the progression of bladder cancer but also for staging human BC. This is the first report (BC). The aim of this study was to identify genes that are demonstrating that CKS2 expression is strongly correlated expressed differently in the course of BC progression and to with the progression of human BC. establish new biomarkers for BC. Specimens from 21 patients with pathologically confirmed superficial (n=10) or Introduction invasive (n=11) BC and 4 normal bladder samples were studied; samples from 14 of the 21 BC samples were subjected Bladder cancer (BC) is among the 5 most common to microarray analysis. The validity of the microarray results malignancies worldwide, and the 2nd most common tumor of was verified by real-time RT-PCR. Of the 136 up-regulated the genitourinary tract and the 2nd most common cause of genes we detected, 21 were present in all 14 BCs examined death in patients with cancer of the urinary tract (1-7).
    [Show full text]
  • The Landscape of Human Mutually Exclusive Splicing
    bioRxiv preprint doi: https://doi.org/10.1101/133215; this version posted May 2, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. The landscape of human mutually exclusive splicing Klas Hatje1,2,#,*, Ramon O. Vidal2,*, Raza-Ur Rahman2, Dominic Simm1,3, Björn Hammesfahr1,$, Orr Shomroni2, Stefan Bonn2§ & Martin Kollmar1§ 1 Group of Systems Biology of Motor Proteins, Department of NMR-based Structural Biology, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany 2 Group of Computational Systems Biology, German Center for Neurodegenerative Diseases, Göttingen, Germany 3 Theoretical Computer Science and Algorithmic Methods, Institute of Computer Science, Georg-August-University Göttingen, Germany § Corresponding authors # Current address: Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland $ Current address: Research and Development - Data Management (RD-DM), KWS SAAT SE, Einbeck, Germany * These authors contributed equally E-mail addresses: KH: [email protected], RV: [email protected], RR: [email protected], DS: [email protected], BH: [email protected], OS: [email protected], SB: [email protected], MK: [email protected] - 1 - bioRxiv preprint doi: https://doi.org/10.1101/133215; this version posted May 2, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
    [Show full text]
  • Mai Muudatuntuu Ti on Man Mini
    MAIMUUDATUNTUU US009809854B2 TI ON MAN MINI (12 ) United States Patent ( 10 ) Patent No. : US 9 ,809 ,854 B2 Crow et al. (45 ) Date of Patent : Nov . 7 , 2017 Whitehead et al. (2005 ) Variation in tissue - specific gene expression ( 54 ) BIOMARKERS FOR DISEASE ACTIVITY among natural populations. Genome Biology, 6 :R13 . * AND CLINICAL MANIFESTATIONS Villanueva et al. ( 2011 ) Netting Neutrophils Induce Endothelial SYSTEMIC LUPUS ERYTHEMATOSUS Damage , Infiltrate Tissues, and Expose Immunostimulatory Mol ecules in Systemic Lupus Erythematosus . The Journal of Immunol @(71 ) Applicant: NEW YORK SOCIETY FOR THE ogy , 187 : 538 - 552 . * RUPTURED AND CRIPPLED Bijl et al. (2001 ) Fas expression on peripheral blood lymphocytes in MAINTAINING THE HOSPITAL , systemic lupus erythematosus ( SLE ) : relation to lymphocyte acti vation and disease activity . Lupus, 10 :866 - 872 . * New York , NY (US ) Crow et al . (2003 ) Microarray analysis of gene expression in lupus. Arthritis Research and Therapy , 5 :279 - 287 . * @(72 ) Inventors : Mary K . Crow , New York , NY (US ) ; Baechler et al . ( 2003 ) Interferon - inducible gene expression signa Mikhail Olferiev , Mount Kisco , NY ture in peripheral blood cells of patients with severe lupus . PNAS , (US ) 100 ( 5 ) : 2610 - 2615. * GeneCards database entry for IFIT3 ( obtained from < http : / /www . ( 73 ) Assignee : NEW YORK SOCIETY FOR THE genecards. org /cgi - bin / carddisp .pl ? gene = IFIT3 > on May 26 , 2016 , RUPTURED AND CRIPPLED 15 pages ) . * Navarra et al. (2011 ) Efficacy and safety of belimumab in patients MAINTAINING THE HOSPITAL with active systemic lupus erythematosus : a randomised , placebo FOR SPECIAL SURGERY , New controlled , phase 3 trial . The Lancet , 377 :721 - 731. * York , NY (US ) Abramson et al . ( 1983 ) Arthritis Rheum .
    [Show full text]
  • Genome-Scale Single-Cell Mechanical Phenotyping Reveals Disease-Related Genes Involved in Mitotic Rounding
    ARTICLE DOI: 10.1038/s41467-017-01147-6 OPEN Genome-scale single-cell mechanical phenotyping reveals disease-related genes involved in mitotic rounding Yusuke Toyoda 1,2, Cedric J. Cattin3, Martin P. Stewart 3,4,5, Ina Poser1, Mirko Theis6, Teymuras V. Kurzchalia1, Frank Buchholz1,6, Anthony A. Hyman1 & Daniel J. Müller 3 To divide, most animal cells drastically change shape and round up against extracellular confinement. Mitotic cells facilitate this process by generating intracellular pressure, which the contractile actomyosin cortex directs into shape. Here, we introduce a genome-scale microcantilever- and RNAi-based approach to phenotype the contribution of > 1000 genes to the rounding of single mitotic cells against confinement. Our screen analyzes the rounding force, pressure and volume of mitotic cells and localizes selected proteins. We identify 49 genes relevant for mitotic rounding, a large portion of which have not previously been linked to mitosis or cell mechanics. Among these, depleting the endoplasmic reticulum-localized protein FAM134A impairs mitotic progression by affecting metaphase plate alignment and pressure generation by delocalizing cortical myosin II. Furthermore, silencing the DJ-1 gene uncovers a link between mitochondria-associated Parkinson’s disease and mitotic pressure. We conclude that mechanical phenotyping is a powerful approach to study the mechanisms governing cell shape. 1 Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany. 2 Division of Cell Biology, Life Science Institute, Kurume University, Hyakunen-Kohen 1-1, Kurume, Fukuoka 839-0864, Japan. 3 Department of Biosystems Science and Engineering (D-BSSE), Eidgenössische Technische Hochschule (ETH) Zurich, Mattenstrasse 26, 4058 Basel, Switzerland.
    [Show full text]
  • Mouse Atg10 Conditional Knockout Project (CRISPR/Cas9)
    https://www.alphaknockout.com Mouse Atg10 Conditional Knockout Project (CRISPR/Cas9) Objective: To create a Atg10 conditional knockout Mouse model (C57BL/6J) by CRISPR/Cas-mediated genome engineering. Strategy summary: The Atg10 gene (NCBI Reference Sequence: NM_025770 ; Ensembl: ENSMUSG00000021619 ) is located on Mouse chromosome 13. 8 exons are identified, with the ATG start codon in exon 2 and the TGA stop codon in exon 7 (Transcript: ENSMUST00000022119). Exon 2 will be selected as conditional knockout region (cKO region). Deletion of this region should result in the loss of function of the Mouse Atg10 gene. To engineer the targeting vector, homologous arms and cKO region will be generated by PCR using BAC clone RP23-326J5 as template. Cas9, gRNA and targeting vector will be co-injected into fertilized eggs for cKO Mouse production. The pups will be genotyped by PCR followed by sequencing analysis. Note: Exon 2 starts from about 100% of the coding region. The knockout of Exon 2 will result in frameshift of the gene. The size of intron 1 for 5'-loxP site insertion: 15505 bp, and the size of intron 2 for 3'-loxP site insertion: 54005 bp. The size of effective cKO region: ~605 bp. The cKO region does not have any other known gene. Page 1 of 7 https://www.alphaknockout.com Overview of the Targeting Strategy Wildtype allele gRNA region 5' gRNA region 3' 1 2 8 Targeting vector Targeted allele Constitutive KO allele (After Cre recombination) Legends Exon of mouse Atg10 Homology arm cKO region loxP site Page 2 of 7 https://www.alphaknockout.com Overview of the Dot Plot Window size: 10 bp Forward Reverse Complement Sequence 12 Note: The sequence of homologous arms and cKO region is aligned with itself to determine if there are tandem repeats.
    [Show full text]