Modeling and Experimental Validation of a Parallel Microrobot for Biomanipulation
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Improved Design of a Three-Degree of Freedom Hip Exoskeleton Based on Biomimetic Parallel Structure
Improved Design of a Three-degree of Freedom Hip Exoskeleton Based on Biomimetic Parallel Structure by Min Pan A Thesis Submitted in Partial Fulfillment of the requirements for the Degree of Master of Applied Science in The Faculty of Engineering and Applied Science Mechanical Engineering Program University of Ontario Institute of Technology July, 2011 © Min Pan, 2011 Abstract The external skeletons, Exoskeletons, are not a new research area in this highly developed world. They are widely used in helping the wearer to enhance human strength, endurance, and speed while walking with them. Most exoskeletons are designed for the whole body and are powered due to their applications and high performance needs. This thesis introduces a novel design of a three-degree of freedom parallel robotic structured hip exoskeleton, which is quite different from these existing exoskeletons. An exoskeleton unit for walking typically is designed as a serial mechanism which is used for the entire leg or entire body. This thesis presents a design as a partial manipulator which is only for the hip. This has better advantages when it comes to marketing the product, these include: light weight, easy to wear, and low cost. Furthermore, most exoskeletons are designed for lower body are serial manipulators, which have large workspace because of their own volume and occupied space. This design introduced in this thesis is a parallel mechanism, which is more stable, stronger and more accurate. These advantages benefit the wearers who choose this product. This thesis focused on the analysis of the structure of this design, and verifies if the design has a reasonable and reliable structure. -
Design Procedure for a Fast and Accurate Parallel Manipulator Sébastien Briot, Stéphane Caro, Coralie Germain
Design Procedure for a Fast and Accurate Parallel Manipulator Sébastien Briot, Stéphane Caro, Coralie Germain To cite this version: Sébastien Briot, Stéphane Caro, Coralie Germain. Design Procedure for a Fast and Accurate Parallel Manipulator. Journal of Mechanisms and Robotics, American Society of Mechanical Engineers, 2017, 9 (6), pp.061012. 10.1115/1.4038009. hal-01587975 HAL Id: hal-01587975 https://hal.archives-ouvertes.fr/hal-01587975 Submitted on 13 Oct 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Design Procedure for a Fast and Accurate Parallel Manipulator Sebastien´ Briot∗ Stephane´ Caro CNRS CNRS Laboratoire des Sciences Laboratoire des Sciences du Numerique´ de Nantes (LS2N) du Numerique´ de Nantes (LS2N) UMR CNRS 6004 UMR CNRS 6004 44321 Nantes, France 44321 Nantes, France Email: [email protected] Email: [email protected] Coralie Germain Agrocampus Ouest 35042 Rennes, France Email: [email protected] printed circuit boards. This paper presents a design procedure for a two- Several robot architectures with four degrees of free- degree of freedom translational parallel manipulator, named dom (dof) and generating Schonflies¨ motions [2] for high- IRSBot-2. This design procedure aims at determining the speed operations have been proposed in the past decades [1, optimal design parameters of the IRSBot-2 such that the 3–6]. -
Robot Control and Programming: Class Notes Dr
NAVARRA UNIVERSITY UPPER ENGINEERING SCHOOL San Sebastian´ Robot Control and Programming: Class notes Dr. Emilio Jose´ Sanchez´ Tapia August, 2010 Servicio de Publicaciones de la Universidad de Navarra 987‐84‐8081‐293‐1 ii Viaje a ’Agra de Cimientos’ Era yo todav´ıa un estudiante de doctorado cuando cayo´ en mis manos una tesis de la cual me llamo´ especialmente la atencion´ su cap´ıtulo de agradecimientos. Bueno, realmente la tesis no contaba con un cap´ıtulo de ’agradecimientos’ sino mas´ bien con un cap´ıtulo alternativo titulado ’viaje a Agra de Cimientos’. En dicho capitulo, el ahora ya doctor redacto´ un pequeno˜ cuento epico´ inventado por el´ mismo. Esta pequena˜ historia relataba las aventuras de un caballero, al mas´ puro estilo ’Tolkiano’, que cabalgaba en busca de un pueblo recondito.´ Ya os podeis´ imaginar que dicho caballero, no era otro sino el´ mismo, y que su viaje era mas´ bien una odisea en la cual tuvo que superar mil y una pruebas hasta conseguir su objetivo, llegar a Agra de Cimientos (terminar su tesis). Solo´ deciros que para cada una de esas pruebas tuvo la suerte de encontrar a una mano amiga que le ayudara. En mi caso, no voy a presentarte una tesis, sino los apuntes de la asignatura ”Robot Control and Programming´´ que se imparte en ingles.´ Aunque yo no tengo tanta imaginacion´ como la de aquel doctorando para poder contaros una historia, s´ı que he tenido la suerte de encontrar a muchas personas que me han ayudado en mi viaje hacia ’Agra de Cimientos’. Y eso es, amigo lector, al abrir estas notas de clase vas a ser testigo del final de un viaje que he realizado de la mano de mucha gente que de alguna forma u otra han contribuido en su mejora. -
Contributions to Adaptive Mission Planning for Cooperative Robotics in the Internet of Things
Universidad Politécnica de Madrid Departamento de Ingeniería Telemática y Electrónica Contributions to Adaptive Mission Planning for Cooperative Robotics in the Internet of Things Author: Néstor Lucas Martínez, MSc Supervisor: José Fernán Martínez Ortega, PhD This dissertation is submitted for the degree of PhD. in Systems and Services Engineering for the Information Society Escuela Técnica Superior de Ingeniería y Sistemas de Telecomunicación March 2021 DOCTORADO EN INGENIERÍA DE SISTEMAS Y SERVICIOS PARA LA SOCIEDAD DE LA INFORMACIÓN Tesis Doctoral Título Contributions to Adaptive Mission Planning for Cooperative Robotics in the Internet of Things Autor Néstor Lucas Martínez VºBº Director Dr. José-Fernán Martínez Ortega Tribunal Presidente M. Encarnación Pastor Martín Secretario Lourdes López Santidrián Vocal Celeste Campo Vázquez Vocal Miguel Ángel López Carmona Vocal Roemi Emilia Fernández Saavedra Suplente Juan Ramón Velasco Pérez Suplente Rodolfo E. Haber Guerra Lugar de lectura E.T.S.I. y Sistemas de Telecomunicación (U.P.M.) Fecha de lectura Calificación El Presidente El secretario Los vocales Tesis Doctoral para la obtención del título de Doctor por la Universidad Politécnica de Madrid This Ph.D. Thesis is dedicated to my family and friends. With a special memory to all the people affected by the COVID-19 global pandemic. Declaration I hereby declare that except where specific reference is made to the work of others, the contents of this dissertation are original and have not been submitted in whole or in part for consideration for any other degree or qualification in this, or any other university. This dissertation is my own work and contains nothing which is the outcome of work done in collaboration with others, except as specified in the text and Acknowledgements. -
Kinematic Analysis of a 3-UPU Parallel Robots Using the Ostrowski
Kinematic analysis of a 3-UPU parallel Robot using the Ostrowski-Homotopy Continuation Milad Shafiee-Ashtiani, Aghil Yousefi-Koma, Sahba Iravanimanesh, Amir Siavosh Bashardoust Center of Advanced Systems and Technologies (CAST) School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Iran. [email protected], [email protected], [email protected], [email protected] Abstract— The direct kinematics analysis is the foundation of coupled nonlinear algebraic equations, such as the Newton– implementation of real world application of parallel manipulators. Raphson method which is efficient in the convergence speed [7]. For most parallel manipulators the direct kinematics is Unfortunately, there always needs to guess the initial value in challenging. In this paper, for the first time a fast and efficient Homotopy Continuation Method, called the Ostrowski Homotopy the iteration process. Good initial guess value may converge to continuation method has been implemented to solve the direct and solutions but bad initial guess value usually leads to divergence. inverse kinematics problem of the parallel manipulators. This Homotopy continuation method (HCM) is a type of perturbation method has advantage over conventional numerical iteration and Homotopy method [8-9]. It can guarantee the answer by a methods, which is not rely on the initial values and is more efficient certain path, if the auxiliary Homotopy function is chosen well. than other continuation method and it can find all solutions of It does not have the drawbacks of conventional numerical equations without divergence just by changing auxiliary Homotopy function. Numerical example and simulation was done algorithms, in particular the requirement of good initial guess to solve the direct kinematic problem of the 3-UPU parallel values and the problem of convergence [10]. -
Manipulators and Their Application to Material Handling Automation
A Class of “Parallel-Serial” Manipulators and Their Application to Material Handling Automation Zlatko Sotirov Genmark Automation, Inc. 1213 Elko Drive, Sunnyvale CA 94089, USA Introduction The manipulating robots recently performing the material handling in the semiconductor industry can be classified into three major categories: robots with up to 4 Degrees Of Freedom (DOF), working in cylindrical coordinates; universal articulated arms with 6 or more DOF; and hybrid parallel-series manipulators with 6 or more DOF combining together the motion characteristics of the cylindrical robots and of a special kind of closed- loop mechanisms, available in the industry since the early 1980s. Regardless of the differences in the mechanical properties and motion characteristics of the robots from the different categories, the requirement imposed to them by the manipulating tasks they perform are always the same: fast and reliable material handling; long reach for small footprint; compact size and light weight; motion efficiency and ability to comply with the mechanical constraints imposed by the equipment; high ratio of the payload and the weight of the robot; cost-effectiveness, etc.. For more than a decade the cylindrical TRZ robots have been favorably used in a variety of processing machines, until the in-line equipment placement was imposed and identified as a standard by I300I. Being especially designed to work with radially arranged modules the TRZ robots became deficient to serve in-line arranged equipment because of lack of degrees of freedom. Another challenges to these robots lately inspired by the chipmakers are associated with the increased wafer sizes and the weight of the special end-effectors guaranteeing non-contact (based on Bernuli’s principle), or edge-gripping support of the wafers. -
Insectomorphic Cargo-Carrying Robot on a Raft
CLAWAR 2020: 23rd International Conference on Climbing and Walking Robots and the Support Technologies for Mobile Machines, Moscow, Russian Federation, 24-26 August 2020. https://doi.org/10.13180/clawar.2020.24-26.08.14 INSECTOMORPHIC CARGO-CARRYING ROBOT ON A RAFT YURY F. GOLUBEV and VICTOR V. KORYANOV Keldysh Institute of Applied Mathematics, Russian Academy of Sciences, Moscow, 125047 Russia E-mail: [email protected], [email protected] The algorithm of the hexapod robot motion control is described. The aim of the motion is to ship the robot on a raft together with a cargo to the other shore of a body of water in the simple case when the robot imparts to the raft an initial push from the shore. The motion consists of transporting the cargo from the shore to the raft, moving the cargo across the moving raft, and carrying the cargo from the raft to the other shore. The algorithm was worked out using computer simulation within the complete dynamical model of motion taking into account the nonstationary action of water on the raft. Computer simulation was performed using the Universal Mechanism software package. Numerical results prove the validity of the algorithm if enough data about the motion for the purpose of control is available. 1. Introduction An autonomous mobile robot designed for working on a rough terrain must be able to use environment conditions and various objects available in the area not only as a means for its motion [1] but also as a means for shipping useful cargos [2-4]. A hexapod mobile robot can potentially accomplish such tasks because it is able to release weight from a pair of its legs without violating the static stability [1]. -
Novel Design and Analysis of Parallel Robotic Mechanisms
NOVEL DESIGN AND ANALYSIS OF PARALLEL ROBOTIC MECHANISMS ZHONGXING YANG A DISSERTATION SUBMITTED TO THE FACULTY OF GRADUATE STUDIES IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY GRADUATE PROGRAM IN MECHANICAL ENGINEERING YORK UNIVERSITY TORONTO, ONTARIO AUGUST 2019 © ZHONGXING YANG, 2019 ABSTRACT A parallel manipulator has several limbs that connect and actuate an end effector from the base. The design of parallel manipulators usually follows the process of prescribed task, design evaluation, and optimization. This dissertation focuses on interference-free designs of dynamically balanced manipulators and deployable manipulators of various degrees of freedom (DOFs). 1) Dynamic balancing is an approach to reduce shaking loads in motion by including balancing components. The shaking loads could cause noise and vibration. The balancing components may cause link interference and take more actuation energy. The 2-DOF (2-RR)R or 3-DOF (2-RR)R planar manipulator, and 3-DOF 3-RRS spatial manipulator are designed interference-free and with structural adaptive features. The structural adaptions and motion planning are discussed for energy minimization. A balanced 3-DOF (2-RR)R and a balanced 3-DOF 3-RRS could be combined for balanced 6-DOF motion. 2) Deployable feature in design allows a structure to be folded. The research in deployable parallel structures of non-configurable platform is rare. This feature is demanded, for example the outdoor solar tracking stand has non-configurable platform and may need to lie-flat on floor at stormy weathers to protect the structure. The 3-DOF 3-PRS and 3-DOF 3-RPS are re-designed to have deployable feature. -
DESIGN and CONTROL of a THREE DEGREE-OF-FREEDOM PLANAR PARALLEL ROBOT a Thesis Presented to the Faculty of the Fritz J. and Dolo
7 / ~'!:('I DESIGN AND CONTROL OF A THREE DEGREE-OF-FREEDOM PLANAR PARALLEL ROBOT A Thesis Presented to The Faculty of the Fritz J. and Dolores H.Russ College of Engineering and Technology Ohio University In partial Fulfillment of the Requirements for the Degree Master of Science by Atul Ravindra Joshi August 2003 iii TABLE OF CONTENTS LIST OF FIGURES v CHAPTERl: INTRODUCTION 1 1.1 Introduction of Planar Parallel Robots 1 1.2 Literature Review 3 1.3 Objective of the thesis 5 CHAPTER2: PARALLEL ROBOT KINEMATICS 6 2.1 Pose Kinematics 6 2.1.1 Inverse Pose Kinematics 9 2.1.2 Forward Pose Kinematics 11 2.2 Rate Kinematics 15 2.3 Workspace Analysis 20 CHAPTER3: PARALLEL ROBOT HARDWARE IMPLEMENTATION 24 3.1 Design And Construction Of 3-RPR Planar Parallel Robot 24 3.2 Control Of3-RPR Planar Parallel Robot 34 CHAPTER4: EXPERIMENTATION AND RESULTS 41 CHAPTERS: CONCLUSIONS 50 S.1 Concluding Statement 50 5.2 Future Work 51 IV REFERENCES 53 APPENDIX A: LVDT CALLIBRATION 56 APPENDIX B: OPERATION PROCEDURE 61 APPENDIX C: INVERSE POSE KINEMATICS CODE 64 ABSTRACT v LIST OF FIGURES Figure Page 1.1 3-RPR Diagram 2 1.2 3-RPR Hardware 3 2.1 3-RPR Planar Parallel Manipulator Kinematics Diagram 7 2.2 3-RPR Manipulator Hardware 8 2.3 Inverse Pose Kinematics 10 2.4 Velocity Kinematics 16 2.5 Angle Nomenclatures 17 2.6 Example of the 3-RPR Reachable Workspace 21 2.3 Workspace analysis by geometrical method 22 3.1 Summary of the 3-RPR Hardware Configuration 28 3.2 3-RPR Planar Parallel Robot Hardware 29 3.3 External MultiQ Boards, Solenoid Valves, and Power Supply -
Comparison of the Characteristics Between Serial and Parallel Robots
ACTA TEHNICA CORVINIENSIS – Bulletin of Engineering Tome VII [2014] Fascicule 1 [January – March] ISSN: 2067 – 3809 1. Zoran PANDILOV, 2. Vladimir DUKOVSKI COMPARISON OF THE CHARACTERISTICS BETWEEN SERIAL AND PARALLEL ROBOTS University “Sv. Kiriil I Metodij”, Faculty of Mechanical Engineering-Skopje, Karpos Ii B.B., P.O.Box 464, Mk-1000, Skopje, Republic of MACEDONIA Abstract: This paper gives survey of the position analysis, jacobian and singularity analysis, stiffness analysis, dynamics and applications of serial and parallel robots. Also a detailed comparison of the characteristics of serial and parallel robots and their advantages and disadvantages are presented. Keywords: serial robots, parallel robots, comparison INTRODUCTION - Introduction to robotics manufacturing implements through variable Robotics is a field of modern technology that programmed motions for the performance of crosses traditional engineering boundaries. specific manufacturing tasks. Understanding the complexity of robots and their The definition of a robot used by the Japanese applications requires knowledge of mechanical Industrial Robot Association widens these engineering, electrical engineering, systems and definitions in order to include arms controlled industrial engineering, computer science, directly by humans and also fixed sequence economics, and mathematics. manipulators which are not re-programmable. The term robot was first introduced into The key element in the above definitions is the re- vocabulary by the Czech playwright Karel Capek in programmability of robots. It is the computer his 1920 play Rossum’s Universal Robots, the brain that gives the robot its utility and word “robota” being the Czech word for work. adaptability. The so-called robotics revolution is, in Since then the term has been applied to a great fact, part of the larger computer revolution. -
Artificial Intelligence Definitions Ai Based
Sold to Muhammad Shakur (#7XO5FTFO) ARTIFICIAL INTELLIGENCE: Dangers to Humanity Table of Contents ARTIFICIAL INTELLIGENCE DEFINITIONS Artificial Narrow Intelligence Artificial General Intelligence Artificial Super Intelligence Notice: AI BASED COMPANIES, ORGANIZATIONS, APPS AND PERSONS OF INTEREST. Huawei SECTION 2 Human Targeting Capability SECTION 3 Drone Swarm Automation Via Robots, Command Centers & AI Sold to Muhammad Shakur (#7XO5FTFO) MICRO-BOTIC (MBT) TERRORISM, ASSASSINATION & ESPIONAGE WITH BIO-METRIC SOFTWARE The Insect Drone CHINA DEPLOYS ROBOT POLICE ON CITIZENS 500 Smart Cities, Surveillance, and Tracking of Human Being’s via 5G and Robotics SECTION 4 China’s Military has Access to Bio-Metric & Facial Recognition Data of 6 Billion People World-Wide How they Extract your Data & Track You AI Automated Tracking at Shopping Centers SECTION 5 ONE BELT ONE ROAD – Bio-Digital Social Programming TRUMPS HUAWEI FIGHT IS REALLY ABOUT AI AUTOMATED ROBOTICS MOBILIZED WITH 5G Sold to Muhammad Shakur (#7XO5FTFO) HUMAN ORGAN TRAFFICKING & CONCENTRATION CAMPS IN CHINA ARTIFICIAL INTELLIGENCE WITH FACIAL RECOGNITION HUNTS HONG KONG YOUTH FOR CAPTURE, RAPE & SO CALLED SUICIDE China has Access to 6 Billion Peoples Bio-Metric/Facial Recognition Data SECTION 7 Bio-Digital Social Programming SECTION 8 Smart Phones, IoT, Apps, Computers, and Electronic Devices SECTION 9 AI Platforms Produce Destruction Codes Artificial Intelligence Sex Robots Programmed for Deep Learning Sold to Muhammad Shakur (#7XO5FTFO) Neurological Damage From Connecting Robot -
To Download the PDF File
LARM2 Papers 2020 Alberto Rovetta and Marco Ceccarelli, Giovanni Bianchi (1924–2003), in: M. Ceccarelli and Y. Fang (eds.), Distinguished Figures in Mechanism and Machine Science- Part 4, History of Mechanism and Machine Science 38, Springer Nature Switzerland AG 2020, pp.1-13. https://doi.org/10.1007/978-3-030-32398-1_1 Marco Ceccarelli and Pier Gabriele Molari, Franceswco di Giorgio (1439-1501), in: M. Ceccarelli and Y. Fang (eds.), Distinguished Figures in Mechanism and Machine Science- Part 4, History of Mechanism and Machine Science 38, Springer Nature Switzerland AG 2020, pp.47-66. https://doi.org/10.1007/978-3-030-32398-1_3 N. Selezneva, S. Vorotnikov, A. Vukolov, D. Saschenko and Marco Ceccarelli, Alexander Alexandrovich Golovin (1939–2013), in: M. Ceccarelli and Y. Fang (eds.), Distinguished Figures in Mechanism and Machine Science- Part 4, History of Mechanism and Machine Science 38, Springer Nature Switzerland AG 2020, pp.67-84. https://doi.org/10.1007/978-3-030-32398-1_4 Marco Ceccarelli and Alessandro Gasparetto, Cesare Rossi (1955–2017), in: M. Ceccarelli and Y. Fang (eds.), Distinguished Figures in Mechanism and Machine Science- Part 4, History of Mechanism and Machine Science 38, Springer Nature Switzerland AG 2020, pp.115-125. https://doi.org/10.1007/978-3-030-32398-1_7 Claudia Aide González-Cruz and Marco Ceccarelli, Chapter 22 - Vibration Analysis of Gearboxes, in: V. Goldfarb et al. (eds.), New Approaches to Gear Design and Production, Mechanisms and Machine Science 81, Springer Nature Switzerland AG 2020, pp.473-494. https://doi.org/10.1007/978-3-030-34945-5_22 Marco Ceccarelli, End-Term Message from the IFToMM President, Journal of Vibration Engineering & Technologies, ISSN 2523- 3920.