Open Source Bioimage Informatics Tools for the Analysis of DNA Damage and Associated Biomarkers
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
FACIAL RECOGNITION: a Or FACIALRT RECOGNITION: a Or RT Facial Recognition – Art Or Science?
FACIAL RECOGNITION: A or FACIALRT RECOGNITION: A or RT Facial Recognition – Art or Science? Both the public and law enforcement often misunderstand facial recognition technology. Hollywood would have you believe that with facial recognition technology, law enforcement can identify an individual from an image, while also accessing all of their personal information. The “Big Brother” narrative makes good television, but it vastly misrepresents how law enforcement agencies actually use facial recognition. Additionally, crime dramas like “CSI,” and its endless spinoffs, spin the narrative that law enforcement easily uses facial recognition Roger Rodriguez joined to generate matches. In reality, the facial recognition process Vigilant Solutions after requires a great deal of manual, human analysis and an image of serving over 20 years a certain quality to make a possible match. To date, the quality with the NYPD, where he threshold for images has been hard to reach and has often spearheaded the NYPD’s first frustrated law enforcement looking to generate effective leads. dedicated facial recognition unit. The unit has conducted Think of facial recognition as the 21st-century evolution of the more than 8,500 facial sketch artist. It holds the promise to be much more accurate, recognition investigations, but in the end it is still just the source of a lead that needs to be with over 3,000 possible matches and approximately verified and followed up by intelligent police work. 2,000 arrests. Roger’s enhancement techniques are Today, innovative facial now recognized worldwide recognition technology and have changed law techniques make it possible to enforcement’s approach generate investigative leads to the utilization of facial regardless of image quality. -
Bioimage Analysis Tools
Bioimage Analysis Tools Kota Miura, Sébastien Tosi, Christoph Möhl, Chong Zhang, Perrine Paul-Gilloteaux, Ulrike Schulze, Simon Norrelykke, Christian Tischer, Thomas Pengo To cite this version: Kota Miura, Sébastien Tosi, Christoph Möhl, Chong Zhang, Perrine Paul-Gilloteaux, et al.. Bioimage Analysis Tools. Kota Miura. Bioimage Data Analysis, Wiley-VCH, 2016, 978-3-527-80092-6. hal- 02910986 HAL Id: hal-02910986 https://hal.archives-ouvertes.fr/hal-02910986 Submitted on 3 Aug 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 2 Bioimage Analysis Tools 1 2 3 4 5 6 Kota Miura, Sébastien Tosi, Christoph Möhl, Chong Zhang, Perrine Pau/-Gilloteaux, - Ulrike Schulze,7 Simon F. Nerrelykke,8 Christian Tischer,9 and Thomas Penqo'" 1 European Molecular Biology Laboratory, Meyerhofstraße 1, 69117 Heidelberg, Germany National Institute of Basic Biology, Okazaki, 444-8585, Japan 2/nstitute for Research in Biomedicine ORB Barcelona), Advanced Digital Microscopy, Parc Científic de Barcelona, dBaldiri Reixac 1 O, 08028 Barcelona, Spain 3German Center of Neurodegenerative -
Other Departments and Institutes Courses 1
Other Departments and Institutes Courses 1 Other Departments and Institutes Courses About Course Numbers: 02-250 Introduction to Computational Biology Each Carnegie Mellon course number begins with a two-digit prefix that Spring: 12 units designates the department offering the course (i.e., 76-xxx courses are This class provides a general introduction to computational tools for biology. offered by the Department of English). Although each department maintains The course is divided into two halves. The first half covers computational its own course numbering practices, typically, the first digit after the prefix molecular biology and genomics. It examines important sources of biological indicates the class level: xx-1xx courses are freshmen-level, xx-2xx courses data, how they are archived and made available to researchers, and what are sophomore level, etc. Depending on the department, xx-6xx courses computational tools are available to use them effectively in research. may be either undergraduate senior-level or graduate-level, and xx-7xx In the process, it covers basic concepts in statistics, mathematics, and courses and higher are graduate-level. Consult the Schedule of Classes computer science needed to effectively use these resources and understand (https://enr-apps.as.cmu.edu/open/SOC/SOCServlet/) each semester for their results. Specific topics covered include sequence data, searching course offerings and for any necessary pre-requisites or co-requisites. and alignment, structural data, genome sequencing, genome analysis, genetic variation, gene and protein expression, and biological networks and pathways. The second half covers computational cell biology, including biological modeling and image analysis. It includes homework requiring Computational Biology Courses modification of scripts to perform computational analyses. -
An End-To-End System for Automatic Characterization of Iba1 Immunopositive Microglia in Whole Slide Imaging
Neuroinformatics (2019) 17:373–389 https://doi.org/10.1007/s12021-018-9405-x ORIGINAL ARTICLE An End-to-end System for Automatic Characterization of Iba1 Immunopositive Microglia in Whole Slide Imaging Alexander D. Kyriazis1 · Shahriar Noroozizadeh1 · Amir Refaee1 · Woongcheol Choi1 · Lap-Tak Chu1 · Asma Bashir2 · Wai Hang Cheng2 · Rachel Zhao2 · Dhananjay R. Namjoshi2 · Septimiu E. Salcudean3 · Cheryl L. Wellington2 · Guy Nir4 Published online: 8 November 2018 © Springer Science+Business Media, LLC, part of Springer Nature 2018 Abstract Traumatic brain injury (TBI) is one of the leading causes of death and disability worldwide. Detailed studies of the microglial response after TBI require high throughput quantification of changes in microglial count and morphology in histological sections throughout the brain. In this paper, we present a fully automated end-to-end system that is capable of assessing microglial activation in white matter regions on whole slide images of Iba1 stained sections. Our approach involves the division of the full brain slides into smaller image patches that are subsequently automatically classified into white and grey matter sections. On the patches classified as white matter, we jointly apply functional minimization methods and deep learning classification to identify Iba1-immunopositive microglia. Detected cells are then automatically traced to preserve their complex branching structure after which fractal analysis is applied to determine the activation states of the cells. The resulting system detects white matter regions with 84% accuracy, detects microglia with a performance level of 0.70 (F1 score, the harmonic mean of precision and sensitivity) and performs binary microglia morphology classification with a 70% accuracy. -
An Introduction to Image Analysis Using Imagej
An introduction to image analysis using ImageJ Mark Willett, Imaging and Microscopy Centre, Biological Sciences, University of Southampton. Pete Johnson, Biophotonics lab, Institute for Life Sciences University of Southampton. 1 “Raw Images, regardless of their aesthetics, are generally qualitative and therefore may have limited scientific use”. “We may need to apply quantitative methods to extrapolate meaningful information from images”. 2 Examples of statistics that can be extracted from image sets . Intensities (FRET, channel intensity ratios, target expression levels, phosphorylation etc). Object counts e.g. Number of cells or intracellular foci in an image. Branch counts and orientations in branching structures. Polarisations and directionality . Colocalisation of markers between channels that may be suggestive of structure or multiple target interactions. Object Clustering . Object Tracking in live imaging data. 3 Regardless of the image analysis software package or code that you use….. • ImageJ, Fiji, Matlab, Volocity and IMARIS apps. • Java and Python coding languages. ….image analysis comprises of a workflow of predefined functions which can be native, user programmed, downloaded as plugins or even used between apps. This is much like a flow diagram or computer code. 4 Here’s one example of an image analysis workflow: Apply ROI Choose Make Acquisition Processing to original measurement measurements image type(s) Thresholding Save to ROI manager Make binary mask Make ROI from binary using “Create selection” Calculate x̄, Repeat n Chart data SD, TTEST times and interpret and Δ 5 A few example Functions that can inserted into an image analysis workflow. You can mix and match them to achieve the analysis that you want. -
A Review on Image Segmentation Clustering Algorithms Devarshi Naik , Pinal Shah
Devarshi Naik et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 3289 - 3293 A Review on Image Segmentation Clustering Algorithms Devarshi Naik , Pinal Shah Department of Information Technology, Charusat University CSPIT, Changa, di.Anand, GJ,India Abstract— Clustering attempts to discover the set of consequential groups where those within each group are more closely related to one another than the others assigned to different groups. Image segmentation is one of the most important precursors for image processing–based applications and has a crucial impact on the overall performance of the developed systems. Robust segmentation has been the subject of research for many years, but till now published work indicates that most of the developed image segmentation algorithms have been designed in conjunction with particular applications. The aim of the segmentation process consists of dividing the input image into several disjoint regions with similar characteristics such as colour and texture. Keywords— Clustering, K-means, Fuzzy C-means, Expectation Maximization, Self organizing map, Hierarchical, Graph Theoretic approach. Fig. 1 Similar data points grouped together into clusters I. INTRODUCTION II. SEGMENTATION ALGORITHMS Images are considered as one of the most important Image segmentation is the first step in image analysis medium of conveying information. The main idea of the and pattern recognition. It is a critical and essential image segmentation is to group pixels in homogeneous component of image analysis system, is one of the most regions and the usual approach to do this is by ‘common difficult tasks in image processing, and determines the feature. Features can be represented by the space of colour, quality of the final result of analysis. -
Image Analysis for Face Recognition
Image Analysis for Face Recognition Xiaoguang Lu Dept. of Computer Science & Engineering Michigan State University, East Lansing, MI, 48824 Email: [email protected] Abstract In recent years face recognition has received substantial attention from both research com- munities and the market, but still remained very challenging in real applications. A lot of face recognition algorithms, along with their modifications, have been developed during the past decades. A number of typical algorithms are presented, being categorized into appearance- based and model-based schemes. For appearance-based methods, three linear subspace analysis schemes are presented, and several non-linear manifold analysis approaches for face recognition are briefly described. The model-based approaches are introduced, including Elastic Bunch Graph matching, Active Appearance Model and 3D Morphable Model methods. A number of face databases available in the public domain and several published performance evaluation results are digested. Future research directions based on the current recognition results are pointed out. 1 Introduction In recent years face recognition has received substantial attention from researchers in biometrics, pattern recognition, and computer vision communities [1][2][3][4]. The machine learning and com- puter graphics communities are also increasingly involved in face recognition. This common interest among researchers working in diverse fields is motivated by our remarkable ability to recognize peo- ple and the fact that human activity is a primary concern both in everyday life and in cyberspace. Besides, there are a large number of commercial, security, and forensic applications requiring the use of face recognition technologies. These applications include automated crowd surveillance, ac- cess control, mugshot identification (e.g., for issuing driver licenses), face reconstruction, design of human computer interface (HCI), multimedia communication (e.g., generation of synthetic faces), 1 and content-based image database management. -
Analysis of Artificial Intelligence Based Image Classification Techniques Dr
Journal of Innovative Image Processing (JIIP) (2020) Vol.02/ No. 01 Pages: 44-54 https://www.irojournals.com/iroiip/ DOI: https://doi.org/10.36548/jiip.2020.1.005 Analysis of Artificial Intelligence based Image Classification Techniques Dr. Subarna Shakya Professor, Department of Electronics and Computer Engineering, Central Campus, Institute of Engineering, Pulchowk, Tribhuvan University. Email: [email protected]. Abstract: Time is an essential resource for everyone wants to save in their life. The development of technology inventions made this possible up to certain limit. Due to life style changes people are purchasing most of their needs on a single shop called super market. As the purchasing item numbers are huge, it consumes lot of time for billing process. The existing billing systems made with bar code reading were able to read the details of certain manufacturing items only. The vegetables and fruits are not coming with a bar code most of the time. Sometimes the seller has to weight the items for fixing barcode before the billing process or the biller has to type the item name manually for billing process. This makes the work double and consumes lot of time. The proposed artificial intelligence based image classification system identifies the vegetables and fruits by seeing through a camera for fast billing process. The proposed system is validated with its accuracy over the existing classifiers Support Vector Machine (SVM), K-Nearest Neighbor (KNN), Random Forest (RF) and Discriminant Analysis (DA). Keywords: Fruit image classification, Automatic billing system, Image classifiers, Computer vision recognition. 1. Introduction Artificial intelligences are given to a machine to work on its task independently without need of any manual guidance. -
Digital Image Processing
11/11/20 DIGITAL IMAGE PROCESSING Lecture 4 Frequency domain Tammy Riklin Raviv Electrical and Computer Engineering Ben-Gurion University of the Negev Fourier Domain 1 11/11/20 2D Fourier transform and its applications Jean Baptiste Joseph Fourier (1768-1830) ...the manner in which the author arrives at these A bold idea (1807): equations is not exempt of difficulties and...his Any univariate function can analysis to integrate them still leaves something be rewritten as a weighted to be desired on the score of generality and even sum of sines and cosines of rigour. different frequencies. • Don’t believe it? – Neither did Lagrange, Laplace, Poisson and Laplace other big wigs – Not translated into English until 1878! • But it’s (mostly) true! – called Fourier Series Legendre Lagrange – there are some subtle restrictions Hays 2 11/11/20 A sum of sines and cosines Our building block: Asin(wx) + B cos(wx) Add enough of them to get any signal g(x) you want! Hays Reminder: 1D Fourier Series 3 11/11/20 Fourier Series of a Square Wave Fourier Series: Just a change of basis 4 11/11/20 Inverse FT: Just a change of basis 1D Fourier Transform 5 11/11/20 1D Fourier Transform Fourier Transform 6 11/11/20 Example: Music • We think of music in terms of frequencies at different magnitudes Slide: Hoiem Fourier Analysis of a Piano https://www.youtube.com/watch?v=6SR81Wh2cqU 7 11/11/20 Fourier Analysis of a Piano https://www.youtube.com/watch?v=6SR81Wh2cqU Discrete Fourier Transform Demo http://madebyevan.com/dft/ Evan Wallace 8 11/11/20 2D Fourier Transform -
9. Biomedical Imaging Informatics Daniel L
9. Biomedical Imaging Informatics Daniel L. Rubin, Hayit Greenspan, and James F. Brinkley After reading this chapter, you should know the answers to these questions: 1. What makes images a challenging type of data to be processed by computers, as opposed to non-image clinical data? 2. Why are there many different imaging modalities, and by what major two characteristics do they differ? 3. How are visual and knowledge content in images represented computationally? How are these techniques similar to representation of non-image biomedical data? 4. What sort of applications can be developed to make use of the semantic image content made accessible using the Annotation and Image Markup model? 5. Describe four different types of image processing methods. Why are such methods assembled into a pipeline when creating imaging applications? 6. Give an example of an imaging modality with high spatial resolution. Give an example of a modality that provides functional information. Why are most imaging modalities not capable of providing both? 7. What is the goal in performing segmentation in image analysis? Why is there more than one segmentation method? 8. What are two types of quantitative information in images? What are two types of semantic information in images? How might this information be used in medical applications? 9. What is the difference between image registration and image fusion? Given an example of each. 1 9.1. Introduction Imaging plays a central role in the healthcare process. Imaging is crucial not only to health care, but also to medical communication and education, as well as in research. -
Recognition of Electrical & Electronics Components
NATIONAL INSTITUTE OF TECHNOLOGY, ROURKELA Submission of project report for the evaluation of the final year project Titled Recognition of Electrical & Electronics Components Under the guidance of: Prof. S. Meher Dept. of Electronics & Communication Engineering NIT, Rourkela. Submitted by: Submitted by: Amiteshwar Kumar Abhijeet Pradeep Kumar Chachan 10307022 10307030 B.Tech IV B.Tech IV Dept. of Electronics & Communication Dept. of Electronics & Communication Engg. Engg. NIT, Rourkela NIT, Rourkela NATIONAL INSTITUTE OF TECHNOLOGY, ROURKELA Submission of project report for the evaluation of the final year project Titled Recognition of Electrical & Electronics Components Under the guidance of: Prof. S. Meher Dept. of Electronics & Communication Engineering NIT, Rourkela. Submitted by: Submitted by: Amiteshwar Kumar Abhijeet Pradeep Kumar Chachan 10307022 10307030 B.Tech IV B.Tech IV Dept. of Electronics & Communication Dept. of Electronics & Communication Engg. Engg. NIT, Rourkela NIT, Rourkela National Institute of Technology Rourkela CERTIFICATE This is to certify that the thesis entitled, “RECOGNITION OF ELECTRICAL & ELECTRONICS COMPONENTS ” submitted by Sri AMITESHWAR KUMAR ABHIJEET and Sri PRADEEP KUMAR CHACHAN in partial fulfillments for the requirements for the award of Bachelor of Technology Degree in Electronics & Instrumentation Engg. at National Institute of Technology, Rourkela (Deemed University) is an authentic work carried out by him under my supervision and guidance. To the best of my knowledge, the matter embodied in the thesis has not been submitted to any other University / Institute for the award of any Degree or Diploma. Date: Dr. S. Meher Dept. of Electronics & Communication Engg. NIT, Rourkela. ACKNOWLEDGEMENT I wish to express my deep sense of gratitude and indebtedness to Dr.S.Meher, Department of Electronics & Communication Engg. -
Sampling Theory for Digital Video Acquisition: the Guide for the Perplexed User
Sampling Theory for Digital Video Acquisition: The Guide for the Perplexed User Prof. Lenny Rudin1,2,3 Ping Yu1 Prof. Jean-Michel Morel2 Cognitech, Inc, Pasadena, California (1) Ecole Normale Superieure de Cachan, France(2) SMPTE Member (Hollywood Technical Section) (3) Abstract: Recently, the law enforcement community with professional interests in applications of image/video processing technology has been exposed to scientifically flawed assertions regarding the advantages and disadvantages of various hardware image acquisition devices (video digitizing cards). These assertions state a necessity of using SMPTE CCIR-601 standard when digitizing NTSC composite video signals from surveillance videotapes. In particular, it would imply that the pixel-sampling rate of 720*486 is absolutely required to capture all the available video information encoded in the composite video signal and recorded on (S)VHS videotapes. Fortunately, these statements can be directly analyzed within the strict mathematical context of Shannons Sampling Theory, and shown to be wrong. Here we apply the classical Shannon-Nyquist results to the process of digitizing composite analog video from videotapes to dispel the theoretically unfounded, wrong assertions. Introduction: The field of image processing is a mature interdisciplinary science that spans the fields of electrical engineering, applied mathematics, and computer science. Over the last sixty years, this field accumulated fundamental results from the above scientific disciplines. In particular, the field of signal processing has contributed to the basic understanding of the exact mathematical relationship between the world of continuous (analog) images and the digitized versions of these images, when collected by computer video acquisition systems. This theory is known as Sampling Theory, and is credited to Prof.