Intrinsics Lecture 1

Total Page:16

File Type:pdf, Size:1020Kb

Intrinsics Lecture 1 Intrinsics Lecture 1 Manfred Liebmann Technische Universit¨at M¨unchen Chair of Optimal Control Center for Mathematical Sciences, M17 [email protected] January 12, 2016 Manfred Liebmann January 12, 2016 Programming with Intrinsics What are intrinsics? Intrinsics are functions that the compiler replaces with the proper assembly instructions. Intrinsics are primarily used to access the vector processing capabilities of modern CPUs. Long history of Intrinsics • – MMX : Multi Media Extensions 8 x 64bit (1997) – SSE/SSE2/SSE3/SSSE3/SSE4.x : Streaming SIMD Extensions 8 x 128bit (1999) – AVX/AVX2/FMA : Advanced Vector Extensions 16 x 256 bit (2008) – AVX-512/KNC : Advanced Vector Extensions 32 x 512 bit (2012) Intrinsics 1 Manfred Liebmann January 12, 2016 Choose the Right Header! Intrinsics are supported by all modern C/C++ compilers. Every generation has its own header! • – #include <mmintrin.h> //MMX – #include <xmmintrin.h> //SSE – #include <emmintrin.h> //SSE2 – #include <pmmintrin.h> //SSE3 – #include <tmmintrin.h> //SSSE3 – #include <smmintrin.h> //SSE4.1 – #include <nmmintrin.h> //SSE4.2 – #include <ammintrin.h> //SSE4A – #include <wmmintrin.h> //AES – #include <immintrin.h> //AVX Intrinsics 2 Manfred Liebmann January 12, 2016 Advanced Vector Extensions (AVX) Intel Advanced Vector Extensions (AVX) is a set of instructions for doing Single Instruction Multiple Data (SIMD) operations on Intel architecture CPUs. These instructions extend the previous SIMD o↵erings, MMX instructions and Intel Streaming SIMD Extensions (SSE). Intel Intrinsics Guide https://software.intel.com/sites/landingpage/IntrinsicsGuide/ Complete interactive reference for all intrinsic functions! Instruction Set Architecture (ISA) Extensions https://software.intel.com/en-us/isa-extensions Intrinsics 3 Manfred Liebmann January 12, 2016 Intel AVX Suffix Markings All modern C++ compilers support the same intrinsic operations to simplify using Intel AVX from C or C++ code. Intrinsics are functions that the compiler replaces with the proper assembly instructions. Most Intel AVX intrinsic names follow the following format: _mm256_op_suffix(data_type param1, data_type param2, data_type param3) where mm256 is the prefix for working on the new 256-bit registers; op is the operation, like add for addition or sub for subtraction; and suffix denotes the type of data to operate on, with the first letters denoting packed (p), extended packed (ep), or scalar (s). The remaining letters are the types given in the table below. Suffix Markings • [s/d] : Single- or double-precision floating point [i/u]nnn : Signed or unsigned integer of bit size nnn, where nnn is 128, 64, 32, 16, or 8 [ps/pd/sd] : Packed single, packed double, or scalar double epi32 : Extended packed 32-bit signed integer si256 : Scalar 256-bit integer Intrinsics 4 Manfred Liebmann January 12, 2016 Intel AVX Intrinsics Data Types Data Types • m256 : 256-bit as eight single-precision floating-point values m256d : 256-bit as four double-precision floating-point values m256i : 256-bit as integers, (bytes, words, etc.) m128 : 128-bit single precision floating-point (32 bits each) m128d : 128-bit double precision floating-point (64 bits each) Figure 1: Intel AVX and Intel SSE data types Intrinsics 5 Manfred Liebmann January 12, 2016 Mandelbrot Set Code Example Pseudocode for calculating the Mandelbrot set. z,p are complex numbers for each point p on the complex plane z=0 for count = 0 to max_iterations if abs(z) > 2.0 break z = z*z+p set color at p based on count reached Intrinsics 6 Manfred Liebmann January 12, 2016 Mandelbrot Set Visualization Figure 2: Mandelbrot set 0.29768 + 0.48354i to 0.29778 + 0.48364i with 4096 max iterations Intrinsics 7 Manfred Liebmann January 12, 2016 Simple Mandelbrot C++ STL Code #include <iostream> #include <complex> using namespace std; int main(int argc, char** argv) { float x1 = 0.29768, y1 = 0.48364, x2 = 0.29778, y2 = 0.48354; int width = 2048, height = 2048, int maxIters = 4096; unsigned short *image = new unsigned short[width * height]; float dx = (x2-x1)/width, dy = (y2-y1)/height; for (int j = 0; j < height; ++j) { for (int i = 0; i < width; ++i) { complex<float> c(x1+dx*i, y1+dy*j), z(0,0); int count = -1; while ((++count < maxIters) && (norm(z) < 2.0)) z = z*z+c; *image++ = count; } } } Intrinsics 8 Manfred Liebmann January 12, 2016 Mandelbrot Set Benchmark Cores STL FPU AVX 1 63.5186 11.9445 1.64415 2 50.1687 9.42479 1.26957 4 42.7716 8.02288 1.05672 8 23.2062 4.34219 0.569152 16 13.9921 2.62823 0.345063 Table 1: Total runtimes in seconds for the Mandelbrot set benchmark with a 2048 x 2048 grid on 2x Intel Xeon E5-2650 @ 2.00GHz. Intrinsics 9.
Recommended publications
  • 07 Vectorization for Intel C++ & Fortran Compiler .Pdf
    Vectorization for Intel® C++ & Fortran Compiler Presenter: Georg Zitzlsberger Date: 10-07-2015 1 Agenda • Introduction to SIMD for Intel® Architecture • Compiler & Vectorization • Validating Vectorization Success • Reasons for Vectorization Fails • Intel® Cilk™ Plus • Summary 2 Optimization Notice Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Vectorization • Single Instruction Multiple Data (SIMD): . Processing vector with a single operation . Provides data level parallelism (DLP) . Because of DLP more efficient than scalar processing • Vector: . Consists of more than one element . Elements are of same scalar data types (e.g. floats, integers, …) • Vector length (VL): Elements of the vector A B AAi i BBi i A B Ai i Bi i Scalar Vector Processing + Processing + C CCi i C Ci i VL 3 Optimization Notice Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Evolution of SIMD for Intel Processors Present & Future: Goal: Intel® MIC Architecture, 8x peak FLOPs (FMA) over 4 generations! Intel® AVX-512: • 512 bit Vectors • 2x FP/Load/FMA 4th Generation Intel® Core™ Processors Intel® AVX2 (256 bit): • 2x FMA peak Performance/Core • Gather Instructions 2nd Generation 3rd Generation Intel® Core™ Processors Intel® Core™ Processors Intel® AVX (256 bit): • Half-float support • 2x FP Throughput • Random Numbers • 2x Load Throughput Since 1999: Now & 2010 2012 2013 128 bit Vectors Future Time 4 Optimization Notice
    [Show full text]
  • Analysis of SIMD Applicability to SHA Algorithms O
    1 Analysis of SIMD Applicability to SHA Algorithms O. Aciicmez Abstract— It is possible to increase the speed and throughput of The remainder of the paper is organized as follows: In an algorithm using parallelization techniques. Single-Instruction section 2 and 3, we introduce SIMD concept and the SIMD Multiple-Data (SIMD) is a parallel computation model, which has architecture of Intel including MMX technology and SSE already employed by most of the current processor families. In this paper we will analyze four SHA algorithms and determine extensions. Section 4 describes SHA algorithm and Section possible performance gains that can be achieved using SIMD 5 discusses the possible improvements on SHA performance parallelism. We will point out the appropriate parts of each that can be achieved by using SIMD instructions. algorithm, where SIMD instructions can be used. II. SIMD PARALLEL PROCESSING I. INTRODUCTION Single-instruction multiple-data execution model allows Today the security of a cryptographic mechanism is not the several data elements to be processed at the same time. The only concern of cryptographers. The heavy communication conventional scalar execution model, which is called single- traffic on contemporary very large network of interconnected instruction single-data (SISD) deals only with one pair of data devices demands a great bandwidth for security protocols, and at a time. The programs using SIMD instructions can run much hence increasing the importance of speed and throughput of a faster than their scalar counterparts. However SIMD enabled cryptographic mechanism. programs are harder to design and implement. A straightforward approach to improve cryptographic per- The most common use of SIMD instructions is to perform formance is to implement cryptographic algorithms in hard- parallel arithmetic or logical operations on multiple data ware.
    [Show full text]
  • New Instruction Set Extensions
    New Instruction Set Extensions Instruction Set Innovation in Intels Processor Code Named Haswell [email protected] Agenda • Introduction - Overview of ISA Extensions • Haswell New Instructions • New Instructions Overview • Intel® AVX2 (256-bit Integer Vectors) • Gather • FMA: Fused Multiply-Add • Bit Manipulation Instructions • TSX/HLE/RTM • Tools Support for New Instruction Set Extensions • Summary/References Copyright© 2012, Intel Corporation. All rights reserved. Partially Intel Confidential Information. 2 *Other brands and names are the property of their respective owners. Instruction Set Architecture (ISA) Extensions 199x MMX, CMOV, Multiple new instruction sets added to the initial 32bit instruction PAUSE, set of the Intel® 386 processor XCHG, … 1999 Intel® SSE 70 new instructions for 128-bit single-precision FP support 2001 Intel® SSE2 144 new instructions adding 128-bit integer and double-precision FP support 2004 Intel® SSE3 13 new 128-bit DSP-oriented math instructions and thread synchronization instructions 2006 Intel SSSE3 16 new 128-bit instructions including fixed-point multiply and horizontal instructions 2007 Intel® SSE4.1 47 new instructions improving media, imaging and 3D workloads 2008 Intel® SSE4.2 7 new instructions improving text processing and CRC 2010 Intel® AES-NI 7 new instructions to speedup AES 2011 Intel® AVX 256-bit FP support, non-destructive (3-operand) 2012 Ivy Bridge NI RNG, 16 Bit FP 2013 Haswell NI AVX2, TSX, FMA, Gather, Bit NI A long history of ISA Extensions ! Copyright© 2012, Intel Corporation. All rights reserved. Partially Intel Confidential Information. 3 *Other brands and names are the property of their respective owners. Instruction Set Architecture (ISA) Extensions • Why new instructions? • Higher absolute performance • More energy efficient performance • New application domains • Customer requests • Fill gaps left from earlier extensions • For a historical overview see http://en.wikipedia.org/wiki/X86_instruction_listings Copyright© 2012, Intel Corporation.
    [Show full text]
  • Operating Guide
    Operating Guide EPIA EN-Series Mini-ITX Mainboard January 18, 2012 Version 1.21 EPIA EN-Series Operating Guide Table of Contents Table of Contents ...................................................................................................................................................................................... i VIA EPIA EN-Series Overview.............................................................................................................................................................. 1 VIA EPIA EN-Series Layout .................................................................................................................................................................. 2 VIA EPIA EN-Series Specifications ...................................................................................................................................................... 3 VIA EPIA EN Processor SKUs .............................................................................................................................................................. 4 VIA CN700 Chipset Overview ............................................................................................................................................................... 5 VIA EPIA EN-Series I/O Back Panel Layout ...................................................................................................................................... 6 VIA EPIA EN-Series Layout Diagram & Mounting Holes ..............................................................................................................
    [Show full text]
  • Hyper-Threading Performance with Intel Cpus for Linux SAP Deployment on Proliant Servers
    Hyper-Threading Performance with Intel CPUs for Linux SAP Deployment on ProLiant Servers Session #3798 Hein van den Heuvel Performance Engineer Hewlett-Packard © 2004 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice Topics • Hyper-Threading Intro • Implementation details Intel, IBM, Sun • Linux implementation • My own tests • SAP (SD) benchmark • Benchmark Results • Conclusions: (18% improvement for SAP 2-tier) Intel Hyper-Threading Overview “Hyper-Threading Technology is a form of simultaneous multithreading technology (SMT), where multiple threads of software applications can be run simultaneously on one processor. This is achieved by duplicating the architectural state on each processor, while sharing one set of processor execution resources. The architectural state tracks the flow of a program or thread, and the execution resources are the units on the processor that do the work: add, multiply, load, etc. “ http://www.intel.com/business/bss/products/hyperthreading/server/ht_server.pdf http://www.intel.com/technology/hyperthread/ Intel HT in a picture To-be-updated Hyper-Threading Versus Dual Core • HP (PA + ipf) opted for ‘dual core’ technology. − Each processor has full set of resources − Only limitation is shared ‘system’ connection. − Allows for dense (8p – 4u – 4640) − minimally constrained systems • Software licensing impact (Oracle!) • Hyper-Threading technology effectiveness will depend on application IBM P5 SMT Summary Enhanced Simultaneous Multi-Threading features To improve SMT performance for various workload mixes and provide robust quality of service, POWER5 provides two features: • Dynamic resource balancing – The objective of dynamic resource balancing is to ensure that the two threads executing on the same processor flow smoothly through the system.
    [Show full text]
  • SIMD Extensions
    SIMD Extensions PDF generated using the open source mwlib toolkit. See http://code.pediapress.com/ for more information. PDF generated at: Sat, 12 May 2012 17:14:46 UTC Contents Articles SIMD 1 MMX (instruction set) 6 3DNow! 8 Streaming SIMD Extensions 12 SSE2 16 SSE3 18 SSSE3 20 SSE4 22 SSE5 26 Advanced Vector Extensions 28 CVT16 instruction set 31 XOP instruction set 31 References Article Sources and Contributors 33 Image Sources, Licenses and Contributors 34 Article Licenses License 35 SIMD 1 SIMD Single instruction Multiple instruction Single data SISD MISD Multiple data SIMD MIMD Single instruction, multiple data (SIMD), is a class of parallel computers in Flynn's taxonomy. It describes computers with multiple processing elements that perform the same operation on multiple data simultaneously. Thus, such machines exploit data level parallelism. History The first use of SIMD instructions was in vector supercomputers of the early 1970s such as the CDC Star-100 and the Texas Instruments ASC, which could operate on a vector of data with a single instruction. Vector processing was especially popularized by Cray in the 1970s and 1980s. Vector-processing architectures are now considered separate from SIMD machines, based on the fact that vector machines processed the vectors one word at a time through pipelined processors (though still based on a single instruction), whereas modern SIMD machines process all elements of the vector simultaneously.[1] The first era of modern SIMD machines was characterized by massively parallel processing-style supercomputers such as the Thinking Machines CM-1 and CM-2. These machines had many limited-functionality processors that would work in parallel.
    [Show full text]
  • Amd Epyc 7351
    SPEC CPU2017 Floating Point Rate Result spec Copyright 2017-2019 Standard Performance Evaluation Corporation Sugon SPECrate2017_fp_base = 176 Sugon A620-G30 (AMD EPYC 7351) SPECrate2017_fp_peak = 177 CPU2017 License: 9046 Test Date: Dec-2017 Test Sponsor: Sugon Hardware Availability: Dec-2017 Tested by: Sugon Software Availability: Aug-2017 Copies 0 30.0 60.0 90.0 120 150 180 210 240 270 300 330 360 390 420 450 480 510 560 64 550 503.bwaves_r 32 552 165 507.cactuBSSN_r 64 163 130 508.namd_r 64 142 64 141 510.parest_r 32 146 168 511.povray_r 64 175 64 121 519.lbm_r 32 124 64 192 521.wrf_r 32 161 190 526.blender_r 64 188 164 527.cam4_r 64 162 248 538.imagick_r 64 250 205 544.nab_r 64 205 64 160 549.fotonik3d_r 32 163 64 96.7 554.roms_r 32 103 SPECrate2017_fp_base (176) SPECrate2017_fp_peak (177) Hardware Software CPU Name: AMD EPYC 7351 OS: Red Hat Enterprise Linux Server 7.4 Max MHz.: 2900 kernel 3.10.0-693.2.2 Nominal: 2400 Enabled: 32 cores, 2 chips, 2 threads/core Compiler: C/C++: Version 1.0.0 of AOCC Orderable: 1,2 chips Fortran: Version 4.8.2 of GCC Cache L1: 64 KB I + 32 KB D on chip per core Parallel: No L2: 512 KB I+D on chip per core Firmware: American Megatrends Inc. BIOS Version 0WYSZ018 released Aug-2017 L3: 64 MB I+D on chip per chip, 8 MB shared / 2 cores File System: ext4 Other: None System State: Run level 3 (Multi User) Memory: 512 GB (16 x 32 GB 2Rx4 PC4-2667V-R, running at Base Pointers: 64-bit 2400) Peak Pointers: 32/64-bit Storage: 1 x 3000 GB SATA, 7200 RPM Other: None Other: None Page 1 Standard Performance Evaluation
    [Show full text]
  • Intel® Architecture and Tools
    Klaus-Dieter Oertel Intel-SSG-Developer Products Division FZ Jülich, 22-05-2017 The “Free Lunch” is over, really Processor clock rate growth halted around 2005 Source: © 2014, James Reinders, Intel, used with permission Software must be parallelized to realize all the potential performance 4 Optimization Notice Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Changing Hardware Impacts Software More cores More Threads Wider vectors Intel® Intel® Xeon® Intel® Xeon® Intel® Xeon® Intel® Xeon® Intel® Future Intel® Xeon Intel® Xeon Phi™ Future Intel® Xeon® Processor Processor Processor Processor Xeon® Intel® Xeon® Phi™ x100 x200 Processor Xeon Phi™ Processor 5100 series 5500 series 5600 series E5-2600 v2 Processor Processor1 Coprocessor & Coprocessor (KNH) 64-bit series E5-2600 (KNC) (KNL) v3 series v4 series Up to Core(s) 1 2 4 6 12 18-22 TBD 61 72 TBD Up to Threads 2 2 8 12 24 36-44 TBD 244 288 TBD SIMD Width 128 128 128 128 256 256 512 512 512 TBD Intel® Intel® Intel® Intel® Intel® Intel® Intel® Intel® Vector ISA IMCI 512 TBD SSE3 SSE3 SSE4- 4.1 SSE 4.2 AVX AVX2 AVX-512 AVX-512 Optimization Notice Product specification for launched and shipped products available on ark.intel.com. 1. Not launched or in planning. Copyright © 2016, Intel Corporation. All rights reserved. 9 *Other names and brands may be claimed as the property of others. Changing Hardware Impacts Software More cores More Threads Wider vectors Intel® Intel® Xeon® Intel® Xeon® Intel® Xeon® Intel® Xeon® Intel® Future Intel® Xeon Intel® Xeon Phi™ Future Intel® Xeon® Processor Processor Processor Processor Xeon® Intel® Xeon® Phi™ x100 x200 Processor Xeon Phi™ Processor 5100 series 5500 series 5600 series E5-2600 v2 Processor Processor1 Coprocessor & Coprocessor (KNH) 64-bit series E5-2600 (KNC) (KNL) v3 series v4 series Up to Core(s) 1 2 4 6 12 18-22 TBD 61 72 TBD Up to Threads 2 High2 performance8 12 24software36-44 mustTBD be 244both: 288 TBD SIMD Width 128 .
    [Show full text]
  • CS 110 Discussion 15 Programming with SIMD Intrinsics
    CS 110 Discussion 15 Programming with SIMD Intrinsics Yanjie Song School of Information Science and Technology May 7, 2020 Yanjie Song (S.I.S.T.) CS 110 Discussion 15 2020.05.07 1 / 21 Table of Contents 1 Introduction on Intrinsics 2 Compiler and SIMD Intrinsics 3 Intel(R) SDE 4 Application: Horizontal sum in vector Yanjie Song (S.I.S.T.) CS 110 Discussion 15 2020.05.07 2 / 21 Table of Contents 1 Introduction on Intrinsics 2 Compiler and SIMD Intrinsics 3 Intel(R) SDE 4 Application: Horizontal sum in vector Yanjie Song (S.I.S.T.) CS 110 Discussion 15 2020.05.07 3 / 21 Introduction on Intrinsics Definition In computer software, in compiler theory, an intrinsic function (or builtin function) is a function (subroutine) available for use in a given programming language whose implementation is handled specially by the compiler. Yanjie Song (S.I.S.T.) CS 110 Discussion 15 2020.05.07 4 / 21 Intrinsics in C/C++ Compilers for C and C++, of Microsoft, Intel, and the GNU Compiler Collection (GCC) implement intrinsics that map directly to the x86 single instruction, multiple data (SIMD) instructions (MMX, Streaming SIMD Extensions (SSE), SSE2, SSE3, SSSE3, SSE4). Yanjie Song (S.I.S.T.) CS 110 Discussion 15 2020.05.07 5 / 21 x86 SIMD instruction set extensions MMX (1996, 64 bits) 3DNow! (1998) Streaming SIMD Extensions (SSE, 1999, 128 bits) SSE2 (2001) SSE3 (2004) SSSE3 (2006) SSE4 (2006) Advanced Vector eXtensions (AVX, 2008, 256 bits) AVX2 (2013) F16C (2009) XOP (2009) FMA FMA4 (2011) FMA3 (2012) AVX-512 (2015, 512 bits) Yanjie Song (S.I.S.T.) CS 110 Discussion 15 2020.05.07 6 / 21 SIMD extensions in other ISAs There are SIMD instructions for other ISAs as well, e.g.
    [Show full text]
  • Extensions to Instruction Sets
    Extensions to Instruction Sets Ricardo Manuel Meira Ferrão Luis Departamento de Informática, Universidade do Minho 4710 - 057 Braga, Portugal [email protected] Abstract. This communication analyses extensions to instruction sets in general purpose processors, together with their evolution and significant innovation. It begins with an overview of specific multimedia and digital signal processing requirements and then it focuses on feature detection to properly identify the adequate extension. A brief performance evaluation on two competitive processors closes the communication. 1 Introduction The purpose of this communication is to analyse extensions to instruction sets, describe the specific multimedia and digital signal processing (DSP) requirements of a processor, detail how to detect these extensions and verify if the processor supports them. To achieve this functionality an IA32 architecture example code will be demonstrated. To study the instruction sets supported by each processor, an analysis is performed to compare and distinguish each technology in terms of new extensions to instruction sets and architecture evolution, mapping a table that lists the instruction sets supported by each processor. To clearly identify these differences between architectures, tests are performed with an application example, determining comparable results of two competitive processors. In this communication, Section 2 gives an overview of multimedia and digital signal processing requirements, Section 3 explains the feature detection of these instructions, Section 4 details some of the extensions supported by IA32 based processors, Section 5 tests and describes the performance of each technology and analyses the results. Section 6 concludes this communication. 2 Multimedia and DSP Requirements Computer industries needed a way to improve their multimedia capabilities because of the demand for 3D graphics, video and other multimedia applications such as games.
    [Show full text]
  • Intel® Software Guard Extensions (Intel® SGX)
    Intel® Software Guard Extensions (Intel® SGX) Developer Guide Intel(R) Software Guard Extensions Developer Guide Legal Information No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document. Intel disclaims all express and implied warranties, including without limitation, the implied war- ranties of merchantability, fitness for a particular purpose, and non-infringement, as well as any warranty arising from course of performance, course of dealing, or usage in trade. This document contains information on products, services and/or processes in development. All information provided here is subject to change without notice. Contact your Intel rep- resentative to obtain the latest forecast, schedule, specifications and roadmaps. The products and services described may contain defects or errors known as errata which may cause deviations from published specifications. Current characterized errata are available on request. Intel technologies features and benefits depend on system configuration and may require enabled hardware, software or service activation. Learn more at Intel.com, or from the OEM or retailer. Copies of documents which have an order number and are referenced in this document may be obtained by calling 1-800-548-4725 or by visiting www.intel.com/design/literature.htm. Intel, the Intel logo, Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. Optimization Notice Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations.
    [Show full text]
  • AMD Ryzen 5 1600 Specifications
    AMD Ryzen 5 1600 specifications General information Type CPU / Microprocessor Market segment Desktop Family AMD Ryzen 5 Model number 1600 CPU part numbers YD1600BBM6IAE is an OEM/tray microprocessor YD1600BBAEBOX is a boxed microprocessor with fan and heatsink Frequency 3200 MHz Turbo frequency 3600 MHz Package 1331-pin lidded micro-PGA package Socket Socket AM4 Introduction date March 15, 2017 (announcement) April 11, 2017 (launch) Price at introduction $219 Architecture / Microarchitecture Microarchitecture Zen Processor core Summit Ridge Core stepping B1 Manufacturing process 0.014 micron FinFET process 4.8 billion transistors Data width 64 bit The number of CPU cores 6 The number of threads 12 Floating Point Unit Integrated Level 1 cache size 6 x 64 KB 4-way set associative instruction caches 6 x 32 KB 8-way set associative data caches Level 2 cache size 6 x 512 KB inclusive 8-way set associative unified caches Level 3 cache size 2 x 8 MB exclusive 16-way set associative shared caches Multiprocessing Uniprocessor Features MMX instructions Extensions to MMX SSE / Streaming SIMD Extensions SSE2 / Streaming SIMD Extensions 2 SSE3 / Streaming SIMD Extensions 3 SSSE3 / Supplemental Streaming SIMD Extensions 3 SSE4 / SSE4.1 + SSE4.2 / Streaming SIMD Extensions 4 SSE4a AES / Advanced Encryption Standard instructions AVX / Advanced Vector Extensions AVX2 / Advanced Vector Extensions 2.0 BMI / BMI1 + BMI2 / Bit Manipulation instructions SHA / Secure Hash Algorithm extensions F16C / 16-bit Floating-Point conversion instructions
    [Show full text]