PUBLICATIONS Journal of Geophysical Research: Oceans RESEARCH ARTICLE Oil plumes and dispersion in Langmuir, upper-ocean 10.1002/2014JC010542 turbulence: Large-eddy simulations and K-profile Key Points: parameterization Applied high-fidelity LES to model oil dispersion in Langmuir turbulence Di Yang1,2,3, Bicheng Chen4, Marcelo Chamecki4, and Charles Meneveau1,2 Conducted systematic statistical analysis on mean plume dispersion 1Center for Environmental and Applied Fluid Mechanics, Johns Hopkins University, Baltimore, Maryland, USA, Assessed and modified prior KPP 2Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland, USA, 3Now at Department of models for better agreement with 4 LES data Mechanical Engineering, University of Houston, Houston, Texas, USA, Department of Meteorology, Pennsylvania State University, University Park, Pennsylvania, USA Correspondence to: C. Meneveau, Abstract Once oil plumes such as those originating from underwater blowouts reach the ocean mixed
[email protected] layer (OML), their near-surface dispersion is influenced heavily by wind and wave-generated Langmuir tur- bulence. In this study, the complex oil spill dispersion process is modeled using large-eddy simulation (LES). Citation: Yang,D.,B.Chen,M.Chamecki,and The mean plume dispersion is characterized by performing statistical analysis of the resulting fields from C. Meneveau (2015), Oil plumes and the LES data. Although the instantaneous oil concentration exhibits high intermittency with complex spatial dispersion in Langmuir, upper-ocean patterns such as Langmuir-induced striations, it is found that the time-averaged oil distribution can still be turbulence: Large-eddy simulations and K-profile parameterization, J. described quite well by smooth Gaussian-type plumes. LES results show that the competition between Geophys.