82700311.Pdf
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Analysis of Rbm5 and Rbm10 Expression Throughout H9c2 Skeletal and Cardiac Muscle Cell Differentiation
ANALYSIS OF RBM5 AND RBM10 EXPRESSION THROUGHOUT H9C2 SKELETAL AND CARDIAC MUSCLE CELL DIFFERENTIATION by Julie Jennifer Loiselle A thesis submitted in partial fulfillment of the requirements for the degree of Master of Sciences (MSc) in Biology School of Graduate Studies Laurentian University Sudbury, Ontario © Julie Loiselle, 2013 THESIS DEFENCE COMMITTEE/COMITÉ DE SOUTENANCE DE THÈSE Laurentian Université/Université Laurentienne School of Graduate Studies/École des études supérieures Title of Thesis Titre de la thèse ANALYSIS OF RBM5 AND RBM10 EXPRESSION THROUGHOUT H9C2 SKELETAL AND CARDIAC MUSCLE CELL DIFFERENTIATION Name of Candidate Nom du candidat Loiselle, Julie Jennifer Degree Diplôme Master of Science Department/Program Date of Defence Département/Programme Biology Date de la soutenance July 15, 2013 APPROVED/APPROUVÉ Thesis Examiners/Examinateurs de thèse: Dr. Leslie Sutherland (Supervisor/Directrice de thèse) Dr. Céline Boudreau-Larivière (Committee member/Membre du comité) Dr. Éric Gauthier (Committee member/Membre du comité) Approved for the School of Graduate Studies Dr. Mazen Saleh Approuvé pour l’École des études supérieures (Committee member/Membre du comité) Dr. David Lesbarrères M. David Lesbarrères Dr. David A. Hood Director, School of Graduate Studies (External Examiner/Examinateur externe) Directeur, École des études supérieures ACCESSIBILITY CLAUSE AND PERMISSION TO USE I, Julie Jennifer Loiselle, hereby grant to Laurentian University and/or its agents the non-exclusive license to archive and make accessible my thesis, dissertation, or project report in whole or in part in all forms of media, now or for the duration of my copyright ownership. I retain all other ownership rights to the copyright of the thesis, dissertation or project report. -
Atlas Journal
Atlas of Genetics and Cytogenetics in Oncology and Haematology Home Genes Leukemias Solid Tumours Cancer-Prone Deep Insight Portal Teaching X Y 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 NA Atlas Journal Atlas Journal versus Atlas Database: the accumulation of the issues of the Journal constitutes the body of the Database/Text-Book. TABLE OF CONTENTS Volume 11, Number 3, Jul-Sep 2007 Previous Issue / Next Issue Genes MSH6 (mutS homolog 6 (E. Coli)) (2p16). Sreeparna Banerjee. Atlas Genet Cytogenet Oncol Haematol 2006; 9 11 (3): 289-297. [Full Text] [PDF] URL : http://atlasgeneticsoncology.org/Genes/MSH6ID344ch2p16.html LDB1 (10q24). Takeshi Setogawa, Testu Akiyama. Atlas Genet Cytogenet Oncol Haematol 2006; 11 (3): 298-301.[Full Text] [PDF] URL : http://atlasgeneticsoncology.org/Genes/LDB1ID41135ch10q24.html INTS6 (integrator complex subunit 6) (13q14.3). Ilse Wieland. Atlas Genet Cytogenet Oncol Haematol 2006; 11 (3): 302-306.[Full Text] [PDF] URL : http://atlasgeneticsoncology.org/Genes/INTS6ID40287ch13q14.html EPHA7 (EPH receptor A7) (6q16.1). Haruhiko Sugimura, Hiroki Mori, Tomoyasu Bunai, Masaya Suzuki. Atlas Genet Cytogenet Oncol Haematol 2007; 11 (3): 307-312. [Full Text] [PDF] Atlas Genet Cytogenet Oncol Haematol 2007;3 -I URL : http://atlasgeneticsoncology.org/Genes/EPHA7ID40466ch6q16.html RNASET2 (ribonuclease T2) (6q27). Francesco Acquati, Paola Campomenosi. Atlas Genet Cytogenet Oncol Haematol 2007; 11 (3): 313-317. [Full Text] [PDF] URL : http://atlasgeneticsoncology.org/Genes/RNASET2ID518ch6q27.html RHOB (ras homolog gene family, member B) (2p24.1). Minzhou Huang, Lisa D Laury-Kleintop, George Prendergast. Atlas Genet Cytogenet Oncol Haematol 2007; 11 (3): 318-323. -
Next Steps in the Sequence
Next steps in the sequence The implications of whole genome sequencing for health in the UK PHG Foundation project team and authors Dr Caroline Wright* Programme Associate Dr Hilary Burton Director Ms Alison Hall Project Manager (Law) Dr Sowmiya Moorthie Project Coordinator Dr Anna Pokorska-Bocci‡ Project Coordinator Dr Gurdeep Sagoo Epidemiologist Dr Simon Sanderson Associate Dr Rosalind Skinner Senior Fellow ‡ Corresponding author: [email protected] * Lead author Disclaimer This report is accurate as of September 2011, but readers should be aware that genome sequencing technology and applications will continue to develop rapidly from this point. This report is available from www.phgfoundation.org Published by PHG Foundation 2 Worts Causeway Cambridge CB1 8RN UK Tel: +44 (0)1223 740200 Fax: +44 (0)1223 740892 October 2011 © 2011 PHG Foundation ISBN 978-1-907198-08-3 Cover photo: http://www.sxc.hu/photo/914335 The PHG Foundation is the working name of the Foundation for Genomics and Population Health, a charitable organisation (registered in England and Wales, charity no. 1118664; company no. 5823194) which works with partners to achieve better health through the responsible and evidence-based application of biomedical science. Acknowledgements Dr Tom Dent contributed the section on risk prediction in the Other Applications chapter. Dr Richard Fordham contributed to the Health Economics chapter. Professor Anneke Lucassen, Dr Kathleen Liddell and Professor Jenny Hewison contributed to the Ethical, Legal and Social Implications chapter. Dr Ron Zimmern contributed to the Policy Analysis and Recommendations chapters. The PHG Foundation is grateful for the expert guidance and advice provided by the external Steering Group, in particular to Dr Jo Whittaker, Mr Chris Mattocks and Dr Paul Flicek for their extensive comments on the manuscript. -
[email protected]
Characterization of the relationship between two RBM5 family members by Julie Jennifer Loiselle A thesis submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (PhD) in Biomolecular Sciences The Faculty of Graduate Studies Laurentian University Sudbury, Ontario, Canada © Julie Loiselle, 2017 THESIS DEFENCE COMMITTEE/COMITÉ DE SOUTENANCE DE THÈSE Laurentian Université/Université Laurentienne Faculty of Graduate Studies/Faculté des études supérieures Title of Thesis Titre de la thèse Characterization of the relationship between two RBM5 family members Name of Candidate Nom du candidat Loiselle, Julie Degree Diplôme Doctor of Philosophy Department/Program Date of Defence Département/Programme Biomolecular Sciences Date de la soutenance July 31,2017 APPROVED/APPROUVÉ Thesis Examiners/Examinateurs de thèse: Dr. Leslie Sutherland (Supervisor/Directeur(trice) de thèse) Dr. Eric Gauthier (Committee member/Membre du comité) Dr. Amadeo Parissenti (Committee member/Membre du comité) Approved for the Faculty of Graduate Studies Approuvé pour la Faculté des études supérieures Dr. David Lesbarrères Monsieur David Lesbarrères Dr. Doug Gray Dean, Faculty of Graduate Studies (External Examiner/Examinateur externe) Doyen, Faculté des études supérieures Dr. T.C. Tai (Internal Examiner/Examinateur interne) ACCESSIBILITY CLAUSE AND PERMISSION TO USE I, Julie Loiselle, hereby grant to Laurentian University and/or its agents the non-exclusive license to archive and make accessible my thesis, dissertation, or project report in whole or in part in all forms of media, now or for the duration of my copyright ownership. I retain all other ownership rights to the copyright of the thesis, dissertation or project report. I also reserve the right to use in future works (such as articles or books) all or part of this thesis, dissertation, or project report. -
RNA Structure Drives Interaction with Proteins
ARTICLE https://doi.org/10.1038/s41467-019-10923-5 OPEN RNA structure drives interaction with proteins Natalia Sanchez de Groot 1,8, Alexandros Armaos1,8, Ricardo Graña-Montes1,7, Marion Alriquet2,3, Giulia Calloni2,3, R. Martin Vabulas2,3 & Gian Gaetano Tartaglia1,4,5,6 The combination of high-throughput sequencing and in vivo crosslinking approaches leads to the progressive uncovering of the complex interdependence between cellular transcriptome and proteome. Yet, the molecular determinants governing interactions in protein-RNA net- works are not well understood. Here we investigated the relationship between the structure 1234567890():,; of an RNA and its ability to interact with proteins. Analysing in silico, in vitro and in vivo experiments, we find that the amount of double-stranded regions in an RNA correlates with the number of protein contacts. This relationship —which we call structure-driven protein interactivity— allows classification of RNA types, plays a role in gene regulation and could have implications for the formation of phase-separated ribonucleoprotein assemblies. We validate our hypothesis by showing that a highly structured RNA can rearrange the com- position of a protein aggregate. We report that the tendency of proteins to phase-separate is reduced by interactions with specific RNAs. 1 Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain. 2 Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany. 3 Institute of Biophysical Chemistry, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany. 4 ICREA 23 Passeig Lluis Companys 08010 and Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain.