The Night Sky in December 2020 - a Quick and Easy Guide

Total Page:16

File Type:pdf, Size:1020Kb

The Night Sky in December 2020 - a Quick and Easy Guide The Night Sky in December 2020 - a quick and easy guide MOON PHASES Third (last) quarter 8 Dec New Moon 14 Dec First quarter 23 Oct Full Moon 30 Dec Events this month to look out for: 3 Moon forms a triangle with Castor and Pollux (evening) 4 Moon above Beehive Cluster M44 (evening) 14 Geminids meteor shower peak (morning, favourable) 16 Crescent Moon below right of Jupiter and Saturn (evening twilight) 17 Crescent Moon left of Jupiter and Saturn (evening twilight) 21 Winter Solstice 21 Great conjunction of Jupiter and Saturn (evening twilight) - Not to be missed – the closest conjunction for 400 years 22 Ursid meteor shower peak (favourable, morning twilight) 23 Moon below Mars (evening) 26 Moon forms a triangle with open cluster M45 and Aldebaran (evening) 27 Moon close to Hyades above Aldebaran (evening) All times below are now GMT (same as UT). Moon The Moon is at apogee, it’s furthest from the Earth on the 24th at 17:00 and at perigee, it’s nearest to the Earth, on the 12th at 21:00. December’s New Moon in Ophiuchus occurs at 16:17 on the 14th when it passes 10° south of the Sun from this latitude. There is a total solar eclipse not visible from the UK but in the south Atlantic to the mid Pacific, cutting across Argentina and Chile in South America. Better luck in June 2021 when there will be a partial solar eclipse visible from Wolverhampton. It may be possible to see Earthshine on the waning crescent from the 9th to the 14th, and on the waxing crescent Moon’s dark hemisphere from the 15th to the 20th. Full Moon is on December 30th. The coming of winter earns December's full moon the name Cold Moon. Other names include the long night moon and the oak moon. Moon phases this month: Generated using CoelixApex software Degrees ° - a “Handy” guide I have made several references below to, say, 7° and you can make a fair approximation of degrees by holding your hand at arm’s length and closing one eye. Make a fist, with the back of your hand facing you and use this guide: Planets this month: The Great Conjunction of Jupiter and Saturn ** Not to be missed – the closest conjunction since 1623 ** Jupiter approaches Saturn for one of their closest conjunctions just over the border from Sagittarius in the neighbouring constellation of Capricornus. At 18:00 on the day of the Winter Solstice (21st), the two planets are separated by only 0.1°, Jupiter lying to the south of Saturn. As a result of their long orbits, Jupiter and Saturn meet in the sky only once every 20 years. Here is what you might see, on the left the two planets looking like one bright “star”, and on the right the two planets and Jupiter’s moons all in the same field of view through a small telescope. Look for the two low in the SW at around 17:00. Both are visible in the fields of a pair of binoculars and small telescopes. With sufficient magnification in a small telescope, the four major satellites of Jupiter and the rings of Saturn may be seen. This is a very rare occurrence and we suggest that everyone takes the opportunity to witness this rare event. If you're wanting to catch this rare cosmic event, you'll need to act quickly on the night of the 21st. The planets will appear in the SW sky right after sunset and dip below the horizon just a few hours after sunset. There won't be another conjunction this close until March 15, 2080. Earlier in the month, on the 16th at 16:00, the very thin waxing crescent Moon may be seen approaching the two planets. The Moon will be low in the SW twilight, and the two planets will be seen 8° to the upper left of the Moon. The following night, the Moon moving eastwards is 7° to the left of Jupiter and Saturn. Other planets: Mercury is in superior conjunction with the Sun on the 20th, and is hardly likely to be seen during this month. It is possible to glimpse it in the bright twilight 30 mins before sunrise very low in the SE, taking care not to attempt the observation near to sunrise. Venus rises a couple of hours before the Sun during December. It lies in the constellation of Ophiuchus at the end of the month and may be seen rising at around 07:00 in the SE. On the 12th when Venus is in the constellation of Libra, the thin waning crescent Moon may be seen approaching the planet and at 07:00 Venus lies 7° to the lower left of the crescent Moon, a pretty spectacle as the Earth will be illuminating the night hemisphere of the Moon at the time. Mars lying in Pisces in mid-month, is at magnitude -0.7, fainter than Venus, Jupiter and the ‘Dog Star’ Sirius. It now fades as the distance between Earth and Mars increases. The planet is now culminating in the south at around 20:00. On the 23rd at 22:00 Mars and the waxing gibbous Moon are in conjunction, with Mars lying 6° to the north of the Moon. Uranus lies in Aries. It culminates at around 20:30 during this month. The planet lies some 10° below Hamal (alpha Arietis), the constellation’s brightest star at +2.0 visual magnitude. Uranus is on the threshold of naked eye visibility at visual magnitude +5.7. Neptune culminates (crosses the S meridian) at just before 18h mid-month. It lies in the constellation of Aquarius and has a current magnitude of +7.9. Meteor Showers December brings us a couple of meteor showers. Geminids The maximum of the Geminid meteors takes place on the 13th at 20:00. Geminids may be seen from the 4th to the 17th, and this year the time of maximum is very favourable because there is no Moon to interfere. This ‘Shooting Star Shower’ is the richest of the annual showers (weather permitting of course!). The bright shooting stars are associated with asteroid (dwarf planet) 3200 Phaethon, the remains of a spent comet. Geminids tend to be most numerous around 02:00 when Gemini, their point of origin, is almost overhead. On good nights it is possible to see up to 100 meteors an hour. This shower produces a good proportion of bright events. Wrap up warm! Ursids Peaking overnight on the 22nd/23rd is the Ursid meteor shower (fragments of comet Tuttle), which produces about 10 meteors an hour with occasional outbursts resulting in a greater number. Conditions this year are quite favourable. The radiant (point of origin) of the meteors is in Ursa Minor, The Little Bear, some 12° from the celestial North Pole. International Space Station (ISS) predicted time for passes visible this month: These are the forecast ISS passes this month, evenings only. Data taken from the Heavens Above website, please recheck nearer the chosen day to get updates. [ source: https://www.heavens-above.com/ ] WOLVERHAMPTON ASTRONOMICAL SOCIETY LECTURES Given the current situation regarding the coronavirus in the UK, and following the current Government advice to avoid all unnecessary social interaction for the foreseeable future, we have put on hold our usual face to face meetings. But the good news is that we haven’t cancelled events but simply moved them online, so we can continue to bring you great talks in your own home! We continue to try and bring you some of the best speakers around and we have an exciting line up for the coming season. It has been decided that for the coming year Wolvas subscription will be only £10 per annum and you can sign up now our website www.wolvas.org.uk – don’t miss the bargain of the year! Lectures online will only be available to paid-up members of Wolverhampton Astronomical Society. Here is a taster for upcoming lectures (all starting at 7.30pm on YouTube followed by Q&A): 7 December John Pitchford – Dr David Morgan’s Project and RETRAM Dr Morgan and RETRAM are both working on the Recognition and Trajectories of Meteors using alternatives to Graves, Brams and Iper. This talk is an introduction to this topic and takes an historical approach to Radio Astronomy and the use of Passive Radar. You will meet the musical ‘Cats’ and the ‘Terminator’ on the way!. 11 January Steve Barrett – The Beginning of Everything 25 January Russell Parry – The Appley Bridge Meteorite 8 February Mark Gibbons – Black Holes 22 February Mike Frost – Isaac Newton and The Surrey Pumas An offbeat look at Newton's theory of gravity - featuring hollow Earths, counter-Earths Trojan asteroids, Kirkwood gaps, Lagrangian nodes, the three-body problem, and those mysterious beasts rumoured to haunt Surrey playing fields and Bodmin Moor. Already delivered on two continents! 8 March Paul Pope Lecture: Chris Lintott – The Crowd and the Cosmos Astronomer Chris Lintott, best known as co-presenter of the BBC’s long running Sky at Night programme, explains how you could help astronomers sort through galaxies, explore the surface of Mars, or even discover a planet. This is the story of the Zooniverse, which has enlisted more than two million people in search for cosmic truth. Watch out for updates As well as our webpage www.wolvas.org.uk we will be posting details of events on social media, so keep an eye on our Facebook (https://www.facebook.com/wolvasuk) and Twitter (https://twitter.com/wolvasuk) accounts for the latest updates and news.
Recommended publications
  • Explore the Universe Observing Certificate Second Edition
    RASC Observing Committee Explore the Universe Observing Certificate Second Edition Explore the Universe Observing Certificate Welcome to the Explore the Universe Observing Certificate Program. This program is designed to provide the observer with a well-rounded introduction to the night sky visible from North America. Using this observing program is an excellent way to gain knowledge and experience in astronomy. Experienced observers find that a planned observing session results in a more satisfying and interesting experience. This program will help introduce you to amateur astronomy and prepare you for other more challenging certificate programs such as the Messier and Finest NGC. The program covers the full range of astronomical objects. Here is a summary: Observing Objective Requirement Available Constellations and Bright Stars 12 24 The Moon 16 32 Solar System 5 10 Deep Sky Objects 12 24 Double Stars 10 20 Total 55 110 In each category a choice of objects is provided so that you can begin the certificate at any time of the year. In order to receive your certificate you need to observe a total of 55 of the 110 objects available. Here is a summary of some of the abbreviations used in this program Instrument V – Visual (unaided eye) B – Binocular T – Telescope V/B - Visual/Binocular B/T - Binocular/Telescope Season Season when the object can be best seen in the evening sky between dusk. and midnight. Objects may also be seen in other seasons. Description Brief description of the target object, its common name and other details. Cons Constellation where object can be found (if applicable) BOG Ref Refers to corresponding references in the RASC’s The Beginner’s Observing Guide highlighting this object.
    [Show full text]
  • Instrumental Methods for Professional and Amateur
    Instrumental Methods for Professional and Amateur Collaborations in Planetary Astronomy Olivier Mousis, Ricardo Hueso, Jean-Philippe Beaulieu, Sylvain Bouley, Benoît Carry, Francois Colas, Alain Klotz, Christophe Pellier, Jean-Marc Petit, Philippe Rousselot, et al. To cite this version: Olivier Mousis, Ricardo Hueso, Jean-Philippe Beaulieu, Sylvain Bouley, Benoît Carry, et al.. Instru- mental Methods for Professional and Amateur Collaborations in Planetary Astronomy. Experimental Astronomy, Springer Link, 2014, 38 (1-2), pp.91-191. 10.1007/s10686-014-9379-0. hal-00833466 HAL Id: hal-00833466 https://hal.archives-ouvertes.fr/hal-00833466 Submitted on 3 Jun 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Instrumental Methods for Professional and Amateur Collaborations in Planetary Astronomy O. Mousis, R. Hueso, J.-P. Beaulieu, S. Bouley, B. Carry, F. Colas, A. Klotz, C. Pellier, J.-M. Petit, P. Rousselot, M. Ali-Dib, W. Beisker, M. Birlan, C. Buil, A. Delsanti, E. Frappa, H. B. Hammel, A.-C. Levasseur-Regourd, G. S. Orton, A. Sanchez-Lavega,´ A. Santerne, P. Tanga, J. Vaubaillon, B. Zanda, D. Baratoux, T. Bohm,¨ V. Boudon, A. Bouquet, L. Buzzi, J.-L. Dauvergne, A.
    [Show full text]
  • Asteroid Regolith Weathering: a Large-Scale Observational Investigation
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 5-2019 Asteroid Regolith Weathering: A Large-Scale Observational Investigation Eric Michael MacLennan University of Tennessee, [email protected] Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss Recommended Citation MacLennan, Eric Michael, "Asteroid Regolith Weathering: A Large-Scale Observational Investigation. " PhD diss., University of Tennessee, 2019. https://trace.tennessee.edu/utk_graddiss/5467 This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a dissertation written by Eric Michael MacLennan entitled "Asteroid Regolith Weathering: A Large-Scale Observational Investigation." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the equirr ements for the degree of Doctor of Philosophy, with a major in Geology. Joshua P. Emery, Major Professor We have read this dissertation and recommend its acceptance: Jeffrey E. Moersch, Harry Y. McSween Jr., Liem T. Tran Accepted for the Council: Dixie L. Thompson Vice Provost and Dean of the Graduate School (Original signatures are on file with official studentecor r ds.) Asteroid Regolith Weathering: A Large-Scale Observational Investigation A Dissertation Presented for the Doctor of Philosophy Degree The University of Tennessee, Knoxville Eric Michael MacLennan May 2019 © by Eric Michael MacLennan, 2019 All Rights Reserved.
    [Show full text]
  • The Planets in 2006 the Distinctive Planetary Events of 2006
    The Planets in 2006 The Distinctive Planetary Events of 2006..............................................................................................................2 Longitudes of the Planets ........................................................................................................................................3 Ingresses ................................................................................................................................................................3 Element, Mode and Dignity Balance.....................................................................................................................3 Table 1: 2006 Planetary Ingresses ....................................................................................................................5 Table 2: 2006 Lunar Ingresses and Void of Course Times................................................................................6 Table 3: 2006 Planetary Longitudes at a Glance..............................................................................................7 Planetary Stations ..................................................................................................................................................8 Table 4: Current Retrograde Cycles, Planet by Planet .....................................................................................8 Lunar Cycles ............................................................................................................................................................9
    [Show full text]
  • Downloads/ Astero2007.Pdf) and by Aerts Et Al (2010)
    This work is protected by copyright and other intellectual property rights and duplication or sale of all or part is not permitted, except that material may be duplicated by you for research, private study, criticism/review or educational purposes. Electronic or print copies are for your own personal, non- commercial use and shall not be passed to any other individual. No quotation may be published without proper acknowledgement. For any other use, or to quote extensively from the work, permission must be obtained from the copyright holder/s. i Fundamental Properties of Solar-Type Eclipsing Binary Stars, and Kinematic Biases of Exoplanet Host Stars Richard J. Hutcheon Submitted in accordance with the requirements for the degree of Doctor of Philosophy. Research Institute: School of Environmental and Physical Sciences and Applied Mathematics. University of Keele June 2015 ii iii Abstract This thesis is in three parts: 1) a kinematical study of exoplanet host stars, 2) a study of the detached eclipsing binary V1094 Tau and 3) and observations of other eclipsing binaries. Part I investigates kinematical biases between two methods of detecting exoplanets; the ground based transit and radial velocity methods. Distances of the host stars from each method lie in almost non-overlapping groups. Samples of host stars from each group are selected. They are compared by means of matching comparison samples of stars not known to have exoplanets. The detection methods are found to introduce a negligible bias into the metallicities of the host stars but the ground based transit method introduces a median age bias of about -2 Gyr.
    [Show full text]
  • Zadkiel's Legacy; Containing a ... Judgment of the Great Conjunction Of
    | # , C / 2. ZADKIEL' S LEGACY ; CoNTA in ING A FULL AND PARTICULAR JUDGMENT oN THE GREAT CONJUNCTION or $aturn ant; 3)upiter, ON THE 26TH OF JANUARY, 1842, BE ING THE IR M0ST IMPORTANT CONJUNCTION | SINGE THE DAYS OF KING ALFRED THE GREAT: Foreshewing the History of the World for 200 Years to come!!! | AL80, Fss AYs on HINDU As TRology, A.N. p. THE NATIVITY of H. R. H. ALBERT EDWARD, PRINCE OF WALEs &e, t HIS CHARACTER AND FUTURE DESTINY, &c, &c. LONDON: S HERWOOD AND CO., PATER NOSTER ROW. 1842. com PT on AND RITCHI E, PR1NTERs, Middl E - star Et, cloth - FAIR, LoN Don. - - - - - - - - . * … - - - - - - - * > z. *. -- - * • -- * * 2. - - -- - - - - - - - * - - - ~ : * - * - - - - - - - - * * * * * ***. *> - - - - - - , * * ~ : , , , * * * * * * : ... " - - -- - * * - */ " /~~ - £". * - - * - - - * 2. " - * PR EFACE. MANY generations shall pass by, many centuries roll away, and this book shall still remain a memento of the sublime powers of astral influence; for lo! I have commenced it at the moment of Mercury southing on this present first day of Sep tember, in the year of Grace one thousand eight hundred and forty, when fixed signs did occupy the angles of the heavenly scheme, the Moon and lord of the sign ascending being also in fixed signs, five planets angular, the lord of the ascendent in the ninth, or house of science, and the Moon, while ruling that house, being situate in the ascendant, in sextile to the glorious Sol, ruler of the 10th, or house of fame, and applying to a close conjunction of the bounteous and benefic Jupiter. Moreover, Mercury, on the cusp of the 10th, is in reception of the Sun, caput draconis is in the 4th, and the lord of the ascendant in trine aspect to the ruler of that house, which go verns the end of the matter.
    [Show full text]
  • Jupiter Saturn Great Conjunction
    Jupiter Saturn Great Conjunction drishtiias.com/printpdf/jupiter-saturn-great-conjunction Why in News In a rare celestial event, Jupiter and Saturn will be seen very close to each other (conjunction) on 21st December 2020, appearing like one bright star. Key Points Conjunction: If two celestial bodies visually appear close to each other from Earth, it is called a conjunction. Great Conjunction: Astronomers use the term great conjunction to describe meetings of the two biggest worlds in the solar system, Jupiter and Saturn. It happens about every 20 years. The conjunction is the result of the orbital paths of Jupiter and Saturn coming into line, as viewed from Earth. Jupiter orbits the sun about every 12 years, and Saturn about every 29 years. The conjunction will be on 21st December, 2020, also the date of the December solstice. It will be the closest alignment of Saturn and Jupiter since 1623, in terms of distance. The next time the planets will be this close is 2080. They will appear to be close together, however, they will be more than 400 million miles apart. 1/2 Jupiter: Fifth in line from the Sun, Jupiter is, by far, the largest planet in the solar system – more than twice as massive as all the other planets combined. Jupiter, Saturn, Uranus and Neptune are called Jovian or Gas Giant Planets. These have thick atmosphere, mostly of helium and hydrogen. Jupiter’s iconic Great Red Spot is a giant storm bigger than Earth that has raged for hundreds of years. Jupiter rotates once about every 10 hours (a Jovian day), but takes about 12 Earth years to complete one orbit of the Sun (a Jovian year).
    [Show full text]
  • Finder Chart for Jim's Pick of the Month December 2020 Grand
    Finder Chart for Jim’s Pick of the Month December 2020 Grand Junction of Jupiter and Saturn Image via Rice University On December 21, 2020, the day of the December solstice is the great conjunction of Jupiter and Saturn. It will be the first Jupiter and Saturn conjunction since the year 2000 and the closest conjunction since 1623 - 14 years after Galileo made his first telescope. The closest observable Jupiter and Saturn conjunction before that was in the year 1226. At their closest in December, Jupiter and Saturn will be only 0.1 degree apart. The closest Jupiter-Saturn conjunction in 2020 will not be seen again until March 15, 2080. From Portland, after sunset at 4:30 p.m., Jupiter and Saturn conjunction will be low in the evening twilight and will set quickly, so a good clear southwestern horizon is essential. Viewed from earth, Jupiter and Saturn will be 0.1 degree apart. Jupiter will appear brightest at magnitude of -1.97, while Saturn, to the upper right, will be half the brightest at +0.63 magnitude. Far above the southern horizon is the near first quarter moon and red planet Mars. They appears to be close, yet separated 455,762,323 miles apart from each other. The planet Saturn, the sixth planet from the sun, is 1,006,711,393 miles from earth, while Jupiter, the fifth planet, is 550,949,070 miles away. Both Jupiter and Saturn will set at 6:52 p.m. towards the SW horizon. Binoculars will separate them into two objects with Saturn, the fainter of the two, lying above the mighty Jupiter.
    [Show full text]
  • Mercury and Uranus in Aries: New Thinking for the New Normal
    Mercury and Uranus in Aries: New Thinking for the New Normal As I begin this article on April 30th, I do so conscious of the fact that Mercury is conjunct Uranus in the stars of Aries, the Ram, at 36 degrees of the ecliptic, aligned with the star Hamal which is the forehead of the Ram. One could even say the “third eye” position in the Ram. In a few days, on May 4th, Mercury comes into exact superior conjunction with the Sun (behind the Sun from the Earth). Essentially these few days bring us this superior conjunction of Mercury with the Sun with Uranus. Mercury picks up, so to speak, that which is offered from the sphere of Uranus and the stars of the Ram, even specifically the fixed star Hamal in the Ram. But to fully understand this event, we must now follow Mercury in its process when it will hand over to the Earth what it now takes up. In astrosophy, the momentary events in the heavens must be considered in the context of the flow of time as a process in which we can partake consciously and even answer out of our human higher consciousness. This is the new speaking to the stars. So, this event is only part of the full gesture of Mercury. It culminates on July 1st in the stars of the Twins when Mercury completes this cycle/gesture begun today, by coming around between the Sun and the Earth in inferior conjunction and then handing over to the Earth in the stars of Twins, what it has picked up in the superior conjunction with Uranus in the Ram.
    [Show full text]
  • December 2014 BRAS Newsletter
    December, 2014 Next Meeting: December 8th at 7PM at the HRPO Artist rendition of the Philae lander from the ESA's Rosetta mission. Click on the picture to go see the latest info. What's In This Issue? Astro Short- Mercury: Snow Globe Dynamo? Secretary's Summary Message From HRPO Globe At Night Recent Forum Entries Orion Exploration Test Flight Event International Year of Light 20/20 Vision Campaign Observing Notes by John Nagle Mercury: Snow Globe Dynamo? We already knew Mercury was bizarre. A planet of extremes, during its day facing the sun, its surface temperature tops 800°F —hot enough to melt lead—but during the night, the temperature plunges to -270°F, way colder than dry ice. Frozen water may exist at its poles. And its day (from sunrise to sunrise) is twice as long as its year. Now add more weirdness measured by NASA’s recent MESSENGER spacecraft: Mercury’s magnetic field in its northern hemisphere is triple its strength in the southern hemisphere. Numerical models run by postdoctoral researcher Hao Cao, working in the lab of Christopher T. Russell at UC Los Angeles, offer an explanation: inside Mercury’s molten iron core it is “snowing,” and the resultant convection is so powerful it causes the planet’s magnetic dynamo to break symmetry and concentrate in one hemisphere. “Snowing” inside Mercury With a diameter only 40 percent greater than the Moon’s, Mercury is the smallest planet in the solar system (now that Pluto was demoted). But its gravitational field is more than double the Moon’s.
    [Show full text]
  • Full Curriculum Vitae
    Jason Thomas Wright—CV Department of Astronomy & Astrophysics Phone: (814) 863-8470 Center for Exoplanets and Habitable Worlds Fax: (814) 863-2842 525 Davey Lab email: [email protected] Penn State University http://sites.psu.edu/astrowright University Park, PA 16802 @Astro_Wright US Citizen, DOB: 2 August 1977 ORCiD: 0000-0001-6160-5888 Education UNIVERSITY OF CALIFORNIA, BERKELEY PhD Astrophysics May 2006 Thesis: Stellar Magnetic Activity and the Detection of Exoplanets Adviser: Geoffrey W. Marcy MA Astrophysics May 2003 BOSTON UNIVERSITY BA Astronomy and Physics (mathematics minor) summa cum laude May 1999 Thesis: Probing the Magnetic Field of the Bok Globule B335 Adviser: Dan P. Clemens Awards and fellowships NASA Group Achievement Award for NEID 2020 Drake Award 2019 Dean’s Climate and Diversity Award 2012 Rock Institute Ethics Fellow 2011-2012 NASA Group Achievement Award for the SIM Planet Finding Capability Study Team 2008 University of California Hewlett Fellow 1999-2000, 2003-2004 National Science Foundation Graduate Research Fellow 2000-2003 UC Berkeley Outstanding Graduate Student Instructor 2001 Phi Beta Kappa 1999 Barry M. Goldwater Scholar 1997 Last updated — Jan 15, 2021 1 Jason Thomas Wright—CV Positions and Research experience Associate Department Head for Development July 2020–present Astronomy & Astrophysics, Penn State University Director, Penn State Extraterrestrial Intelligence Center March 2020–present Professor, Penn State University July 2019 – present Deputy Director, Center for Exoplanets and Habitable Worlds July 2018–present Astronomy & Astrophysics, Penn State University Acting Director July 2020–August 2021 Associate Professor, Penn State University July 2015 – June 2019 Associate Department Head for Diversity and Equity August 2017–August 2018 Astronomy & Astrophysics, Penn State University Visiting Associate Professor, University of California, Berkeley June 2016 – June 2017 Assistant Professor, Penn State University Aug.
    [Show full text]
  • Oxygen Three-Isotope Measurements on the First Artificial Meteorites (The Esa ‘Stones’ Experiment): Contrasting Behaviour of Dolomite and a Simulated Martian Soil
    Lunar and Planetary Science XXXI 1717.pdf OXYGEN THREE-ISOTOPE MEASUREMENTS ON THE FIRST ARTIFICIAL METEORITES (THE ESA ‘STONES’ EXPERIMENT): CONTRASTING BEHAVIOUR OF DOLOMITE AND A SIMULATED MARTIAN SOIL. M. F. Miller1, A. Brack 2, P. Baglioni3, R. Demets3, I. A. Franchi1, G. Kurat4 and C. T. Pill- inger1, 1Planetary Sciences Research Institute, The Open University, Walton Hall, Milton Keynes MK7 6AA, United Kingdom (e-mail correspondence: [email protected]), 2Centre de Biophysique Moleculaire, CNRS, Rue Charles Sadron 45071 Orléans cedex 2, France. (e-mail correspondence: [email protected]), 3ESA Director- ate of Manned Spaceflight and Microgravity, ESTEC, Postbus 299, NL-2200 AG Noordwijk, The Netherlands, 4Naturhistorisches Museum, Postfach 417, A-1014 Wien, Austria. Introduction: The ‘Stones’ experiment is an cemented by gypsum (mixing proportion 80:20). The autonomous investigation of the Microgravity space samples were attached to the heat shield of Foton-12, flight program of the European Space Agency (ESA). which was launched from Pletsetsk (Russia) on 9th It is led by Dr A Brack (Principal Investigator) and is September 1999 and flew for 16 days before re-entry. designed to assess physical, chemical and isotopic Nominal orbital parameters were: perigee 220km; apo- modifications experienced by meteorites during their gee 380km; inclination 62.8°. The landing site was passage through the Earth’s atmosphere, by measure- near the Kazakhstan/Russian border. Unfortunately, the ments made on geological samples attached to the heat basalt sample was lost during flight. However, the shield of a recoverable Foton space capsule. Such arti- dolomite and ‘Martian soil analog’ survived and were ficial meteorites offer a unique means of identifying successfully recovered.
    [Show full text]