Tuning a Riboswitch Response Through Structural Extension of a Pseudoknot

Total Page:16

File Type:pdf, Size:1020Kb

Tuning a Riboswitch Response Through Structural Extension of a Pseudoknot Tuning a riboswitch response through structural PNAS PLUS extension of a pseudoknot Marie F. Soulièrea,1, Roger B. Altmanb,1, Veronika Schwarza, Andrea Hallera, Scott C. Blanchardb,2, and Ronald Micuraa,2 aInstitute of Organic Chemistry and Center for Molecular Biosciences, University of Innsbruck, A-6020 Innsbruck, Austria; and bDepartment of Physiology and Biophysics, Weill Medical College of Cornell University, New York, NY 10021 Edited by David A. Tirrell, California Institute of Technology, Pasadena, CA, and approved July 23, 2013 (received for review March 8, 2013) Structural and dynamic features of RNA folding landscapes rep- been extensively investigated (18–28), preQ1 class II (preQ1-II) resent critical aspects of RNA function in the cell and are par- riboswitches have been largely overlooked despite the fact that ticularly central to riboswitch-mediated control of gene expression. a different mode of ligand binding has been postulated (14). Here, using single-molecule fluorescence energy transfer imaging, The consensus sequence and the secondary structure model we explore the folding dynamics of the preQ1 class II riboswitch, an for the preQ1-II motif (COG4708 RNA) (Fig. 1A) comprise upstream mRNA element that regulates downstream encoded mod- ∼80–100 nt (14). The minimal Streptococcus pneumoniae R6 fi i cation enzymes of queuosine biosynthesis. For reasons that are aptamer domain sequence binds preQ1 with submicromolar af- not presently understood, the classical pseudoknot fold of this sys- finity and consists of an RNA segment forming two stem–loops, tem harbors an extra stem–loop structure within its 3′-terminal re- P2 and P4, and a pseudoknot P3 (Fig. 1B). In-line probing gion immediately upstream of the Shine–Dalgarno sequence that studies suggest that the putative SD box (AGGAGA; Fig. 1) is contributes to formation of the ligand-bound state. By imaging li- sequestered by pseudoknot formation, which results in trans- gand-dependent preQ1 riboswitch folding from multiple structural lational-dependent gene regulation of the downstream gene (14). – fl perspectives, we reveal that the extra stem loop strongly in uences Here, we investigated folding and ligand recognition of the pseudoknot dynamics in a manner that decreases its propensity to S. pneumoniae R6 preQ1-II riboswitch, using complementary spontaneously fold and increases its responsiveness to ligand bind- chemical, biochemical, and biophysical methods including se- ing. We conclude that the extra stem–loop sensitizes this RNA to lective 2′-hydroxyl acylation analyzed by primer extension CHEMISTRY broaden the dynamic range of the ON/OFF regulatory switch. (SHAPE), mutational analysis experiments, 2-aminopurine fluo- rescence, and single-molecule fluorescence resonance energy SHAPE | single-molecule FRET | site-specific labeling | metabolite sensing transfer (smFRET) imaging. In so doing, we explored the struc- RNAs | ligand recognition tural and functional impact of the additional stem–loop element in the context of its otherwise “classical” H-type pseudoknot fold (29– variety of small metabolites have been found to regulate 32) (Fig. 1C). Our results reveal that the unique 3′-stem–loop el- Agene expression in bacteria, fungi, and plants via direct ement in the preQ -II riboswitch contributes to the process of interactions with distinct mRNA folds (1–4). In this form of 1 SD sequestration, and thus the regulation of gene expression, by BIOCHEMISTRY regulation, the target mRNA typically undergoes a structural – modulating both its intrinsic dynamics and its responsiveness to change in response to metabolite binding (5 9). These mRNA ligand binding. elements have thus been termed “riboswitches” and generally include both a metabolite-sensitive aptamer subdomain and an Results and Discussion expression platform. For riboswitches that regulate the process Temperature-Dependent SHAPE Indicates preQ -II Pseudoknot of translation, the expression platform minimally consists of 1 – Preorganization. Previous bioinformatics and in-line probing a ribosomal recognition site [Shine Dalgarno (SD)]. In the sim- studies on the preQ -II riboswitch sequence from S. pneumonia plest form, the SD sequence overlaps with the metabolite-sensitive 1 aptamer domain at its downstream end. Representative examples Significance include the S-adenosylmethionine class II (SAM-II) (10) and the S-adenosylhomocysteine (SAH) riboswitches (11, 12), as well as The three-dimensional fold and inherent structural dynamics of prequeuosine class I (preQ1-I) and II (preQ1-II) riboswitches (13, 14). The secondary structures of these four short RNA families RNA are critical determinants of function. Although the hier- contain a pseudoknot fold that is central to their gene regulation archical folding of RNA secondary structure followed by ter- tiary structure formation is well established, insights into how capacity. Although the SAM-II and preQ1-I riboswitches fold into classical pseudoknots (15, 16), the conformations of the SAH (17) secondary structure units impact tertiary structure formation and dynamics remain elusive. Using single-molecule FRET im- and preQ1-II counterparts are more complex and include a struc- aging of the preQ1 class II bacterial riboswitch, we reveal that tural extension that contributes to the pseudoknot architecture – (14). Importantly, the impact and evolutionary significance of RNA employs stem loop insertions into classical pseudoknots as a tool to tune ligand response and hence the outcome of these “extra” stem–loop elements on the function of the SAH and natural gene-regulatory elements. preQ1-II riboswitches remain unclear. PreQ riboswitches interact with the bacterial metabolite 1 Author contributions: M.F.S., S.C.B., and R.M. designed research; M.F.S., R.B.A., and V.S. 7-aminomethyl-7-deazaguanine (preQ1), a precursor molecule in performed research; A.H. contributed new reagents/analytic tools; M.F.S., R.B.A., V.S., the biosynthetic pathway of queuosine, a modified base en- A.H., S.C.B., and R.M. analyzed data; and M.F.S., S.C.B., and R.M. wrote the paper. countered at the wobble position of some transfer RNAs (14). The authors declare no conflict of interest. The general biological significance of studying the preQ1-II This article is a PNAS Direct Submission. system stems from the fact that this gene-regulatory element is Freely available online through the PNAS open access option. found almost exclusively in the Streptococcaceae bacterial family. 1M.F.S. and R.B.A. contributed equally to this work. Moreover, the preQ1 metabolite is not generated in humans and 2To whom correspondence may be addressed. E-mail: [email protected] or has to be acquired from the environment (14). Correspondingly, [email protected]. the preQ1-II riboswitch represents a putative target for antibiotic This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10. intervention. Although preQ1 class I (preQ1-I) riboswitches have 1073/pnas.1304585110/-/DCSupplemental. www.pnas.org/cgi/doi/10.1073/pnas.1304585110 PNAS Early Edition | 1of9 Downloaded by guest on September 25, 2021 exhibited enhanced SHAPE reactivity in the presence of preQ1 ligand (see ref. 35 and Fig. S3), suggesting that its solvent ex- posure increases as a consequence of preQ1 binding. Changes of this kind likely stem from disruption of the U19–A50 base pair in the ligand-bound complex. This conclusion is corroborated by the observation that a 2-aminopurine (2-Ap) nucleoside at po- sition 50 exhibits an increase in fluorescence in the presence of 2+ Mg and preQ1, trends that are in line with its movement from a stacked, or intrahelical, position to one that is extrahelical (35). Variations in denaturation temperature were also ob- Fig. 1. PreQ1 class II riboswitch. (A) Chemical structure of 7-aminomethyl- 7-deazaguanosine (preQ1); consensus sequence and secondary structure model for the COG4708 RNA motif (adapted from reference 14). Nucleoside presence and identity as indicated. (B) S. pneumoniae R6 preQ1-II RNA aptamer investigated in this study. (C) Schematics of an H-type pseudoknot with generally used nomenclature for comparison. R6 have yielded the putative secondary structure depicted in Fig. 1B (14). The characteristic pseudoknot (P3) interaction is de- fined by the pairing of the 3′-terminal sequence with junction J2–3, where the stem–loop P4 element is inserted immediately up- stream of this interaction. To explore the structural and dynamic properties of this model, we used the chemical probing technique SHAPE (33) to probe the conformation of the preQ1-II ribos- witch as a function of temperature. To do so, a transcribed riboswitch aptamer domain (85 nt in length; Materials and Methods and Fig. 2) was subjected to reaction with benzoyl cy- anide (BzCN) at temperatures ranging from 25 to 70 °C in 5 °C increments. After reverse transcription, the discrete bands ob- served by gel electrophoresis were quantified using SAFA soft- ware (Fig. S1) (34). The relative 2′-OH reactivities were plotted as a function of temperature to evaluate the denaturation tem- perature of the RNA at the single-nucleotide level (Fig. 2 A and B, and Fig. S2). Here, band intensities represent the degree of 2′- hydroxyl acylation of the base identified by reverse transcription. This analysis was repeated for the preQ1-II RNA in the absence or presence of magnesium ions and the preQ1 ligand. The results from these experiments are presented on the proposed second- ary structure and color-coded according to their
Recommended publications
  • Classification of Riboswitch Families Using Block Location-Based Feature Extraction
    Adv Pharm Bull, 2020, 10(1), 97-105 doi: 10.15171/apb.2020.012 https://apb.tbzmed.ac.ir Research Article Classification of Riboswitch Families Using Block Location-Based Feature Extraction (BLBFE) Method Faegheh Golabi1,2 ID , Mousa Shamsi1* ID , Mohammad Hosein Sedaaghi3 ID , Abolfazl Barzegar2,4 ID , Mohammad Saeid Hejazi5,6* ID 1Genomic Signal Processing Laboratory, Faculty of Biomedical Engineering, Sahand University of Technology, Tabriz, Iran. 2School of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran. 3Faculty of Electrical Engineering, Sahand University of Technology, Tabriz, Iran. 4Research Institute for Fundamental Sciences (RIFS), University of Tabriz, Tabriz, Iran. 5Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran. 6Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran. Article info Abstract Article History: Purpose: Riboswitches are special non-coding sequences usually located in mRNAs’ Received: 25 May 2019 un-translated regions and regulate gene expression and consequently cellular function. Revised: 4 Sep. 2019 Furthermore, their interaction with antibiotics has been recently implicated. This raises more Accepted: 30 Sep. 2019 interest in development of bioinformatics tools for riboswitch studies. Herein, we describe the epublished: 11 Dec. 2019 development and employment of novel block location-based feature extraction (BLBFE) method for classification of riboswitches. Keywords: Methods: We have already developed and reported a sequential block finding (SBF) algorithm • Riboswitch which, without operating alignment methods, identifies family specific sequential blocks for • Non-coding RNA riboswitch families. Herein, we employed this algorithm for 7 riboswitch families including • Sequential blocks lysine, cobalamin, glycine, SAM-alpha, SAM-IV, cyclic-di-GMP-I and SAH.
    [Show full text]
  • Comparative Genomics of Metabolic Capacities of Regulons Controlled by Cis-Regulatory RNA Motifs in Bacteria
    UC San Diego UC San Diego Previously Published Works Title Comparative genomics of metabolic capacities of regulons controlled by cis-regulatory RNA motifs in bacteria Permalink https://escholarship.org/uc/item/9hf0n826 Journal BMC Genomics, 14(1) Authors Sun, EI Leyn, SA Kazanov, MD et al. Publication Date 2013-09-02 DOI 10.1186/1471-2164-14-597 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Sun et al. BMC Genomics 2013, 14:597 http://www.biomedcentral.com/1471-2164/14/597 RESEARCH ARTICLE Open Access Comparative genomics of metabolic capacities of regulons controlled by cis-regulatory RNA motifs in bacteria Eric I Sun1, Semen A Leyn2,3, Marat D Kazanov3, Milton H Saier Jr.1, Pavel S Novichkov4 and Dmitry A Rodionov2,3* Abstract Background: In silico comparative genomics approaches have been efficiently used for functional prediction and reconstruction of metabolic and regulatory networks. Riboswitches are metabolite-sensing structures often found in bacterial mRNA leaders controlling gene expression on transcriptional or translational levels. An increasing number of riboswitches and other cis-regulatory RNAs have been recently classified into numerous RNA families in the Rfam database. High conservation of these RNA motifs provides a unique advantage for their genomic identification and comparative analysis. Results: A comparative genomics approach implemented in the RegPredict tool was used for reconstruction and functional annotation of regulons controlled by RNAs from 43 Rfam families in diverse taxonomic groups of Bacteria. The inferred regulons include ~5200 cis-regulatory RNAs and more than 12000 target genes in 255 microbial genomes. All predicted RNA-regulated genes were classified into specific and overall functional categories.
    [Show full text]
  • Developing a Riboswitch-Mediated Regulatory System for Metabolic Flux Control in Thermophilic Bacillus Methanolicus
    International Journal of Molecular Sciences Article Developing a Riboswitch-Mediated Regulatory System for Metabolic Flux Control in Thermophilic Bacillus methanolicus Marta Irla , Sigrid Hakvåg and Trygve Brautaset * Department of Biotechnology and Food Sciences, Norwegian University of Science and Technology, 7034 Trondheim, Norway; [email protected] (M.I.); [email protected] (S.H.) * Correspondence: [email protected]; Tel.: +47-73593315 Abstract: Genome-wide transcriptomic data obtained in RNA-seq experiments can serve as a re- liable source for identification of novel regulatory elements such as riboswitches and promoters. Riboswitches are parts of the 50 untranslated region of mRNA molecules that can specifically bind various metabolites and control gene expression. For that reason, they have become an attractive tool for engineering biological systems, especially for the regulation of metabolic fluxes in industrial microorganisms. Promoters in the genomes of prokaryotes are located upstream of transcription start sites and their sequences are easily identifiable based on the primary transcriptome data. Bacillus methanolicus MGA3 is a candidate for use as an industrial workhorse in methanol-based biopro- cesses and its metabolism has been studied in systems biology approaches in recent years, including transcriptome characterization through RNA-seq. Here, we identify a putative lysine riboswitch in B. methanolicus, and test and characterize it. We also select and experimentally verify 10 putative B. methanolicus-derived promoters differing in their predicted strength and present their functionality in combination with the lysine riboswitch. We further explore the potential of a B. subtilis-derived purine riboswitch for regulation of gene expression in the thermophilic B. methanolicus, establishing a Citation: Irla, M.; Hakvåg, S.; novel tool for inducible gene expression in this bacterium.
    [Show full text]
  • Structural and Mechanistic Studies of the THI Box and SMK Box Riboswitches
    Structural and Mechanistic Studies of the THI Box and SMK Box Riboswitches Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Angela Mae Smith, M.S. Graduate Program in Microbiology The Ohio State University 2009 Dissertation Committee: Professor Tina Henkin, Advisor Professor Kurt Fredrick Professor Michael Ibba Professor Ross Dalbey ABSTRACT Organisms have evolved a variety of mechanisms for regulating gene expression. Expression of individual genes is carefully modulated during different stages of cell development and in response to changing environmental conditions. A number of regulatory mechanisms involve structural elements within messenger RNAs (mRNAs) that, in response to an environmental signal, undergo a conformational change that affects expression of a gene encoded on that mRNA. RNA elements of this type that operate independently of proteins or translating ribosomes are termed riboswitches. In this work, the THI box and SMK box riboswitches were investigated in order to gain insight into the structural basis for ligand recognition and the mechanism of regulation employed by each of these RNAs. Both riboswitches are predicted to regulate at the level of translation initiation using a mechanism in which the Shine-Dalgarno (SD) sequence is occluded in response to ligand binding. For the THI box riboswitch, the studies presented here demonstrated that 30S ribosomal subunit binding at the SD region decreases in the presence of thiamin pyrophosphate (TPP). Mutation of conserved residues in the ligand binding domain resulted in loss of TPP-dependent repression in vivo. Based on these experiments two classes of mutant phenotypes were identified.
    [Show full text]
  • RIBOSWITCHES: CLASSIFICATION, FUNCTION and INSILICO APPROACH
    Mehta Neel B. et. al. / International Journal of Pharma Sciences and Research (IJPSR) Vol.1(9), 2010, 409-420 RIBOSWITCHES: CLASSIFICATION, FUNCTION and INSILICO APPROACH. MEHTA NEEL B.1* and PRASHANNA BALAJI 1 1 Final year B.Tech student, Department of Bioinformatics, Maulana Azad National Institute of Technology – Bhopal (M.A.N.I.T.), Madhya Pradesh, India ABSTRACT: Extensive study on RNA in recent times has resulted into discovering a type of genetic regulatory elements which are found in number of organism and undergoes different folding and functional process leading to repression of gene expression, termed as Riboswitches. Riboswitches are present in three kingdoms of life and have been identified in the genomes of plants, archaea and fungi. They are highly structured cis-acting elements located in the 5’-UnTranslated Region (UTR) of mRNA in the organism and the most important characteristic of riboswitches is that they fold into complex three dimensional structures to serve as precise receptors for their target molecules, organized around helical junctions with varying degrees of complexity. The combinations of computational and molecular approaches have significantly led to the identification of an increasing number of existing and novel riboswitches. In this paper we have classified all main types of riboswitches according to their functional characteristics and various tools (software) are mentioned to identify them through in silico approach. KEYWORDS: Cis-acting elements, Gene expression, Riboswitches and UnTranslated Region (UTR) INTRODUCTION: Precise genetic control is an essential feature of living systems, as cells must respond to a multitude of biochemical signals and environmental cues by varying genetic expression patterns.
    [Show full text]
  • Using Deep Learning to Classify Riboswitches with 99
    fbioe-08-00808 July 10, 2020 Time: 18:46 # 1 ORIGINAL RESEARCH published: 14 July 2020 doi: 10.3389/fbioe.2020.00808 Riboflow: Using Deep Learning to Classify Riboswitches With ∼99% Accuracy Keshav Aditya R. Premkumar1†, Ramit Bharanikumar2† and Ashok Palaniappan3* 1 MS Program in Computer Science, Department of Computer Science, College of Engineering and Applied Sciences, Stony Brook University, Stony Brook, NY, United States, 2 MS in Bioinformatics, Georgia Institute of Technology, Atlanta, GA, United States, 3 Department of Bioinformatics, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, India Riboswitches are cis-regulatory genetic elements that use an aptamer to control gene expression. Specificity to cognate ligand and diversity of such ligands have expanded the functional repertoire of riboswitches to mediate mounting apt responses to sudden metabolic demands and signal changes in environmental conditions. Given their critical role in microbial life, riboswitch characterisation remains a challenging Edited by: computational problem. Here we have addressed the issue with advanced deep Yusuf Akhter, learning frameworks, namely convolutional neural networks (CNN), and bidirectional Babasaheb Bhimrao Ambedkar University, India recurrent neural networks (RNN) with Long Short-Term Memory (LSTM). Using a Reviewed by: comprehensive dataset of 32 ligand classes and a stratified train-validate-test approach, Ahsan Z. Rizvi, we demonstrated the accurate performance of both the deep learning models (CNN and Mewar University, India RNN) relative to conventional hyperparameter-optimized machine learning classifiers Joohyun Kim, Vanderbilt University Medical Center, on all key performance metrics, including the ROC curve analysis. In particular, the United States bidirectional LSTM RNN emerged as the best-performing learning method for identifying *Correspondence: the ligand-specificity of riboswitches with an accuracy >0.99 and macro-averaged Ashok Palaniappan [email protected] F-score of 0.96.
    [Show full text]
  • Riboswitch Rnas: Using RNA to Sense Cellular Metabolism
    Downloaded from genesdev.cshlp.org on September 26, 2021 - Published by Cold Spring Harbor Laboratory Press REVIEW Riboswitch RNAs: using RNA to sense cellular metabolism Tina M. Henkin1 Department of Microbiology and Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210, USA Riboswitches are RNA elements that undergo a shift in very rapid response to changing environmental condi- structure in response to binding of a regulatory mol- tions. ecule. These elements are encoded within the transcript Gene regulation in bacteria can also use RNA-binding they regulate, and act in cis to control expression of the proteins that interact with the RNA transcript to control coding sequence(s) within that transcript; their function its fate. Regulatory outcomes include effects on attenu- is therefore distinct from that of small regulatory RNAs ation of transcription (in transcriptional units that con- (sRNAs) that act in trans to regulate the activity of other tain a termination signal, designated an attenuator, early RNA transcripts. Riboswitch RNAs control a broad in the transcript), mRNA stability, and translation ini- range of genes in bacterial species, including those in- tiation. Like DNA-binding proteins, RNA-binding pro- volved in metabolism or uptake of amino acids, cofac- teins that function in gene regulation are often expressed tors, nucleotides, and metal ions. Regulation occurs as a constitutively, and their activity is modulated in re- consequence of direct binding of an effector molecule, or sponse to the environmental signal (e.g., Bacillus subti- through sensing of a physical parameter such as tempera- lis TRAP protein is activated by tryptophan).
    [Show full text]
  • Comparative Genomics and Phylogenomic Analyses of Lysine Riboswitch Distributions in Bacteria
    RESEARCH ARTICLE Comparative genomics and phylogenomic analyses of lysine riboswitch distributions in bacteria Sumit Mukherjee1, Danny Barash2, Supratim Sengupta1* 1 Department of Physical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, India, 2 Department of Computer Science, Ben-Gurion University of the Negev, Beer-Sheva, Israel * [email protected] a1111111111 a1111111111 a1111111111 Abstract a1111111111 a1111111111 Riboswitches are cis-regulatory elements that regulate the expression of genes involved in biosynthesis or transport of a ligand that binds to them. Among the nearly 40 classes of riboswitches discovered so far, three are known to regulate the concentration of biologically encoded amino acids glycine, lysine, and glutamine. While some comparative genomics studies of riboswitches focusing on their gross distribution across different bacterial taxa OPEN ACCESS have been carried out recently, systematic functional annotation and analysis of lysine ribos- Citation: Mukherjee S, Barash D, Sengupta S (2017) Comparative genomics and phylogenomic witches and the genes they regulate are still lacking. We analyzed 2785 complete bacterial analyses of lysine riboswitch distributions in genome sequences to systematically identify 468 lysine riboswitches (not counting hits from bacteria. PLoS ONE 12(9): e0184314. https://doi. multiple strains of the same species) and obtain a detailed phylogenomic map of gene-spe- org/10.1371/journal.pone.0184314 cific lysine riboswitch distribution across diverse prokaryotic phyla. We find that lysine ribos- Editor: Young-Hwa Song, Fachhochschule Lubeck, witches are most abundant in Firmicutes and Gammaproteobacteria where they are found GERMANY upstream to both biosynthesis and/or transporter genes. They are relatively rare in all other Received: March 14, 2017 prokaryotic phyla where if present they are primarily found upstream to operons containing Accepted: August 22, 2017 many lysine biosynthesis genes.
    [Show full text]
  • Analyzing Riboswitches As a Function of Genome Size and Genus Ancestry in Gammaproteobacteria
    Portland State University PDXScholar University Honors Theses University Honors College 2015 Analyzing Riboswitches as a Function of Genome Size and Genus Ancestry in Gammaproteobacteria Robyn Reid Portland State University Follow this and additional works at: https://pdxscholar.library.pdx.edu/honorstheses Let us know how access to this document benefits ou.y Recommended Citation Reid, Robyn, "Analyzing Riboswitches as a Function of Genome Size and Genus Ancestry in Gammaproteobacteria" (2015). University Honors Theses. Paper 159. https://doi.org/10.15760/honors.191 This Thesis is brought to you for free and open access. It has been accepted for inclusion in University Honors Theses by an authorized administrator of PDXScholar. For more information, please contact [email protected]. Analyzing Riboswitches as a Function of Genome Size and Genus Ancestry in Gammaproteobacteria by Robyn Reid An undergraduate honors thesis submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in University Honors and Mathematics and Chemistry Thesis Adviser Rahul Raghavan Portland State University 2015 Analyzing Riboswitches as a Function of Genome Size and Genus Ancestry in Gammaproteobacteria Robyn Reid Advisor: Dr. Rahul Raghavan Abstract: Riboswitches are RNA molecules that regulate gene expression, without the need for protein factors, at the mRNA level in the bacterial kingdom. This paper focuses on nine riboswitches: TPP, FMN, SAM, Lysine, Cobalamine, Glycine, Molybdenum, Mg, and SAH, and whether or not there exists a relationship between genome size and riboswitch existence. The hypothesis of this paper is that there does exist a direct relationship because it is assumed that the more basepairs (bp) in a genome, the higher the chance that an old characteristic, such as a riboswitch, is conserved.
    [Show full text]
  • The Distributions, Mechanisms, and Structures of Metabolite-Binding Riboswitches Jeffrey E Barrick*† and Ronald R Breaker*‡§
    Open Access Research2007BarrickVolume and8, Issue Breaker 11, Article R239 The distributions, mechanisms, and structures of metabolite-binding riboswitches Jeffrey E Barrick*† and Ronald R Breaker*‡§ Addresses: *Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520-8103, USA. †Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI48824-4320, USA. ‡Howard Hughes Medical Institute, Yale University, New Haven, Connecticut 06520-8103, USA. §Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06520-8103, USA. Correspondence: Ronald R Breaker. Email: [email protected] Published: 12 November 2007 Received: 26 July 2007 Revised: 1 October 2007 Genome Biology 2007, 8:R239 (doi:10.1186/gb-2007-8-11-r239) Accepted: 12 November 2007 The electronic version of this article is the complete one and can be found online at http://genomebiology.com/2007/8/11/R239 © 2007 Barrick and Breaker; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Riboswitch<p>Phylogeneticled to updated distribution, aptamer analyses struct mechanisms revealedure models insights and and structures into insights the distribution into the mechanis of riboswitchm of theseclasses non-coding in different RNA microbial structures.</p> groups, and structural analyses Abstract Background: Riboswitches are noncoding RNA structures that appropriately regulate genes in response to changing cellular conditions. The expression of many proteins involved in fundamental metabolic processes is controlled by riboswitches that sense relevant small molecule ligands.
    [Show full text]
  • Small-Molecule-Binding Riboswitches THEA S
    Small-Molecule-Binding Riboswitches THEA S. LOTZ1 and BEATRIX SUESS1 1Synthetic Genetic Circuits, Department of Biology, TU Darmstadt, 64287 Darmstadt, Germany ABSTRACT RNA is a versatile biomolecule capable of moieties is imperative in enabling RNA to function as a transferring information, taking on distinct three-dimensional biological catalyst, regulator, or structural scaffold. shapes, and reacting to ambient conditions. RNA molecules In the last 15 years, many different types of regula- utilize a wide range of mechanisms to control gene expression. tory RNA molecules have been discovered in nature. An An example of such regulation is riboswitches. Consisting exclusively of RNA, they are able to control important metabolic abundance of riboswitches, ribozymes, RNA thermom- processes, thus providing an elegant and efficient RNA-only eters, and short and long noncoding RNAs have been regulation system. Existing across all domains of life, found in all three domains of life. However, plenty of riboswitches appear to represent one of the most highly questions regarding how RNA influences cell physio- conserved mechanisms for the regulation of a broad range of logy, differentiation, and development still remain un- biochemical pathways. Through binding of a wide range of answered and the subject of extensive research (1). There small-molecule ligands to their so-called aptamer domain, are several advantages when gene expression is regulated riboswitches undergo a conformational change in their downstream “expression platform.” In consequence, the pattern via RNA alone as opposed to regulation in combination of gene expression changes, which in turn results in increased or with proteins. It allows (i) faster regulatory responses, decreased protein production.
    [Show full text]
  • Transcriptional Pausing at the Translation Start Site Operates As a Critical Checkpoint for Riboswitch Regulation
    ARTICLE Received 20 Jul 2016 | Accepted 10 Nov 2016 | Published 10 Jan 2017 DOI: 10.1038/ncomms13892 OPEN Transcriptional pausing at the translation start site operates as a critical checkpoint for riboswitch regulation Adrien Chauvier1,Fre´de´ric Picard-Jean1, Jean-Christophe Berger-Dancause1, Laure`ne Bastet1, Mohammad Reza Naghdi2, Audrey Dube´1, Pierre Turcotte1, Jonathan Perreault2 & Daniel A. Lafontaine1 On the basis of nascent transcript sequencing, it has been postulated but never demonstrated that transcriptional pausing at translation start sites is important for gene regulation. Here we show that the Escherichia coli thiamin pyrophosphate (TPP) thiC riboswitch contains a regulatory pause site in the translation initiation region that acts as a checkpoint for thiC expression. By biochemically probing nascent transcription complexes halted at defined positions, we find a narrow transcriptional window for metabolite binding, in which the downstream boundary is delimited by the checkpoint. We show that transcription complexes at the regulatory pause site favour the formation of a riboswitch intramolecular lock that strongly prevents TPP binding. In contrast, cotranscriptional metabolite binding increases RNA polymerase pausing and induces Rho-dependent transcription termination at the checkpoint. Early transcriptional pausing may provide a general mechanism, whereby transient transcriptional windows directly coordinate the sensing of environmental cues and bacterial mRNA regulation. 1 Department of Biology, Faculty of Science, RNA Group, Universite´ de Sherbrooke, Sherbrooke, J1K 2R1 Quebec, Canada. 2 INRS-Institut Armand-Frappier, Laval, H7V 1B7 Quebec, Canada. Correspondence and requests for materials should be addressed to D.A.L. (email: [email protected]). NATURE COMMUNICATIONS | 8:13892 | DOI: 10.1038/ncomms13892 | www.nature.com/naturecommunications 1 ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms13892 ene expression is a highly regulated process that is Results vital for cellular homoeostasis.
    [Show full text]