Viral Evasion Strategies

Total Page:16

File Type:pdf, Size:1020Kb

Viral Evasion Strategies Viral Evasion Strategies Lecture 15 Virology W3310/4310 Spring 2013 “Don’t look back, something might be gaining on you!” -SATCHEL PAIGE Host vs. Virus • What one does to the other? • Evolution of strategies to evade innate and adaptive cell responses to infection - goal: survival, reproduction and release 2 Strategies for Evasion • Overwhelm the host • Enter parenterally - Anyway other than the gut - Why? • Disarm host defenses 3 Acute Infections When to treat? Symptoms 4 Virus Offense Meets Host Defense 5 Evasion • VIPRS - viral proteins that interfere with antigen presentation • Disarm innate immunity • Regulate MHC molecules - responsible for antigen presentation • Alter antigen presentation • Interfere with CTL and NK cells • Go and hide More on this later 6 Host Defenses • Innate immunity, responds to everything • Intranuclear modulatory molecules • Immune system, recognizes signal, amplifies signal and controls invader • Interferons induce an antiviral state PKR • Complement punches holes in membranes • NK and CTLs • Macrophages and neutrophils 7 Adaptive Immunity • A memory response • Activated in response to the innate immune system • Results in clonal expansion of B and T cells - requires CD4+ Th1 and Th2 cells • Generation of Cytotoxic T celLs and antibody production 8 Inflammatory Response • Occurs in response to necrosis • Results in release of cytokines and chemokines • Recruits neutrophils and macrophages to site of damage 9 Cytokines • Primary output of innate immune response • Rapid induction in response to infection • Control inflammation • Induce antiviral state, IFNs • Regulate immune system 10 Viral Response • Virokines, it looks like, smells like, so don’t step in it - these mimetics bind and sequester host receptor molecules • Viroceptors - soluble cytokine receptors - divert cytokines from initiating response • Sabotage innate and adaptive defense without affecting growth in cell culture 11 Products that Counter IFN • Why? - Without IFN host has a reduced ability to contain viral infections • dsRNA binding proteins - NS1 from Influenza - E3h from Poxviruses - US11 from HSV • Ad VA-RNA - A dsRNA decoy that binds PKR 12 Modulators of the IFN Response 13 Regulators of ISGs • ND10s are composed of host proteins that repress virus replication - innate nuclear defense - epigenetic regulation of virus replication - PML, an important ND10 constituent • Some Herpesviruses targets PML for proteolysis 14 Dissolution of PML 15 Translational Regulation • Viruses modify host to favor synthesis of their own proteins • IFNs establish an anti-viral state • Induction of Protein Kinase R and other eIF2α kinases - inhibit translation - consequences for virus replication 16 Innate Defense Targets 17 PKR • Activated by binding dsRNA • Autophosphorylates at S51 • Phosphorylates eIF2α - forms a very tight ternary complex with GDP- eIF2B - blocks recycling - translation is arrested 18 How Viruses Counteract Pkr • Virus proteins have evolved to thwart host anti- virus defenses • HSV US11 blocks Pkr activation by binding to it • Adenovirus VA RNAs bind tightly to Pkr - dsRNA decoy • HPV E6 and HSV γ34.5 dephosphorylate eIF2α - γ34.5 interacts with PP1a redirecting it to eIF2α 19 Phosphorylation of eIF2α HSV US11 Ad VA RNAs HPV E6 HSV γ34.5 20 Viral Modulators of Interferon • Inhibit IFN synthesis • IFN Receptor decoys • Inhibition of IFN signaling • Inhibit Interferon Stimulated Genes 21 REVIEW Autophagy a catabolic process involving degradation of a cell's own For example, the most commonly used autophagy assays, biochemical detection of components through the lysosomal machinery the lipidated form of LC3 (LC3-II) and detec- tion of the localization of LC3-II to punctate AUTOPHAGY dots by light microscopy, are subject to many Class III PI(3)K complex Vesicle interpretations. Most investigators now rec- nucleation Other regulators ognize that detection of increased LC3-II can Autophagy induction Beclin 1 Atg14 Bcl-2–Bcl-XL P Vps34 Vps15 indicate either more autophagosome forma- Starvation Isolation tion or a block in autophagosomal matura- Growth factor deprivation membrane tion, which necessitates the use of ancillary Immune signals: IFN-G approaches to distinguish between these TNF 14 possibilities . Perhaps less well appreciated TLRs Ubiquitin-like conjugation systems PKR-elF2 kinase Vesicle is the idea that LC3 dots may represent the A elongation Atg16L1 Atg12 Atg12 Jnk Atg10 E2 Atg12 Atg5 Atg5 Atg5 targeting of LC3 to structures other than Atg5 Atg16L1 FADD Atg16L 1 Atg12 Atg16L1Atg16L1 autophagosomes, such as phagosomes, dou- Immunity-related GTPases Atg5 Atg5 Atg7 E1 Atg12 Atg12 ble-membraned scaffolds for the replication PE LC3 -Gly complexes of positive-strand RNA viruses, or Autophagy suppression LC3 LC3 15–17 Atg3 E2 even protein aggregates . Similarly, LC3 Nutrient abundance Atg4 LC3 may become lipidated, forming LC3-II, in Insulin-Akt-TOR signaling the absence of autophagosome formation18,19. Immune signals: IL-4 Thus, whereas LC3-II formation and localiza- IL-13 Docking & Vesicle breakdown fusion & degradation tion of LC3 punctae are hallmark features of FADD autophagosome formation (and sensitive Immunity-related GTPases Autophagosome Autolysosome parameters for the detection of autophagy), Lysosome they lack complete specificity as markers of classical autophagy. The direct demonstra- tion of a function for autophagosomes in a 22 process is the gold standard for proving that Figure 1 The autophagy pathway and its regulation. The autophagy pathway proceeds through a series autophagy is involved. An extensive discus- of stages, including nucleation of the autophagic vesicle, elongation and closure of the autophagosome sion of the various assays used in autophagy membrane to envelop cytoplasmic constituents, docking of the autophagosome with the lysosome, and research, as well as the criteria for their use and degradation of the cytoplasmic material inside the autophagosome. Vesicle nucleation depends on a interpretation, has been provided in a consen- class III PI(3)K complex that contains various proteins (in light yellow box at right), as well as additional sus paper published by many of the authorities proteins that regulate the activity of this complex (such as rubicon, UVRAG, Ambra-1 and Bif-1). Vesicle in the field14. elongation and completion involves the activity of two ubiquitin-like conjugation systems (light blue The genetic knockout or knockdown of box at right). The autophagy pathway is positively regulated (green box at left) and negatively regulated (red box at left) by diverse environmental and immunological signals. TNF, tumor necrosis factor; PE, core autophagy genes is an effective way to phosphatidylethanolamine; Gly, glycine; E1 and E2, ligases for ubiquitin-like conjugation systems. turn off the autophagy pathway, but it is often unclear whether resulting phenotypes are due to a deficiency of classical for lethal encephalitis in mice24. These studies collectively suggested autophagy or autophagy-independent functions of the autophagy genes. a likely function for autophagy genes in pathogen defense in vivo. In As reviewed elsewhere, autophagy genes are known to have alternative parallel, many studies demonstrated a function for autophagy in vitro functions, including those in other membrane-trafficking events, axonal in defense against invading pathogens, including group A Streptococcus, elongation and cell death20,21. Furthermore, investigators often assume Shigella flexneri, Mycobacterium tuberculosis, Salmonella typhimurium that phenotypes noted in autophagy gene–deficient cells or organisms and Toxoplasma gondii10,11,13. are due to lack of classical autophagy without providing direct experi- Two recent studies have further confirmed an antimicrobial func- mental proof. Notably, for many studies of the involvement of autophagy tion for autophagy genes in host defense in vivo against intracellular genes in immunity (Fig. 3), it is not clear how classical autophagy, involv- pathogens and have identified previously unknown relationships among ing the autophagolysosomal degradation of sequestered contents, could innate immune signaling, autophagy genes and potential autophagy- contribute to the described functions of autophagy genes. Thus, it is independent functions of autophagy genes. An innate microbial sensor, possible that autophagy genes act in other cellular processes that affect the peptidoglycan-recognition protein PRGP-LE, which recognizes bac- immune effector cell development and function. Here we will discuss terial diaminopimelic acid–type peptidoglycan, is crucial for autophagic advances related to the function of autophagy genes in the immune control of Listeria monocytogenes infection in fly hemocytes and for host system. survival25. PRGP-LE-mediated resistance is associated with autophagy induction, requires the autophagy gene Atg5 and presumably involves Autophagy genes in antimicrobial defense the xenophagic degradation of bacteria (as bacteria are visualized in More than a decade ago, the first published paper on Beclin 1, a mam- autophagosomes in wild-type animals). In this case, xenophagy tar- malian autophagy protein, demonstrated an antiviral function for gets cytoplasmic bacteria that have escaped from the endosome for exogenous neuronal expression of Beclin 1 in mice with alphavirus envelopment in an autophagosome and destruction. In other cases encephalitis22. Subsequently, endogenous autophagy genes were shown in which a pathogen inside a vesicular structure is targeted
Recommended publications
  • Transcriptomic Profiles of High and Low Antibody Responders to Smallpox
    Genes and Immunity (2013) 14, 277–285 & 2013 Macmillan Publishers Limited All rights reserved 1466-4879/13 www.nature.com/gene ORIGINAL ARTICLE Transcriptomic profiles of high and low antibody responders to smallpox vaccine RB Kennedy1,2, AL Oberg1,3, IG Ovsyannikova1,2, IH Haralambieva1,2, D Grill1,3 and GA Poland1,2 Despite its eradication over 30 years ago, smallpox (as well as other orthopox viruses) remains a pathogen of interest both in terms of biodefense and for its use as a vector for vaccines and immunotherapies. Here we describe the application of mRNA-Seq transcriptome profiling to understanding immune responses in smallpox vaccine recipients. Contrary to other studies examining gene expression in virally infected cell lines, we utilized a mixed population of peripheral blood mononuclear cells in order to capture the essential intercellular interactions that occur in vivo, and would otherwise be lost, using single cell lines or isolated primary cell subsets. In this mixed cell population we were able to detect expression of all annotated vaccinia genes. On the host side, a number of genes encoding cytokines, chemokines, complement factors and intracellular signaling molecules were downregulated upon viral infection, whereas genes encoding histone proteins and the interferon response were upregulated. We also identified a small number of genes that exhibited significantly different expression profiles in subjects with robust humoral immunity compared with those with weaker humoral responses. Our results provide evidence that differential gene regulation patterns may be at work in individuals with robust humoral immunity compared with those with weaker humoral immune responses. Genes and Immunity (2013) 14, 277–285; doi:10.1038/gene.2013.14; published online 18 April 2013 Keywords: Next-generation sequencing; mRNA-Seq; vaccinia virus; smallpox vaccine INTRODUCTION these 44 subjects had two samples (uninfected and vaccinia Vaccinia virus (VACV) is the immunologically cross-protective infected).
    [Show full text]
  • Investigation of the C-Terminal Helix of HIV-1 Matrix: a Region Essential for Multiple Functions in the Viral Life Cycle: a Dissertation
    University of Massachusetts Medical School eScholarship@UMMS GSBS Dissertations and Theses Graduate School of Biomedical Sciences 2011-07-10 Investigation of the C-Terminal Helix of HIV-1 Matrix: A Region Essential for Multiple Functions in the Viral Life Cycle: A Dissertation Laura A. Brandano University of Massachusetts Medical School Let us know how access to this document benefits ou.y Follow this and additional works at: https://escholarship.umassmed.edu/gsbs_diss Part of the Biological Factors Commons, Genetic Phenomena Commons, Immunology and Infectious Disease Commons, Therapeutics Commons, Virology Commons, Virus Diseases Commons, and the Viruses Commons Repository Citation Brandano LA. (2011). Investigation of the C-Terminal Helix of HIV-1 Matrix: A Region Essential for Multiple Functions in the Viral Life Cycle: A Dissertation. GSBS Dissertations and Theses. https://doi.org/ 10.13028/5zmj-9x81. Retrieved from https://escholarship.umassmed.edu/gsbs_diss/552 This material is brought to you by eScholarship@UMMS. It has been accepted for inclusion in GSBS Dissertations and Theses by an authorized administrator of eScholarship@UMMS. For more information, please contact [email protected]. i INVESTIGATION OF THE C-TERMINAL HELIX OF HIV-1 MATRIX: A REGION ESSENTIAL FOR MULTIPLE FUNCTIONS IN THE VIRAL LIFE CYCLE A Dissertation Presented by Laura A. Brandano Submitted to the Faculty of the University of Massachusetts Graduate School of Biomedical Sciences, Worcester in partial fulfillment of the requirements for the degree of DOCTOR
    [Show full text]
  • “Molecular Fingerprints” Using an EBV (Epstein-Barr Virus)-D
    Immunologic Research (2018) 66:686–695 https://doi.org/10.1007/s12026-018-9045-0 REVIEW Molecular mimicry, genetic homology, and gene sharing proteomic Bmolecular fingerprints^ using an EBV (Epstein-Barr virus)-derived microarray as a potential diagnostic method in autoimmune disease David H. Dreyfus1 & Antonella Farina2 & Giuseppina Alessandra Farina3 David H. Dreyfus Published online: 15 December 2018 # The Author(s) 2018 Abstract EBV (Epstein-Barr Virus) and other human DNA viruses are associated with autoimmune syndromes in epidemiologic studies. In this work, immunoglobulin G response to EBV-encoded proteins which share regions with human immune response proteins from the human host including ZEBRA (BZLF-1 encoded protein), BALF-2 recombinase expressed primarily during the viral lytic replication cycle, and EBNA-1 (Epstein-Barr Virus Nuclear Antigen) expressed during the viral latency cycle respectively were characterized using a laser-printed micro-array (PEPperprint.com). IgG response to conserved BA/T hooks^ in EBV- encoded proteins such as EBNA-1 and the BALF-2 recombinase related to host DNA-binding proteins including RAG-1 recombinase and histones, and EBV-encoded virokines such as the IL-10 homologue BCRF-1 suggest further directions for clinical research. The author suggests that proteomic Bmolecular fingerprints^ of the immune response to viral proteins shared with human immune response genes are potentially useful in early diagnosis and monitoring of autoantibody production and response to therapy in EBV-related autoimmune syndromes. Keywords Molecular mimicry . Autoimmune disease . SLE (systemic lupus erythematosus) . Scleroderma . MS (multiple sclerosis) . Virokine Introduction available using specific immunoglobulin G (IgG) binding to viral proteins such as EBNA-1 (Epstein-Barr Virus Nuclear DNA viruses such as EBV (Epstein-Barr Virus) have been Antigen-1), VCA (Viral Capsid Antigen), and EA (viral com- associated with numerous autoimmune syndromes in epide- ponents termed Early Antigen).
    [Show full text]
  • Recovery of the First Full-Length Genome Sequence of a Parapoxvirus Directly from a Clinical Sample
    www.nature.com/scientificreports OPEN Recovery of the first full-length genome sequence of a parapoxvirus directly from a clinical sample Received: 10 January 2017 Thomas Günther1, Ludwig Haas2, Malik Alawi1,3, Peter Wohlsein4, Jerzy Marks5, Adam Accepted: 9 May 2017 Grundhoff1,6, Paul Becher 2,7 & Nicole Fischer6,8 Published: xx xx xxxx We recovered the first full-length poxvirus genome, including the terminal hairpin region, directly from complex clinical material using a combination of second generation short read and third generation nanopore sequencing technologies. The complete viral genome sequence was directly recovered from a skin lesion of a grey seal thereby preventing sequence changes due to in vitro passaging of the virus. Subsequent analysis of the proteins encoded by this virus identified genes specific for skin adaptation and pathogenesis of parapoxviruses. These data warrant the classification of seal parapoxvirus, tentatively designated SePPV, as a new species within the genus Parapoxvirus. Parapoxviruses (PPVs) form a genus of the family Poxviridae. Poxviruses are large double stranded DNA viruses with genomes of approximately 135 to 360 kbp, which contain up to 328 open reading frames1. According to the International Committee on Taxonomy of Viruses (ICTV; http://ictvonline.org/virusTaxonomy.asp), the genus Parapoxvirus comprises the following species members: the Orf virus (ORFV), considered the prototype para- poxvirus causing contagious pustular dermatitis in small ruminants, the Bovine papular stomatitis virus (BPSV), the Pseudocowpox virus (PCPV) and the Parapoxvirus of red deer in New Zealand (PVNZ). Beside these viruses with known full-length nucleotide sequences, a number of tentative species have been proposed based on the amplification of smaller genome fragments using pan-PCR primers encompassing 250–550 bp of the DNA pol- ymerase, DNA topoisomerase I and major envelope protein encoding regions.
    [Show full text]
  • Viral Infections and Systemic Lupus Erythematosus: New Players in an Old Story
    viruses Review Viral Infections and Systemic Lupus Erythematosus: New Players in an Old Story Marco Quaglia 1,2, Guido Merlotti 1,2 , Marco De Andrea 2,3 , Cinzia Borgogna 2,4 and Vincenzo Cantaluppi 1,2,* 1 Nephrology and Kidney Transplantation Unit, Department of Translational Medicine, University of Piemonte Orientale (UPO), “Maggiore della Carità” University Hospital, Via P. Solaroli 17, 28100 Novara, Italy; [email protected] (M.Q.); [email protected] (G.M.) 2 Center for Translational Research on Autoimmune and Allergic Disease-CAAD, 28100 Novara, Italy; [email protected] (M.D.A.); [email protected] (C.B.) 3 Department of Public Health and Pediatric Sciences, Medical School, University of Turin, 10126 Turin, Italy 4 Department of Translational Medicine, University of Piemonte Orientale (UPO), 28100 Novara, Italy * Correspondence: [email protected] Abstract: A causal link between viral infections and autoimmunity has been studied for a long time and the role of some viruses in the induction or exacerbation of systemic lupus erythematosus (SLE) in genetically predisposed patients has been proved. The strength of the association between different viral agents and SLE is variable. Epstein–Barr virus (EBV), parvovirus B19 (B19V), and human endogenous retroviruses (HERVs) are involved in SLE pathogenesis, whereas other viruses such as Cytomegalovirus (CMV) probably play a less prominent role. However, the mechanisms of viral–host interactions and the impact of viruses on disease course have yet to be elucidated. In addition to classical mechanisms of viral-triggered autoimmunity, such as molecular mimicry and Citation: Quaglia, M.; Merlotti, G.; epitope spreading, there has been a growing appreciation of the role of direct activation of innate De Andrea, M.; Borgogna, C.; response by viral nucleic acids and epigenetic modulation of interferon-related immune response.
    [Show full text]
  • Evolution Toward Beta Common Chain Receptor Usage Links the Matrix Proteins of HIV-1 and Its Ancestors to Human Erythropoietin
    Evolution toward beta common chain receptor usage links the matrix proteins of HIV-1 and its ancestors to human erythropoietin Francesca Caccuria,1, Pasqualina D’Ursib,1, Matteo Uggerib,c, Antonella Bugattia, Pietro Mazzucaa, Alberto Zania, Federica Filippinia, Mario Salmonad, Domenico Ribattie, Mark Slevinf, Alessandro Orrob, Wuyuan Lug, Pietro Liòh, Robert C. Gallog,2, and Arnaldo Carusoa,2 aDepartment of Molecular and Translational Medicine, University of Brescia Medical School, 25123 Brescia, Italy; bInstitute of Technologies in Biomedicine, National Research Council, 20090 Segrate, Italy; cDepartment of Pharmacy, University of Genova, 16132 Genova, Italy; dIstituti di Ricovero e Cura a Carattere Assistenziale Istituto di Ricerche Farmacologiche Mario Negri, 20156 Milan, Italy; eDepartment of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, 70124 Bari, Italy; fSchool of Healthcare Science, Manchester Metropolitan University, M15GD Manchester, United Kingdom; gInstitute of Human Virology, University of Maryland, Baltimore, MD 21201; and hDepartment of Computer Science and Technology, University of Cambridge, CB3 0FD Cambridge, United Kingdom Contributed by Robert C. Gallo, December 1, 2020 (sent for review October 14, 2020; reviewed by Leonid B. Margolis and Guido Silvestri) The HIV-1 matrix protein p17 (p17) is a pleiotropic molecule impacting envelope glycoproteins (6). Interestingly, HIV-1–infected cells can on different cell types. Its interaction with many cellular proteins un- unconventionally secrete p17 following Pr55Gag binding to phos- derlines the importance of the viral protein as a major determinant of phatidylinositol 4, 5-bisphosphate and p17 cleavage from Pr55Gag human specific adaptation. We previously showed the proangiogenic (7). Secretion of p17 occurs also in the absence of viral protease capability of p17.
    [Show full text]
  • Understanding Poxvirus Pathogenesis by Selectively Deleting Viral Immunomodulatory Genes Johnston, J
    NRC Publications Archive Archives des publications du CNRC Technical knockout: understanding poxvirus pathogenesis by selectively deleting viral immunomodulatory genes Johnston, J. B.; McFadden, Grant This publication could be one of several versions: author’s original, accepted manuscript or the publisher’s version. / La version de cette publication peut être l’une des suivantes : la version prépublication de l’auteur, la version acceptée du manuscrit ou la version de l’éditeur. For the publisher’s version, please access the DOI link below./ Pour consulter la version de l’éditeur, utilisez le lien DOI ci-dessous. Publisher’s version / Version de l'éditeur: https://doi.org/10.1111/j.1462-5822.2004.00423.x Cellular Microbiology, 6, June 8, pp. 695-705, 2004 NRC Publications Record / Notice d'Archives des publications de CNRC: https://nrc-publications.canada.ca/eng/view/object/?id=a646f73c-5476-4961-9fd4-9ebff270b279 https://publications-cnrc.canada.ca/fra/voir/objet/?id=a646f73c-5476-4961-9fd4-9ebff270b279 Access and use of this website and the material on it are subject to the Terms and Conditions set forth at https://nrc-publications.canada.ca/eng/copyright READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE. L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site https://publications-cnrc.canada.ca/fra/droits LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB. Questions? Contact the NRC Publications Archive team at [email protected]. If you wish to email the authors directly, please see the first page of the publication for their contact information.
    [Show full text]
  • Characterization of Swinepox Virus Secretory Polypeptides
    Western Michigan University ScholarWorks at WMU Master's Theses Graduate College 4-1998 Characterization of Swinepox Virus Secretory Polypeptides Takeshi Shimamura Follow this and additional works at: https://scholarworks.wmich.edu/masters_theses Part of the Biology Commons Recommended Citation Shimamura, Takeshi, "Characterization of Swinepox Virus Secretory Polypeptides" (1998). Master's Theses. 4576. https://scholarworks.wmich.edu/masters_theses/4576 This Masters Thesis-Open Access is brought to you for free and open access by the Graduate College at ScholarWorks at WMU. It has been accepted for inclusion in Master's Theses by an authorized administrator of ScholarWorks at WMU. For more information, please contact [email protected]. CHARACTERIZATION OF SWINEPOX VIRUS SECRETORY POLYPEPTIDES by Takeshi Shimamura A Thesis Submitted to the Faculty of The Graduate College in partial fulfillment of the requirements for the Degree of Master of Science Department of Biological Sciences Western Michigan University Kalamazoo, Michigan April 1998 Copyright by Takeshi Shimamura 1998 ACKNOWLEDGEMENTS I wish to express my high regard and appreciation to my advisor and mentor, Dr. Karim Essani for his guidance and help throughout this study. I am thankful to Dr. Robert C. Eisenberg, and Dr. Ronald C. Shebuski for taking the time to be a part of my thesis committee. Cardiovascular studies were carried out in Dr. Ronald Shebuski's laboratory. I also thank Dr. Anthony Manning forhis generosity to allow me to work in his laboratory on the cell adhesion molecules. Thanks also to Mr. William R. Humphrey for his help in the cardiovascular study, Ms. Jennifer L. Northrup, Ms. Cynthia J. Mills, and Ms.
    [Show full text]
  • Neuropathologic Implication of Peripheral Neuregulin-1 and EGF
    Hindawi Publishing Corporation BioMed Research International Volume 2014, Article ID 697935, 12 pages http://dx.doi.org/10.1155/2014/697935 Review Article Neuropathologic Implication of Peripheral Neuregulin-1 and EGF Signals in Dopaminergic Dysfunction and Behavioral Deficits Relevant to Schizophrenia: Their Target Cells and Time Window Hiroyuki Nawa, Hidekazu Sotoyama, Yuriko Iwakura, Nobuyuki Takei, and Hisaaki Namba Department of Molecular Neurobiology, Brain Research Institute, Niigata University, 1-757 Asahimachi-dori, Chuo-ku, Niigata 951-8585, Japan Correspondence should be addressed to Hiroyuki Nawa; [email protected] Received 1 February 2014; Accepted 10 April 2014; Published 13 May 2014 Academic Editor: Saverio Bellusci Copyright © 2014 Hiroyuki Nawa et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Neuregulin-1 and epidermal growth factor (EGF) are implicated in the pathogenesis of schizophrenia. To test the developmental hypothesis for schizophrenia, we administered these factors to rodent pups, juveniles, and adults and characterized neurobiological and behavioral consequences. These factors were also provided from their transgenes or infused into the adult brain. Herewe summarize previous results from these experiments and discuss those from neuropathological aspects. In the neonatal stage but not the juvenile and adult stages, subcutaneously injected factors penetrated the blood-brain barrier and acted on brain neurons, which later resulted in persistent behavioral and dopaminergic impairments associated with schizophrenia. Neonatally EGF-treated animals exhibited persistent hyperdopaminergic abnormalities in the nigro-pallido-striatal system while neuregulin-1 treatment resulted in dopaminergic deficits in the corticolimbic dopamine system.
    [Show full text]
  • Structure-Function Studies of the Vaccinia Virus Complement Control Protein
    University of Louisville ThinkIR: The University of Louisville's Institutional Repository Electronic Theses and Dissertations 8-2002 Structure-function studies of the vaccinia virus complement control protein. Scott Alan Smith University of Louisville Follow this and additional works at: https://ir.library.louisville.edu/etd Recommended Citation Smith, Scott Alan, "Structure-function studies of the vaccinia virus complement control protein." (2002). Electronic Theses and Dissertations. Paper 1347. https://doi.org/10.18297/etd/1347 This Doctoral Dissertation is brought to you for free and open access by ThinkIR: The University of Louisville's Institutional Repository. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of ThinkIR: The University of Louisville's Institutional Repository. This title appears here courtesy of the author, who has retained all other copyrights. For more information, please contact [email protected]. STRUCTURE-FUNCTION STUDIES OF THE VACCINIA VIRUS COMPLEMENT CONTROL PROTEIN By Scott Alan Smith A.S. Community College of Allegheny County, 1995 B.S. California University of Pennsylvania, 1997 A Dissertation Submitted to the Faculty of the Graduate School of the University of Louisville in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Department of Microbiology and Immunology University of Louisville Louisville, Kentucky August 2002 STUCTURE-FUNCTION STUDIES OF THE VACCINIA VIRUS COMPLEMENT CONTROL PROTEIN By Scott Alan Smith
    [Show full text]
  • Cytokine Diedel and a Viral Homologue Suppress the IMD Pathway in Drosophila
    Cytokine Diedel and a viral homologue suppress the IMD pathway in Drosophila Olivier Lamiablea, Christine Kellenbergerb, Cordula Kempa, Laurent Troxlera, Nadège Peltec, Michael Boutrosc, Joao Trindade Marquesd, Laurent Daefflera, Jules A. Hoffmanna,e, Alain Rousselb, and Jean-Luc Imlera,e,f,1 aInstitut de Biologie Moleculaire et Cellulaire, CNRS-Unité Propre de Recherche 9022, 67084 Strasbourg, France; bArchitecture et Fonction des Macromolécules Biologiques, CNRS and Université Aix-Marseille, Unité Mixte de Recherche 7257, 13288 Marseille, France; cDepartment of Cell and Molecular Biology, Division of Signaling and Functional Genomics and University of Heidelberg, Medical Faculty Mannheim, German Cancer Research Center, 69120 Heidelberg, Germany; dDepartment of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, CEP30270-901 Belo Horizonte, Brazil; eUniversity of Strasbourg Institute for Advanced Studies, Université de Strasbourg, 67084 Strasbourg, France; and fFaculté des Sciences de la Vie, Université de Strasbourg, 67083 Strasbourg, France Edited by Alexander S. Raikhel, University of California, Riverside, CA, and approved December 11, 2015 (received for review August 13, 2015) Viruses are obligatory intracellular parasites that suffer strong acts through the p105-like transcription factor Relish (3, 5). It is evolutionary pressure from the host immune system. Rapidly evocative of the tumor necrosis factor (TNF) receptor pathway evolving viral genomes can adapt to this pressure by acquiring from vertebrates. genes that counteract host defense mechanisms. For example, Previous studies have revealed that insect susceptibility to viral many vertebrate DNA viruses have hijacked cellular genes encod- infection is determined by host factors, which either facilitate (6, ing cytokines or cytokine receptors to disrupt host cell communi- 7) or restrict viral replication (8–10).
    [Show full text]
  • Molecular Genetic Analysis of Orf Virus: a Poxvirus That Has Adapted to Skin
    Viruses 2015, 7, 1505-1539; doi:10.3390/v7031505 OPEN ACCESS viruses ISSN 1999-4915 www.mdpi.com/journal/viruses Review Molecular Genetic Analysis of Orf Virus: A Poxvirus That Has Adapted to Skin Stephen B. Fleming *, Lyn M. Wise and Andrew A. Mercer Department of Microbiology and Immunology, 720 Cumberland St, University of Otago, Dunedin 9016, New Zealand; E-Mails: [email protected] (L.M.W.); [email protected] (A.A.M.) * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +64-3-4797727; Fax: +64-3-4797744. Academic Editors: Elliot J. Lefkowitz and Chris Upton Received: 23 February 2015 / Accepted: 19 March 2015 / Published: 23 March 2015 Abstract: Orf virus is the type species of the Parapoxvirus genus of the family Poxviridae. It induces acute pustular skin lesions in sheep and goats and is transmissible to humans. The genome is G+C rich, 138 kbp and encodes 132 genes. It shares many essential genes with vaccinia virus that are required for survival but encodes a number of unique factors that allow it to replicate in the highly specific immune environment of skin. Phylogenetic analysis suggests that both viral interleukin-10 and vascular endothelial growth factor genes have been “captured” from their host during the evolution of the parapoxviruses. Genes such as a chemokine binding protein and a protein that binds granulocyte-macrophage colony-stimulating factor and interleukin-2 appear to have evolved from a common poxvirus ancestral gene while three parapoxvirus nuclear factor (NF)-κB signalling pathway inhibitors have no homology to other known NF-κB inhibitors.
    [Show full text]