Chagos Archipelago Vava II Expedition, March 20-April 1, 2016
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
This Keyword List Contains Indian Ocean Place Names of Coral Reefs, Islands, Bays and Other Geographic Features in a Hierarchical Structure
CoRIS Place Keyword Thesaurus by Ocean - 8/9/2016 Indian Ocean This keyword list contains Indian Ocean place names of coral reefs, islands, bays and other geographic features in a hierarchical structure. For example, the first name on the list - Bird Islet - is part of the Addu Atoll, which is in the Indian Ocean. The leading label - OCEAN BASIN - indicates this list is organized according to ocean, sea, and geographic names rather than country place names. The list is sorted alphabetically. The same names are available from “Place Keywords by Country/Territory - Indian Ocean” but sorted by country and territory name. Each place name is followed by a unique identifier enclosed in parentheses. The identifier is made up of the latitude and longitude in whole degrees of the place location, followed by a four digit number. The number is used to uniquely identify multiple places that are located at the same latitude and longitude. For example, the first place name “Bird Islet” has a unique identifier of “00S073E0013”. From that we see that Bird Islet is located at 00 degrees south (S) and 073 degrees east (E). It is place number 0013 at that latitude and longitude. (Note: some long lines wrapped, placing the unique identifier on the following line.) This is a reformatted version of a list that was obtained from ReefBase. OCEAN BASIN > Indian Ocean OCEAN BASIN > Indian Ocean > Addu Atoll > Bird Islet (00S073E0013) OCEAN BASIN > Indian Ocean > Addu Atoll > Bushy Islet (00S073E0014) OCEAN BASIN > Indian Ocean > Addu Atoll > Fedu Island (00S073E0008) -
Birds of the British Indian Ocean Territory, Chagos Archipelago, Central Indian Ocean Peter Carr
CARR: Birds of Chagos 57 Birds of the British Indian Ocean Territory, Chagos Archipelago, central Indian Ocean Peter Carr Carr, P., 2015. Birds of the British Indian Ocean Territory, Chagos Archipelago, central Indian Ocean. Indian BIRDS 10 (3&4): 57–70. Peter Carr, 80 Links Way, Beckenham, Kent, England, UK, BR3 3DQ. E-mail: [email protected]. Manuscript received on 02 June 2015. Introduction from three directions, the east, north and west and seabird The Chagos Archipelago lies at the end of the Chagos-Laccadive migrants from four, the north and south and dispersing east and Ridge and is some 500km due South of the Maldives archipelago. west along the equatorial counter current systems.” Observations It is the final termini for migrating organisms heading South in post-1971 have proven that Bourne’s words were prophetic; the central Indian Ocean. It is made up of five islanded atolls landbird and seabird vagrants and migrants are an exciting aspect centred upon the Great Chagos Bank, the largest atoll structure of birding in the Chagos. The vast majority of migratory species in the world. The climate is tropical oceanic, hot and humid yet are of northern hemisphere origin (though there is evidence moderated by trade winds. Mean monthly temperatures vary that a limited number of vagrants are from the east and west) from a maximum of 30.75°C in March to a minimum of 28.03°C and are generally present in the archipelago from September in August. The northern atolls of the archipelago are the wettest through to March. As more ornithological research is conducted in the Indian Ocean (Stoddart & Taylor 1971). -
Coral Bleaching Impacts from Back-To-Back 2015–2016 Thermal Anomalies in the Remote Central Indian Ocean
Coral Reefs (2019) 38:605–618 https://doi.org/10.1007/s00338-019-01821-9 REPORT Coral bleaching impacts from back-to-back 2015–2016 thermal anomalies in the remote central Indian Ocean 1,2,5 3,4,5 1 Catherine E. I. Head • Daniel T. I. Bayley • Gwilym Rowlands • 6 7 1 5 Ronan C. Roche • David M. Tickler • Alex D. Rogers • Heather Koldewey • 6 1,8 John R. Turner • Dominic A. Andradi-Brown Received: 28 September 2018 / Accepted: 20 May 2019 / Published online: 12 July 2019 Ó The Author(s) 2019 Abstract Studying scleractinian coral bleaching and becoming the dominant coral genus post-bleaching because recovery dynamics in remote, isolated reef systems offers of an 86% decline in Acropora from 14 to 2% cover. an opportunity to examine impacts of global reef stressors Spatial heterogeneity in Acropora mortality across the in the absence of local human threats. Reefs in the Chagos Archipelago was significantly negatively correlated with Archipelago, central Indian Ocean, suffered severe variation in DHWs and with chlorophyll-a concentrations. bleaching and mortality in 2015 following a 7.5 maximum In 2016, a 17.6 maximum DHWs thermal anomaly caused degree heating weeks (DHWs) thermal anomaly, causing a further damage, with 68% of remaining corals bleaching in 60% coral cover decrease from 30% cover in 2012 to 12% May 2016, and coral cover further declining by 29% at in April 2016. Mortality was taxon specific, with Porites Peros Banhos Atoll (northern Chagos Archipelago) from 14% in March 2016 to 10% in April 2017. We therefore document back-to-back coral bleaching and mortality Topic Editor: Morgan S. -
Biodiversity: the UK Overseas Territories. Peterborough, Joint Nature Conservation Committee
Biodiversity: the UK Overseas Territories Compiled by S. Oldfield Edited by D. Procter and L.V. Fleming ISBN: 1 86107 502 2 © Copyright Joint Nature Conservation Committee 1999 Illustrations and layout by Barry Larking Cover design Tracey Weeks Printed by CLE Citation. Procter, D., & Fleming, L.V., eds. 1999. Biodiversity: the UK Overseas Territories. Peterborough, Joint Nature Conservation Committee. Disclaimer: reference to legislation and convention texts in this document are correct to the best of our knowledge but must not be taken to infer definitive legal obligation. Cover photographs Front cover: Top right: Southern rockhopper penguin Eudyptes chrysocome chrysocome (Richard White/JNCC). The world’s largest concentrations of southern rockhopper penguin are found on the Falkland Islands. Centre left: Down Rope, Pitcairn Island, South Pacific (Deborah Procter/JNCC). The introduced rat population of Pitcairn Island has successfully been eradicated in a programme funded by the UK Government. Centre right: Male Anegada rock iguana Cyclura pinguis (Glen Gerber/FFI). The Anegada rock iguana has been the subject of a successful breeding and re-introduction programme funded by FCO and FFI in collaboration with the National Parks Trust of the British Virgin Islands. Back cover: Black-browed albatross Diomedea melanophris (Richard White/JNCC). Of the global breeding population of black-browed albatross, 80 % is found on the Falkland Islands and 10% on South Georgia. Background image on front and back cover: Shoal of fish (Charles Sheppard/Warwick -
Feasibility Study for the Resettlement of the British Indian Ocean Territory
Feasibility Study for the Resettlement of the British Indian Ocean Territory Draft Report 13th November 2014 CONTENTS 1 INTRODUCTION AND BACKGROUND 4 1.1 The British Indian Ocean Territory 4 1.2 Aims and overview of this study 5 1.3 Structure of this draft report 6 2 STUDY APPROACH AND METHODOLOGY 7 2.1 Guiding principles 7 2.2 Analytical framework 8 2.3 Key phases of activity 11 3 KEY ACTIVITIES AND RESETTLEMENT OPTIONS 13 3.1 Field visit to the British Indian Ocean Territory 13 3.2 Consultations and survey results 15 3.3 Overview of resettlement options 18 4 LEGAL AND POLITICAL ANALYSIS 20 4.1 Introduction and overview 20 4.2 Constitutional and governance framework 22 4.3 Treaty arrangements between the US and the UK 31 4.4 Environmental protection laws and conventions 32 4.5 Conclusions and implications for resettlement 35 5 ENVIRONMENTAL ANALYSIS 38 5.1 Introduction and overview 38 5.2 Assessment of key environmental issues 38 5.3 Evaluation of potential resettlement locations 48 5.4 Summary environmental comparison of resettlement options 55 6 INFRASTRUCTURE ANALYSIS 58 6.1 Introduction and overview 58 6.2 Assessment of key infrastructure issues 59 6.3 Summary of implications for resettlement 66 7 ECONOMIC AND FINANCIAL ANALYSIS 68 7.1 Introduction and overview 68 7.2 Data sources 68 7.3 Indicative cost estimates 68 8 COMPARISON OF RESETTLEMENT OPTIONS 74 8.1 Choice of resettlement location 74 8.2 Environmental considerations 76 8.3 Comparative costs of resettlement options 79 ACRONYMS AND ABBREVIATIONS BIOT British Indian Ocean -
Bertarelli Programme in Marine Science Coral Reef Expedition to the British Indian Ocean Territory, April 2019
Bertarelli Programme in Marine Science Coral Reef Expedition to the British Indian Ocean Territory, April 2019 Figure 1: Early signs of coral reef recovery in BIOT, Takamaka, Salomon 1 | P a g e Executive Summary The Bertarelli Programme in Marine Science Coral Reef Expedition to the British Indian Ocean Territory on Coral Reef Condition took place in April 2019, and involved Bangor University, Oxford University, University College of London, and Woods Hole Oceanographic Institution, USA. The team joined the British Patrol Vessel Grampian Frontier in Male, Maldives on 6th April and travelled south, arriving Diego Garcia on 27th April 2019. Exceptionally calm seas were experienced until 17th April, and then rough conditions which progressively worsened until 27th April. Thirteen experienced scientific divers including a Medical Officer conducted a total of 113 dives, equating to 301 person dives and 318 hours underwater over the period. The team undertook 7 scientific tasks to investigate the current condition of the coral reefs at 34 sites across the archipelago as follows: Tasks 1 & 2: Coral condition, cover, juveniles, and water temperatures (C. Sheppard, A. Sheppard). Task 3: Extend video archive for long term assessment of coral reef benthic community structure (J. Turner, R. Roche, J. Sannassy Pilly). Task 4: Three-dimensional determination of reef structural complexity and spatial analysis of coral recruitment (D. Bayley, A. Mogg). Tasks 5 & 6: Spatiotemporal variations in internal wave driven upwelling and resilience potential across the Chagos Archipelago (G. Williams, M. Fox, A. Heenan, R. Roche) Task 7: Coral reef recovery and resilience (B. Wilson and A. Rose). The coral reefs of the Archipelago are still in an erosional state with very low coral cover 3 years after the back to back bleaching events of 2015/2016. -
BIOT Field Report
©2015 Khaled bin Sultan Living Oceans Foundation. All Rights Reserved. Science Without Borders®. All research was completed under: British Indian Ocean Territory, The immigration Ordinance 2006, Permit for Visit. Dated 10th April, 2015, issued by Tom Moody, Administrator. This report was developed as one component of the Global Reef Expedition: BIOT research project. Citation: Global Reef Expedition: British Indian Ocean Territory. Field Report 19. Bruckner, A.W. (2015). Khaled bin Sultan Living Oceans Foundation, Annapolis, MD. pp 36. The Khaled bin Sultan Living Oceans Foundation (KSLOF) was incorporated in California as a 501(c)(3), public benefit, Private Operating Foundation in September 2000. The Living Oceans Foundation is dedicated to providing science-based solutions to protect and restore ocean health. For more information, visit http://www.lof.org and https://www.facebook.com/livingoceansfoundation Twitter: https://twitter.com/LivingOceansFdn Khaled bin Sultan Living Oceans Foundation 130 Severn Avenue Annapolis, MD, 21403, USA [email protected] Executive Director Philip G. Renaud Chief Scientist Andrew W. Bruckner, Ph.D. Images by Andrew Bruckner, unless noted. Maps completed by Alex Dempsey, Jeremy Kerr and Steve Saul Fish observations compiled by Georgia Coward and Badi Samaniego Front cover: Eagle Island. Photo by Ken Marks. Back cover: A shallow reef off Salomon Atoll. The reef is carpeted in leather corals and a bleached anemone, Heteractis magnifica, is visible in the fore ground. A school of giant trevally, Caranx ignobilis, pass over the reef. Photo by Phil Renaud. Executive Summary Between 7 March 2015 and 3 May 2015, the Khaled bin Sultan Living Oceans Foundation conducted two coral reef research missions as components of our Global Reef Expedition (GRE) program. -
Climate Change Impacts on Corals: BIOT and the Pitcairn Islands 1
Climate change impacts on corals: BIOT and the Pitcairn Islands 1 Climate change impacts on corals in the UK Overseas Territories of BIOT and the Pitcairn Islands 2 Climate change impacts on corals: BIOT and the Pitcairn Islands BIOT The British Indian Ocean Territory Changes in sea level and extreme (BIOT) consists of five atolls of low-lying weather events In BIOT, sea level is rising twice as fast as the global islands, including the largest atoll in average. Extreme sea levels appear related to El Niño the world, Great Chagos Bank, and a or La Niña events. When combined with bleaching and number of submerged atolls and banks. acidification sea level rise will reduce the effectiveness of reefs to perform as breakwaters. BIOT has experienced Diego Garcia is the only inhabited island. considerable shoreline erosion, which suggests loss of The BIOT Marine Protected Area (MPA) was designated breakwater effects from protective fringing reefs. in 2010. It covers the entire maritime zone and coastal waters, an approximate area of 640,000 km2. The Other human pressures marine environment is rich and diverse, attracting Rats have caused a crash of seabird populations, sea birds, sharks, cetaceans and sea turtles and with disrupting guano nutrient flows to the detriment of some extensive seagrass and coral reef habitats. It includes reef organisms including sponges and corals. Around the endangered Chagos brain coral (Ctenella chagius), an Diego Garcia, small scale fishing is allowed to residents endemic massive coral unique to BIOT. but illegal, unreported and unregulated (IUU) fishing is also known to occur, and there are concerns of pollution BIOT reefs have suffered extensive bleaching and mortality, and anchor damage within the lagoon. -
Important Bird Areas the British Indian Ocean Territory Peter Carr
Important Bird Areas The British Indian Ocean Territory Peter Carr Abstract The Chagos Archipelago, which has been known as the British Indian Ocean Territory since 1965, holds 18 species of breeding seabirds, many of them in internationally important numbers. The entire area, with the exception of Diego Garcia and its immediate surrounding waters, was designated a Marine Protected Area (MPA) in 2010, the largest MPA declared in the world so far. This UK Overseas Territory also hosts a Ramsar site based upon Diego Garcia, as well as ten Important Bird Areas (IBAs). Recent research has shown that a further two sites deserve IBA status. All of these sites have been designated IBAs for their breeding numbers or congregations of seabirds. There is a paucity of landbirds and no endemics. Human influence on the avian populations of the archipelago has been catastrophic. There is evidence of immense seabird colonies at one time but these had all disappeared by the late nineteenth century. Introduced Black Rats Rattus rattus continue to suppress numbers of breeding birds in most islands of the archipelago, while conversion of native forests to coconut Cocos nucifera plantations has deleteriously altered the terrestrial environment of most islands. There is evidence that a small recovery of breeding seabird numbers is taking place on some islands, though much more research is needed. Returning many of the islands to a rat-free, coconut- managed state, which could assist seabird recovery, is a matter of funding and political will, rather than a ‘green dream’. ying at the southern end of the Lakshadweep–Maldives– LChagos ridge and approxi- mately in the centre of the Indian Ocean, over 2,000 km from Africa, Indonesia and mainland Asia, are the five atolls of the Chagos Archipelago. -
A Baseline Study of the Oceanography of the Chagos Archipelago
A Baseline Study of the Oceanography of the Chagos Archipelago Lewis Fasolo Honours Dissertation 1 ACKNOWLEDGEMENTS I would firstly like to acknowledge my supervisor Anya Waite for her wealth of knowledge that she so openly shared, and our consistent meetings that left me with a strong sense of direction. She went above and beyond, and was never out of reach. I would also like to thank my co-supervisor Jessica Meeuwig for her guidance, support and leadership during the three-week voyage through the Chagos Archipelago. Although her plate was full, she always made time to assist me. I was very impressed with her role as Research voyage leader. My thanks also go out to the crew and fellow scientists on board the Pacific Marlin for all their assistance. I was so fortunate to be a part of this unique voyage with a great group of people all wanting to achieve a common goal. It was an experience I will treasure and never forget. 2 ABSTRACT The Chagos Archipelago is a chain of islands, atolls, seamounts and shallow banks situated in the geographical centre of the tropical Indian Ocean, covering some 640,000km2. The region supports one of the healthiest marine ecosystems in the cleanest waters in the world. Investigating the oceanographic conditions within this no- take marine reserve will contribute to our global understanding of how the oceanic environment drives biodiversity in pristine tropical regions. This paper explores the first ever localised oceanography associated with shallow seamounts in the Chagos region. Over a three-week voyage, CTD casts and water samples to quantify chlorophyll-a values were conducted over high and low resolution transects throughout the archipelago to characterize vertical profiles regionally and across individual seamounts. -
The Lichen Flora of the Chagos Archipelago, Including a Comparison with Other Island and Coastal Tropical Floras
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/266212376 The lichen flora of the Chagos Archipelago, including a comparison with other island and coastal tropical floras Article · December 2000 DOI: 10.11646/bde.18.1.22 CITATIONS READS 16 16 2 authors: Mark Seaward Andre Aptroot University of Bradford Adviesbureau voor Bryologie en Lichenologie 175 PUBLICATIONS 2,792 CITATIONS 470 PUBLICATIONS 7,985 CITATIONS SEE PROFILE SEE PROFILE Some of the authors of this publication are also working on these related projects: Lichen Flora of Iran, An International Project View project Notes for genera in Ascomycota View project All in-text references underlined in blue are linked to publications on ResearchGate, Available from: Andre Aptroot letting you access and read them immediately. Retrieved on: 23 November 2016 Lichen flora of the Chagos Archipelago 185 Tropical Bryology 18: 185-198, 2000 The lichen flora of the Chagos Archipelago, including a comparison with other island and coastal tropical floras Mark R.D.Seaward Department of Environmental Science, University of Bradford, Bradford BD7 1DP, UK André Aptroot Centraalbureau voor Schimmelcultures, P.O.Box 273, 3740 AG Baarn, The Netherlands Abstract. The 1996 Chagos Expedition provided the first opportunity to study the archipelago’s lichen flora. Seventeen of the 55 islands were ecologically investigated, some in more detail than others, and lists and representative collections of lichens have been assembled for many of them. In all, 67 taxa have been recorded, 52 to specific level. Although the islands have a low biodiversity for cryptogamic plants, as would be expected in terms of their relatively young age, remoteness and small terrestrial surface areas, those taxa that are present are often found in abundance and play significant ecological roles. -
Coral Reef Degradation in the Indian Ocean
CORAL REEF DEGRADATION IN THE INDIAN OCEAN Status reports and project presentations 1999 – 1 – CORAL REEF DEGRADATION IN THE INDIAN OCEAN Status reports and project presentations 1999 Published by CORDIO SAREC Marine Science Program Department of Zoology Stockholm University 106 91 Stockholm Sweden ISBN 91-630-8329-9 Maps by Jeanette Bergman Weihed, Tellurit Datorgrafik Produced by Niki Sporrong Enkla Ord, Uppsala Layout by Tryckfaktorn AB, Hans Melcherson Printed by Erlanders Gotab, 1999 – 2 – Foreword Corals as organisms and coral reefs as structures and threaten these peoples livelihoods and endanger a large ecosystems have fascinated scientists for centuries. proportion of the world’s coral reefs, especially those Charles Darwin became well-known among natural adjacent to human populations. In addition, thermal scientists long before the publication of The Origin of pollution from power plants and the chemical industry Species, partly because of his studies of coral reefs and has contributed to coral damage in some industrialised coral islands. Undoubtedly, this fascination for coral areas. reefs is a direct result of the tremendous diversity of When corals become stressed, a typical response is species, exemplified by the overwhelming number of “bleaching” and it occurs when the symbiotic algae are fish of all shapes and colours, that inhabit the world’s lost from the tissue of the coral polyp. For short periods, richest marine ecosystem. the polyp can survive without the algae, but unless the Fundamental to the existence of coral reefs is the situation that caused the bleaching improves and new symbiosis between the reef-building coral polyp and the algae are incorporated into the tissue, the coral will die.