Parsing All of C by Taming the Preprocessor NYU CS Technical Report TR2011-939 Paul Gazzillo Robert Grimm New York University fgazzillo,
[email protected] Abstract improve existing C code, and automated refactorings help evolve Given the continuing popularity of C for building large-scale pro- large and complex codebases. grams, such as Linux, Apache, and Bind, it is critical to provide But all these tools are considerably complicated by the fact that effective tool support, including, for example, code browsing, bug C code mixes two languages: the C language proper and the prepro- finding, and automated refactoring. Common to all such tools is cessor, which supports file inclusion (#include), conditional com- a need to parse C. But C programs contain not only the C lan- pilation (#if, #ifdef, and so on), and macro definition/expansion guage proper but also preprocessor invocations for file inclusion (#define). Preprocessor usage is pervasive [11, 32]. For example, (#include), conditional compilation (#if, #ifdef, and so on), the x86 version of the latest stable Linux kernel (2.6.39.2) depends and macro definition/expansion (#define). Worse, the preproces- on about 7,600 header files for file inclusion, 7,000 configuration sor is a textual substitution system, which is oblivious to C con- variables for conditional compilation, and 520,000 macros for code structs and operates on individual tokens. At the same time, the expansion. Preprocessor usage isn’t limited to the kernel either: The preprocessor is indispensable for improving C’s expressivity, ab- familiar stdio.h program header in Ubuntu 10.0 depends on 44 stracting over software/hardware dependencies, and deriving vari- more files with a total of 1,293 conditionals, which are nested up to ations from the same code base.