Nutrients Balance Approach with Emphasis on Base Cations and Ratios Concepts As a Decisions-Support Tool in Optimizing Fertilizers Use

Total Page:16

File Type:pdf, Size:1020Kb

Nutrients Balance Approach with Emphasis on Base Cations and Ratios Concepts As a Decisions-Support Tool in Optimizing Fertilizers Use Vol. 17(4), pp. 629-641, April, 2021 DOI: 10.5897/AJAR2021.15463 Article Number: CC4BE3B66609 ISSN: 1991-637X Copyright ©2021 African Journal of Agricultural Author(s) retain the copyright of this article http://www.academicjournals.org/AJAR Research Full Length Research Paper Nutrients balance approach with emphasis on base cations and ratios concepts as a decisions-support tool in optimizing fertilizers use Assefa Menna Debre Zeit Agricultural Research Center, Ethiopian Institute of Agricultural Research (EIAR), P. O. Box - 2003, Addis Ababa, Ethiopia. Received 21 January, 2021; Accepted 16 March, 2021 Thirty-six soil samples collected from 24 sites were used to investigate the relationships between cation-ratio concepts and sufficiency level approaches in plant nutrition. Based on threshold values, about 25.0% of the soils had calcium:magnesium (Ca:Mg)-ratio fallen outside developed favorable range, despite the sufficient levels of individual elements in soils, violating the base cation ratio concept. Similarly, 63.0% of soils had potassium:magnesium (K:Mg)-ratio falling in the unfavorable range for K uptake, though individual element K was found to be above adequate in all sites/soils. In 29.0% of soils, (Mg:K)-ratio is rated unfavorable for nutrients’ uptake, the directly level to sufficiency level concepts. Likewise, all soils had the % K:TEB (total exchangeable bases)-ratio falling within the suggested fav orable range for the most tropical crops, favoring the two concepts. With respect to Ca:TEB ratios, 79.0% of soils were considered unfavorable for Mg and/or K uptake, implying that the lower the base saturation, more favorable the conditions for the aforementioned nutrients uptake and vice-versa. This is also against the base cations’ saturation ratio concept because all soils in those sites had low levels of Ca and Mg. In conclusion, therefore, from such contradictory information, those generated the validity of the base cations’ ratio concept need further detailed investigation. Key words: Potassium, calcium, magnesium, ratios, fertilizers, rhizosphere. INTRODUCTION Sharply rising human population and associated factors (Hurni et al., 2010). Indeed, this is a continuous process have degraded the natural resource base, the soil, thus affecting food and nutrition security in the country. For threatening sustainable agriculture in Ethiopia. In this example, some Vertisols in the central Ethiopian country, soil/land degradation is mainly due to intensive agricultural lands have problems of phosphorus (P) and cropping, overgrazing and unsustainable land-use and related nutrients fixing characteristics. Many were also tenure systems, which further aggravated the loss of soil reported to be poor in essential plant nutrients and quality. Among the soil degradation processes, nutrients organic carbon (OC) (Menna, 2017, 2018, 2019). unavailability or depletion and imbalances; and the In our previous research works, soil-testing combined reduction in total and biomass carbon are the major ones with crop response data primarily have been used as a E-mail: [email protected]. Tel: (+251) 912006149. Author(s) agree that this article remain permanently open access under the terms of the Creative Commons Attribution License 4.0 International License 630 Afr. J. Agric. Res. decision-support tool in optimizing nutrients management. pre-soil testing, but on areas approximately 0.5 to 1.5 miles away With regard to soil-testing two general principles were from first season(s) S responsive sites, Do1, Bk1 and BT1, evolved. The major one was the Crop Nutrient respectively. In both seasons, randomized complete block design Requirement/ Sufficient Level of Available Nutrient (RCBD) was used and was replicated three times. All soil samples were taken from 10 spots per block, bulked and further composted (CNR/SLAN) concept, which was built on the concept to make a composite sample per farmer field and/or soil depths. that there are certain levels of plant nutrients in soils that The disturbed samples were then air-dried immediately in dry- 2- can be defined as optimum. Below those defined levels, rooms to avoid SO4 formation from organic matter (OM) in transit, crops will respond to the application of nutrient in ground and sieved to pass through 1-mm sieve. Then, duplicate question. The other was the Base Cation Saturation Ratio analysis was made for different soil variables using wet chemistry (BCSR), which promotes the concept that maximum yield laboratory (Labs) at Sokoine University of Agriculture (SUA), Tanzania and Holeta and Debre Zeit research centers (EIAR), can only be achieved by creating an ideal ratio of calcium Ethiopia as per the methods outlined in Table 1. Finally, the cation (Ca), magnesium (Mg), potassium (K) and sodium (Na) in ratios were calculated using the respective variables. Micro- soils. A more detailed discussion of the two approaches nutrients copper (Cu), manganese (Mn), iron (Fe), zinc (Zn), boron was based on the works by Eckert (1987). In fact, the (B) and molybdenum (Mo) were also considered. base saturation and ratios concept were based on much earlier works provided by Hunter et al. (1943), Bear and Toth (1948), and Hunter (1949). According to Bear et al. RESULTS AND DISCUSSION (1945) for ideal soil it was suggested that, the bulk of exchangeable complex should be occupied by Ca, Mg, K Tables 2 to 4 present the selected physico-chemical and hydrogen (H). However, this was later relaxed by variables of the studied soils. As presented, the studied Graham (1959). About 20 years later, Baker and soils varied in their properties, which could be peculiar to Amacher (1981) defined normal values as 60 to 80% for the specific AEZs. The upcoming discussions focus on Ca, 10 to 20% for Mg and 2 to 5% for K. the percent saturation, ratios concepts and related soil Based on these general descriptions, therefore, the aim properties that are assumed to guarantee high yields and of this research work was (1) to assess the concept of crop quality. BCSRs and (2) to see the relationships between SLAN and BCSR approaches in the studied soils. The study also aimed at looking at the relationship between some Major cations and some basic ideas soil variables and wheat yield at native soil conditions. It 2+ is hypothesized that a strong-positive relationship The cations used in largest amounts by plants are Ca , + 2+ between the SLAN and BCSR concepts would exist. K and Mg , which exist in the soil solution in the form of ions. Cations are absorbed from the soil solution (thin film of water around plant roots, root hairs and soil particles) MATERIALS AND METHODS by actively growing plants. The exchange sites are Site selection negatively charges associated with clay sized particles, and some of the soil organic matter (SOM). The cations In the present investigation, soil samples collected from 24 sites, in at the exchange site are in equilibrium with those in the three representative locations in central Ethiopian agricultural lands, soil solution. The number of negative charges can be namely Arsi (Ar), East-Shewa (ES) and West-Shewa (WS) zones were considered. The three study areas were selected and geo- measured analytically and is referred to as the cation referenced using Global Positioning System (GPS-GARMIN; model exchange capacity (CEC). It is widely recognized that, number GPS-60) assisted by Google earth (2011), and were the availability of nutrients for plant uptake does not classified by elevation and agro-ecological zones (AEZs) and soil- depend only on their absolute levels, but also on the type when known. The sites, then, were used for conducting 24 relative amounts of individual elements and different base sulfur (S) response and/or S rate determination experiments in wheat or faba bean. The specific locations and salient features of cation ratios in soils. Indeed, percent saturation and the selected sites are presented in Figure 1. electrical conductivity (EC) of the studied soils were assumed to have direct relationships with the pH. Soil sampling, preparation and analysis The first 18 surface soil samples (0-20 cm soil depth) were Soil physico-chemical properties collected before planting each of the 18 sulfur (S) response experiments (2013-2014). Similarly, the other 18 soil samples were The studied soils showed important variations in the collected from 0-20 cm, 20-40 cm and 40-60 cm soil depths at each physico-chemical variables and nutrient contents. site in season-II (2015-2016) before planting the test crop(s) Exchangeable-Al was detected in strongly acidic soils (Tables 2 to 4). The three fields, namely GS2, Ke2 and NS2 in season-II, were and this was positively correlated with Ca and Mg selected based on the experimental conditions in seasons-I. deficiency, which may necessitate the application of Ca Whereas, WG/Do2, Bk2 and BT2 were selected randomly without and Mg containing fertilizers or liming in those sites. All Menna 631 Figure 1. Locations map showing study site-fields in Arsi, East- and West-Shewa zones of central Ethiopia. 1 = Abosara Alko (AA); 2 = Dosha (Do1); 3 = Gora Silingo (GS1 or 2); 4 = Chefe Misoma (CM); 5 = Boneya Edo (BE); 6 = Boro Lencha (BL); 7 = Chefe Donsa (CD); 8 = Keteba (Ke1); 9 = Ude (Ud); 10 = Bekejo (Bk1); 11 = Insilale (In); 12 = Kilinto (Ki); 13 = Nano Kersa (NK); 14 = Nano Suba (NS1); 15 = Berfeta Tokofa (BT1); 16 = Dawa Lafta (DL); 17 = Wajitu Harbu (WH); 18 = Tulu Harbu (TH: 1st season); 19 = Wonji Gora (WG/Do2); 20 = GS2; 21 = Ke2; 22 = Bk2; 23 = NS2; and 24 = BT2 (2nd season). The numbers (1) and (2) indicate the information which was generated in 1st and 2nd seasons, respectively and soil-type when known. the soils were salt-free or had no sodicity problems. But, and Ca were found to be limiting depending on the AEZs the exchangeable aluminium (Al3+) was detected in and pH of soils.
Recommended publications
  • Geologically Hazardous Area Assessment
    Geologically Hazardous Area Assessment Guemes Channel Trail Extension Anacortes, Washington for Herrigstad Engineering, PS May 16, 2014 Earth Science + Technology Geologically Hazardous Area Assessment Guemes Channel Trail Extension Anacortes, Washington for Herrigstad Engineering, PS May 16, 2014 600 Dupont Street Bellingham, Washington 98225 360.647.1510 Table of Contents INTRODUCTION AND SCOPE ........................................................................................................................ 1 DESIGNATION OF GEOLOGIC HAZARD AREAS AT THE SITE ..................................................................... 1 SITE CONDITIONS .......................................................................................................................................... 2 Surface Conditions ................................................................................................................................. 2 Geology ................................................................................................................................................... 3 Subsurface Explorations ........................................................................................................................ 4 Subsurface Conditions .......................................................................................................................... 4 Soil Conditions ................................................................................................................................. 4 Groundwater
    [Show full text]
  • Hydrometer and Viscosity Cup Guide
    Hydrometers Do Work What Is Specific Gravity? Specific gravity of any solid or liquid substance is its weight compared with the weight of an equal bulk of pure water at 62 degrees F at sea level. Gases use an equal volume of pure air at 32 degrees F. There are three methods of determining the specific gravity of liquids: Hydrometer In which the specific gravity of the liquid tested is read as the scale division marking the liquid level on the stem. Bottle Method In which the specific gravity is the weight of liquid (slip) in a full bottle divided by the weight of water in a full bottle. Displacement Method In which specific gravity is the weight of liquid displaced by a body divided by the weight of an equal volume of water displaced by the same body. The first two methods are practical. The faster, easier method uses a hydrometer designed specifically for slip (see right). There are many different hydrometers. Slip should range between 1.78 to 1.75, the latter being the maximum amount of water in the body and the former the lesser amount. How To Get An Accurate Reading 1. Store hydrometer in water. This keeps slip from drying on the surface. A cut off two liter soft drink bottle is ideal. Remove and gently “squeegee” off excess water. 2. Immerse in freshly agitated slip to the stem readings. 3. Lift up, “squeegee” off excess slip. Hydrometer is now “wet coated” with slip, not with water, which would give a false reading. 4. Immerse bulb half way into slip before releasing.
    [Show full text]
  • How to Read a Hydrometer
    Triple Scale Beer & Wine Hydrometer • Please Note: Always handle your hydrometer with care and DO NOT BOIL Why Use a Hydrometer – A Hydrometer is an instrument used Example formula: 1.073 was the Original Gravity reading and 1.012 How to Read to measure the progress of fermentation and determine alcohol per- is the Final Gravity reading.: 1.073-1.012=.06 x 131 = 7.99% Alc. By Vol centage. How to Determine Alcohol Percentage for Wine – For A Hydrometer Hydrometer Theory – A Hydrometer measures the density of a Wine, your final reading is often below zero. In wine, nearly all the liquid in relation to water. In beer or wine making we are measuring sugar is converted to alcohol – because alcohol is lighter than wa- how much sugar is in solution. The more sugar that is in solution, ter, your reading at the end of a wine fermentation is often negative. the higher the hydrometer will float. As sugar is turned into alcohol When the reading is negative, you have to add this back to your first during the fermentation, the hydrometer will slowly sink lower in the reading. Here is an example for these situations: .990 solution. When fermentation is finished, the hydrometer will stop Example Using Potential Alcohol Scale for Wine: sinking. Original Reading: 12.5 Potential alcohol 1.000 Three Scales – What are they used for? – Each of our Fer- Final Reading: -.7 Potential alcohol mentap hydrometers comes with three scales. The Specific Gravity - - - - - - - - - scale is most often used in brewing. The Brix scale is most often used 1.010 (12.5+.7)=13.2 % alcohol by volume in winemaking.
    [Show full text]
  • Enhancement of Shaft Capacity of Cast-In- Place Piles Using a Hook System
    Enhancement of Shaft Capacity of Cast-in- Place Piles using a Hook System by Ghazi Abou El Hosn A thesis submitted to the Faculty of Graduate and Postdoctoral Affairs in partial fulfillment of the requirements for the degree of: Master of Applied Science in Civil Engineering Carleton University, Ottawa, Ontario ©2015 Ghazi Abou El Hosn * Abstract This research investigates an innovative approach to improve the shaft bearing capacity of cast- in-place pile foundations by utilizing passive inclusions (Hooks) that will be mobilized if movement occurs in pile system. An extensive experimental program was developed to study the shaft bearing capacity of cast-in-place piles with and without hook system in soft clay and sand. First phase of the experiment was developed to investigate the effect of passive inclusion on pile- soil interface shear strength behaviour, employing a modified direct shear test apparatus. The interface strength obtained for pile-soil specimens was found to significantly increase when passive inclusions were implemented. Apparent residual friction angle for concrete-sand interface increased from 22 to 29.5 when two hook elements were used at the pile-soil interface. The pile-clay apparent adhesion was also increased from 19 kPa to 34 kPa. A series of pile-load testing at field were performed on cast-in-place in soft clay to investigate the effect of passive inclusions on pile bearing capacity. The pile-load tests were conducted at Gloucester test site. Four model piles were cast with steel cages along with hooks (P1- no hook, P2-7 hooks, P3- 5 hooks and P4- 5 hooks) installed on the exterior side of the steel cages prior to filling the hole with concrete.
    [Show full text]
  • Soil Testing in Missouri a Guide for Conducting Soil Tests in Missouri
    Soil Testing In Missouri A Guide for Conducting Soil Tests in Missouri University Extension Division of Plant Sciences, College of Agriculture, Food and Natural Resources University of Missouri Revised 1/2012 EC923 Soil Testing In Missouri A Guide for Conducting Soil Tests in Missouri Manjula V. Nathan John A. Stecker Yichang Sun 2 Preface Missouri Agricultural Experiment Station Bulletin 734, An Explanation of Theory and Methods of Soil Testing by E. R. Graham (1) was published in 1959. It served for years as a guide. In 1977 Extension Circular 923, Soil Testing in Missouri, was published to replace Station Bulletin 734. Changes in soil testing methods that occurred since 1977 necessitated the first revision of EC923 in 1983. That revision replaced the procedures used in the county labs. This second revision adds several procedures for nutrient analyses not previously conducted by the laboratory. It also revises a couple of previously used analyses (soil organic matter and extractable zinc). Acknowledgement is extended to John Garrett and T. R. Fisher, co-authors of the 1977 edition of EC923 and to J. R. Brown and R.R. Rodriguez, co-authors of the 1983 edition. 3 Contents Introduction……………………………………………………………….….. 5 Sampling………………………………………………………………...……. 7 Sample Submission and Preparation…………….…………………..…..……… 7 Extraction and Measurement……………………………………………..……… 7 pH and Acidity Determination……………………...………………………..…. 8 Evaluation of Soil Tests…………………………………………………………. 9 Procedures………….……………………...……………………………....……. 10 Organic Matter Loss on Ignition……………...…...…...……………………… 11 Potassium Calcium, Magnesium and Sodium Ammonium Acetate Extraction…………………….….……………………………………….… 13 Phosphorus Bray I and Bray II Methods…………...…………………….…….... 16 Soil pH in Water (pHw) ……….………………………………………………. 20 Soil pH in a Dilute Salt Solution (pHs) ………………………….…………….... 22 Neutralizable Acidity (NA) New Woodruff Buffer Method………...…………… 24 Zinc, Iron, Manganese and Copper DPTA Extraction …….….…………….....
    [Show full text]
  • 5. Soil, Plant Tissue and Manure Analysis
    5. Soil, Plant Tissue and Manure Analysis Profitable crop production depends on applying enough nutrients to each Soil analysis field to meet the requirements of Handling and preparation the crop while taking full advantage When samples arrive for testing, of the nutrients already present in the laboratory: the soil. Since soils vary widely in their fertility levels, and crops in • checks submission forms and their nutrient demand, so does the samples to make sure they match amount of nutrients required. • ensures client name, sample IDs and requests are clear Soil and plant analysis are tools used • attaches the ID to the samples and to predict the optimum nutrient submission forms application rates for a specific crop in • prepares samples for the drying a specific field. oven by opening the boxes or bags and placing them on drying racks Soil tests help: • places samples in the oven at • determine fertilizer requirements 35°C until dry (1–5 days) (nitrate • determine soil pH and samples should be analyzed lime requirements without drying) • diagnose crop production problems • grinds dry samples to pass through • determine suitability for a 2 mm sieve, removing stones and biosolids application crop residue • determine suitability for • moves samples to the lab where specific herbicides sub-samples are analyzed Plant tissue tests help: What’s reported in a soil test Commercial soil-testing laboratories • determine fertilizer requirements offer different soil testing/analytical for perennial fruit crops packages. How the laboratory reports • diagnose nutrient deficiencies the results will also differ between • diagnose nutrient toxicities labs. It is important to select an • validate fertilizer programs analytical package that meets your requirements.
    [Show full text]
  • Mapping and Analysis of the Rio Chama Landslide and Evaluation of Regional Landslide Susceptibility, Archuleta County, Colorado
    MAPPING AND ANALYSIS OF THE RIO CHAMA LANDSLIDE AND EVALUATION OF REGIONAL LANDSLIDE SUSCEPTIBILITY, ARCHULETA COUNTY, COLORADO by Cole D. Rosenbaum A thesis submitted to the Faculty and the Board of Trustees of the Colorado School of Mines in partial fulfillment of the requirements for the degree of Masters of Science (Geological Engineering). Golden, Colorado Date_______ Signed: _______________________ Cole D. Rosenbaum Signed: _______________________ Dr. Wendy Zhou Thesis Advisor Signed: _______________________ Dr. Paul Santi Thesis Advisor Golden, Colorado Date_______ Signed: _______________________ Dr. M. Stephen Enders Professor and Interim Head Department of Geology and Geological Engineering ii ABSTRACT Recent landslides, such as the West Salt Creek landslide in Colorado and the Oso landslide in Washington, have brought to light the need for more extensive landslide evaluations in order to prevent disasters in the U.S.. The goal of this research is to characterize and map the Rio Chama landslide, evaluate conditions at failure, predict future behavior, and apply these findings to create a regional susceptibility model for similar failures. Based on the classification scheme proposed by Cruden and Varnes (1996), the Rio Chama landslide is an active multiple rotational debris slide and flow complex with observed activity since 1952, located near the headwaters of the Rio Chama River in south-central Colorado. Site reconnaissance was conducted in 2015 and 2016 and coupled with laboratory testing of samples and limit equilibrium stability analysis. A hierarchical heuristic model using an analytic hierarchy process was applied to evaluate the susceptibility of the region to failures similar to the Rio Chama landslide. Weights were assigned to parameters based on their influence on landslide susceptibility, and weighted parameters were combined to produce a regional susceptibility map.
    [Show full text]
  • Test Method and Discussion for the Particle Size Analysis of Soils by Hydrometer Method
    TEST METHOD AND DISCUSSION FOR THE PARTICLE SIZE ANALYSIS OF SOILS BY HYDROMETER METHOD GEOTECHNICAL TEST METHOD GTM-13 Revision #2 AUGUST 2015 GEOTECHNICAL TEST METHOD: TEST METHOD AND DISCUSSION FOR THE PARTICLE SIZE ANALYSIS OF SOILS BY HYDROMETER METHOD GTM-13 Revision #2 STATE OF NEW YORK DEPARTMENT OF TRANSPORTATION GEOTECHNICAL ENGINEERING BUREAU AUGUST 2015 EB 15-025 Page 1 of 32 TABLE OF CONTENTS PART 1: TEST METHOD FOR THE PARTICLE SIZE ANALYSIS OF SOILS BY HYDROMETER METHOD .............................................................................3 1. Scope ........................................................................................................................3 2. Apparatus and Supplies ............................................................................................3 3. Preparation of the Dispersing Agent ........................................................................4 4. Sample Preparation and Test Procedure ..................................................................4 5. Calculations..............................................................................................................7 6. Quick Reference Guide ..........................................................................................12 APPENDIX ....................................................................................................................................14 A. Determination of the Composite Correction for Hydrometer Readings ................14 B. Temperature Correction Value (Mt) ......................................................................15
    [Show full text]
  • Forest Calcium Depletion and Biotic Retention Along a Soil Nitrogen Gradient
    Forest calcium depletion and biotic retention along a soil nitrogen gradient Steven S. Perakis, Emily R. Sinkhorn, Christina E. Catricala, Thomas D. Bullen, John A. Fitzpatrick, Justin D. Hynicka, and Kermit Cromack, Jr. 2013. Forest calcium depletion and biotic retention along a soil nitrogen gradient. Ecological Applications 23:1947–1961. doi:10.1890/12-2204.1 10.1890/12-2204.1 Ecological Society of America Version of Record http://hdl.handle.net/1957/46931 http://cdss.library.oregonstate.edu/sa-termsofuse Ecological Applications, 23(8), 2013, pp. 1947–1961 Ó 2013 by the Ecological Society of America Forest calcium depletion and biotic retention along a soil nitrogen gradient 1,4 2 1 3 3 STEVEN S. PERAKIS, EMILY R. SINKHORN, CHRISTINA E. CATRICALA, THOMAS D. BULLEN, JOHN A. FITZPATRICK, 2 2 JUSTIN D. HYNICKA, AND KERMIT CROMACK,JR. 1U.S. Geological Survey, Forest and Rangeland Ecosystem Science Center, Corvallis, Oregon 97331 USA 2Oregon State University, Department of Forest Ecosystems and Society, Corvallis, Oregon 97331 USA 3U.S. Geological Survey, National Research Program, Menlo Park, California 94025 USA Abstract. High nitrogen (N) accumulation in terrestrial ecosystems can shift patterns of nutrient limitation and deficiency beyond N toward other nutrients, most notably phosphorus (P) and base cations (calcium [Ca], magnesium [Mg], and potassium [K]). We examined how naturally high N accumulation from a legacy of symbiotic N fixation shaped P and base cation cycling across a gradient of nine temperate conifer forests in the Oregon Coast Range. We were particularly interested in whether long-term legacies of symbiotic N fixation promoted coupled N and organic P accumulation in soils, and whether biotic demands by non-fixing vegetation could conserve ecosystem base cations as N accumulated.
    [Show full text]
  • Battery Service V1.1.Pdf
    BATTERY SERVICE This Automotive Series BATTERY SERVICE has been developed by Kevin R. Sullivan Professor of Automotive Technology Skyline College All Rights Reserved v1.1 Visit us on the web at: www.autoshop101.com BATTERY SERVICE Battery services are routinely performed. These services include: 1. Testing 2. Charging 3. Cleaning 4. Jumping a dead battery. 5. Adding water. Page 1 © Autoshop101.com. All rights reserved. BATTERY TESTING Battery testing has changed in recent years; although the three areas are basically the same, the equipment has improved. 1. Visual Inspection 2. State of Charge a. Specific Gravity b. Open Circuit Voltage 3. Capacity or Heavy Load Test Note: This does not include the Midtronics battery tester which has a different test procedure and will be discussed later in this module. Page 2 © Autoshop101.com. All rights reserved. VISUAL INSPECTION Battery service should begin with a thorough visual inspection. This inspection may reveal simple, easily corrected problems. 1 . Check for cracks in the battery case and broken terminals. Either may allow electrolyte leakage, which requires battery replacement. 2. Check for cracked or broken cables or connections. Replace, as needed. 3. Check for corrosion on terminals and dirt or acid on the case top. Clean the terminals and case top with a mixture of water and baking soda. A battery wire brush tool is needed for heavy corrosion on the terminals. 4. Check for a loose battery hold-down or loose cable connections. Clean and tighten, as needed. Page 3 © Autoshop101.com. All rights reserved. VISUAL INSPECTION CONTINUED 5. Check the electrolyte fluid level.
    [Show full text]
  • Design Standard 13
    Design Standards No. 13 Embankment Dams Chapter 19: Geotextiles Phase 4 Final U.S. Department of Interior Bureau of Reclamation June 2014 Mission Statements The U.S. Department of the Interior protects America’s natural resources and heritage, honors our cultures and tribal communities, and supplies the energy to power our future. The mission of the Bureau of Reclamation is to manage, develop, and protect water and related resources in an environmentally and economically sound manner in the interest of the American public. Design Standards Signature Sheet Design Standards No. 13 Embankment Dams DS-13(19)-1: Phase 4 Final June 2014 Chapter 19: Geotextiles Foreword Purpose The Bureau of Reclamation (Reclamation) design standards present technical requirements and processes to enable design professionals to prepare design documents and reports necessary to manage, develop, and protect water and related resources in an environmentally and economically sound manner in the interest of the American public. Compliance with these design standards assists in the development and improvement of Reclamation facilities in a way that protects the public’s health, safety, and welfare; recognizes needs of all stakeholders; and achieves lasting value and functionality necessary for Reclamation facilities. Responsible designers accomplish this goal through compliance with these design standards and all other applicable technical codes, as well as incorporation of the stakeholders’ vision and values, that are then reflected in the constructed facilities. Application of Design Standards Reclamation design activities, whether performed by Reclamation or by a non-Reclamation entity, must be performed in accordance with established Reclamation design criteria and standards, and approved national design standards, if applicable.
    [Show full text]
  • How to Read a Hydrometer
    ® How To Use a Hydrometer Everyone wants to make good beer but it is not only about using quality ingredients. Sanitizing, racking to a secondary fermenter, and taking hydrometer readings all help ensure a better end result. Of these, the hydrometer reading is the most skipped process by home brewers. It may be the thought that it is difficult or simply not a useful resource. Either way, not taking a hydrometer reading is a huge mistake! A hydrometer, by definition, is a sealed graduated tube containing a weighted bulb, used to determine the specific gravity or density of a liquid. For home brewing, the purpose of this device is to measure the amount of sugar in a solution which can be converted into alcohol. Hydrometer readings should be recorded both before and after fermentation. Taking a Hydrometer Reading 1. Sanitize all equipment that will come in contact with your wine or beer. 2. Take a sample of the liquid before you add the yeast. 3. Place the sample in a hydrometer test jar. If you have a sampler or pipette, you do not need to do this as the sampler or pipette doubles as a test jar. 4. Spin the hydrometer to remove any bubbles that might be clinging to it. 5. With the sample at eye level, look to see where the liquid crosses the markings. 6. Write down the reading. This is your starting gravity. Check your recipe to see what the proper original gravity (OG) range is for your kit. 7. Let the wine or beer ferment completely and then take a reading just before bottling.
    [Show full text]