Report on Research Conducted Under Grant No

Total Page:16

File Type:pdf, Size:1020Kb

Report on Research Conducted Under Grant No Pacific Earthquake Engineering Research Center Documentation and Analysis of Field Case Histories of Seismic Compression during the 1994 Northridge, California, Earthquake Jonathan P. Stewart Patrick M. Smith Daniel H. Whang University of California, Los Angeles and Jonathan D. Bray University of California, Berkeley PEER 2002/09 OCT. 2002 Documentation and Analysis of Field Case Histories of Seismic Compression during the 1994 Northridge, California, Earthquake Jonathan P. Stewart, Patrick M. Smith, and Daniel H. Whang Department of Civil and Environmental Engineering University of California, Los Angeles Jonathan D. Bray Department of Civil and Environmental Engineering University of California, Berkeley A report on research conducted under Grant No. 1434-HQ-GR-00037 from the U.S. Geological Survey, National Earthquake Hazards Reduction Program; Grant No. 9701568 from the National Science Foundation; and the Pacific Earthquake Engineering Research Center’s Program of Applied Earthquake Engineering Research of Lifeline Systems PEER Report 2002/09 Pacific Earthquake Engineering Research Center College of Engineering University of California, Berkeley October 2002 ABSTRACT USGS/NEHRP Award No. 1434-HQ-98-GR-00037 DOCUMENTATION AND ANALYSIS OF FIELD CASE HISTORIES OF SEISMIC COMPRESSION DURING THE 1994 NORTHRIDGE, CALIFORNIA EARTHQUAKE PI: Jonathan P. Stewart Civil & Environmental Engineering Department University of California Los Angeles, CA 90095-1593 Tel: (310) 206-2990 Fax: (310) 206-2222 [email protected] Seismic compression is defined as the accrual of contractive volumetric strains in unsaturated soil during strong shaking from earthquakes. While ground deformations from seismic compression have been reported in the literature, it contains few case histories in which the amount of ground deformation was known accurately from pre– and post–earthquake surveys. In this report, two such case histories are documented in detail and analyzed. Both case studies involve deep canyon fills in Santa Clarita, California, an area strongly shaken by the Northridge earthquake (peak accelerations on rock ≈ 0.3–0.7 g). The performance of the fills was quite different. In one case (denoted Site A) ground settlements up to ∼18 cm occurred, which damaged a structure, while in the other case (Site B) settlements were < ∼6 cm. One important thrust of the present work involved cyclic simple shear laboratory testing of four reconstituted soil samples from the two subject sites. These samples all have fines contents near 50% (such that the fines fraction controls the soil behavior), but have varying levels of fines plasticity. Each specimen was compacted to a range of formation dry densities and degrees of saturation. The results significantly extend the seismic compression literature, which has consisted primarily of laboratory testing of clean uniform sands. The test results show that seismic compression susceptibility increases with decreasing density and increasing shear strain amplitude. Saturation is found to be important for soils with plastic fines but relatively unimportant for soils with nonplastic fines. Comparisons of test results for soils with and without fines suggest that for many cases, fines decrease seismic compression potential relative to clean sands. For soils with fines, it appears that seismic compression is most pronounced when the fines are nonplastic, or when the fines are plastic and the soil has a clod structure. We iii observe clod structures in plastic soils compacted dry of the line of optimums or at low densities, but not in nonplastic soils. The objectives of analyses performed for the two sites were (1) to investigate the degree to which seismic compression can explain the observed ground displacements and (2) to evaluate the sensitivity of calculated settlements to variability in input parameters as well as the dispersion of calculated settlements given the overall parametric variability. The analysis procedure that is used de-couples the calculation of shear strain from that of volumetric strain. The shear strain calculations involved one- and two-dimensional ground response analyses employing site-specific dynamic soil properties and a suite of input motions appropriate for the respective sites. Volumetric strains are evaluated from the shear strains using material-specific models derived from the simple shear laboratory test results. Parametric variability in all significant model parameters is estimated, and the analyses are repeated according to a logic tree approach in which a weight is assigned to each possible realization of the model parameters. The analyses results provide probabilistic distributions of shear strain, volumetric strain, and settlement, the last of which can be compared to observed field settlements. Calculated ground settlements at Site B match observations between the 30th and 70th percentile levels. At Site A, the analyses successfully predict the shape of the settlement profile along a section, but the weighted average predictions are biased slightly low (match occurs at the 50th to 70th percentile level). We speculate that the underprediction likely results from imperfect knowledge of site stratigraphy and/or underestimation of volumetric strains from the laboratory tests as a result of the non-reproducibility of the field soil’s clod structure. Sensitivity studies reveal that the mean value of calculated settlements is highly sensitive to shear strain amplitude and compaction condition, while the standard deviation is mostly strongly influenced by variability in the shear strains. The median and standard deviation of shear strains, in turn, are strongly influenced by the site shear wave velocity profile, ground motion characteristics, and the method of site response analysis (i.e., 1-D versus 2-D). The various sources of parametric variability combine to form a coefficient of variation of about 0.5 to 1.0, being closer the low end of the range if 2-D analyses are performed (∼0.5–0.7) and the upper end of the range if 1-D analyses are performed (∼0.8–1.0). iv NONTECHNICAL PROJECT SUMMARY We investigate ground settlements at two canyon fills shaken by the Northridge, California, earthquake. The settlements are found to result from seismic compression, a process by which volumetric strain accrues in unsaturated soil during strong earthquake shaking. Insights into soil parameters affecting seismic compression are gained through a simple shear laboratory testing program involving soils from the sites. Back-analyses of site performance are able to capture the observed field settlement patterns. The analyses also provide insight into the ground motion and site parameters that significantly influence the seismic compression susceptibility of a fill section. v ACKNOWLEDGMENTS Support for this work was provided by the U.S. Geological Survey, National Earthquake Hazards Reduction Program, Award No. 1434-HG-98-GR-00037; a CAREER grant from the National Science Foundation (NSF Award No. 9733113); the Pacific Earthquake Engineering Research Center’s Program of Applied Earthquake Engineering Research of Lifeline Systems with funding from the Pacific Gas and Electric Company (PEER award number Z-19-2-133-96); and the UCLA Department of Civil & Environmental Engineering. This work made use of Earthquake Engineering Research Centers Shared Facilities supported by the National Science Foundation under Award #EEC-9701568. The views and conclusions contained in this document are those of the authors and should not be interpreted as necessarily representing the official policies, either expressed or implied, of the U.S. Government. The authors would like to thank the following individuals who provided materials that were of assistance in this research program: Del Yoakum of Geosoils, Jim Roberts of Jacobs Engineering, Mike Sisson, and Jerod Cascadden. We acknowledge the technical assistance to the laboratory testing program provided by Michael Riemer of the Pacific Earthquake Engineering Research Center. The supportive work of UCLA undergraduate and graduate students Trolis Niebla, Mathew Moyneur, and Annie Kwok is also acknowledged. vii CONTENTS ABSTRACT.................................................................................................................................. iii NONTECHNICAL PROJECT SUMMARY ..............................................................................v ACKNOWLEDGMENTS .......................................................................................................... vii TABLE OF CONTENTS ............................................................................................................ ix LIST OF FIGURES .....................................................................................................................xv LIST OF TABLES .....................................................................................................................xxv 1 INTRODUCTION..............................................................................................................1 2 PRIOR OBSERVATIONS OF THE SEISMIC PERFORMANCE OF COMPACTED FILLS.......................................................................................................5 2.1 Historic Observations...............................................................................................5 2.2 Observations from the 1994 Northridge Earthquake...............................................6 2.2.1 Damage Distribution and Typical Fill Deformation Features ...........................6
Recommended publications
  • Geologically Hazardous Area Assessment
    Geologically Hazardous Area Assessment Guemes Channel Trail Extension Anacortes, Washington for Herrigstad Engineering, PS May 16, 2014 Earth Science + Technology Geologically Hazardous Area Assessment Guemes Channel Trail Extension Anacortes, Washington for Herrigstad Engineering, PS May 16, 2014 600 Dupont Street Bellingham, Washington 98225 360.647.1510 Table of Contents INTRODUCTION AND SCOPE ........................................................................................................................ 1 DESIGNATION OF GEOLOGIC HAZARD AREAS AT THE SITE ..................................................................... 1 SITE CONDITIONS .......................................................................................................................................... 2 Surface Conditions ................................................................................................................................. 2 Geology ................................................................................................................................................... 3 Subsurface Explorations ........................................................................................................................ 4 Subsurface Conditions .......................................................................................................................... 4 Soil Conditions ................................................................................................................................. 4 Groundwater
    [Show full text]
  • Hydrometer and Viscosity Cup Guide
    Hydrometers Do Work What Is Specific Gravity? Specific gravity of any solid or liquid substance is its weight compared with the weight of an equal bulk of pure water at 62 degrees F at sea level. Gases use an equal volume of pure air at 32 degrees F. There are three methods of determining the specific gravity of liquids: Hydrometer In which the specific gravity of the liquid tested is read as the scale division marking the liquid level on the stem. Bottle Method In which the specific gravity is the weight of liquid (slip) in a full bottle divided by the weight of water in a full bottle. Displacement Method In which specific gravity is the weight of liquid displaced by a body divided by the weight of an equal volume of water displaced by the same body. The first two methods are practical. The faster, easier method uses a hydrometer designed specifically for slip (see right). There are many different hydrometers. Slip should range between 1.78 to 1.75, the latter being the maximum amount of water in the body and the former the lesser amount. How To Get An Accurate Reading 1. Store hydrometer in water. This keeps slip from drying on the surface. A cut off two liter soft drink bottle is ideal. Remove and gently “squeegee” off excess water. 2. Immerse in freshly agitated slip to the stem readings. 3. Lift up, “squeegee” off excess slip. Hydrometer is now “wet coated” with slip, not with water, which would give a false reading. 4. Immerse bulb half way into slip before releasing.
    [Show full text]
  • How to Read a Hydrometer
    Triple Scale Beer & Wine Hydrometer • Please Note: Always handle your hydrometer with care and DO NOT BOIL Why Use a Hydrometer – A Hydrometer is an instrument used Example formula: 1.073 was the Original Gravity reading and 1.012 How to Read to measure the progress of fermentation and determine alcohol per- is the Final Gravity reading.: 1.073-1.012=.06 x 131 = 7.99% Alc. By Vol centage. How to Determine Alcohol Percentage for Wine – For A Hydrometer Hydrometer Theory – A Hydrometer measures the density of a Wine, your final reading is often below zero. In wine, nearly all the liquid in relation to water. In beer or wine making we are measuring sugar is converted to alcohol – because alcohol is lighter than wa- how much sugar is in solution. The more sugar that is in solution, ter, your reading at the end of a wine fermentation is often negative. the higher the hydrometer will float. As sugar is turned into alcohol When the reading is negative, you have to add this back to your first during the fermentation, the hydrometer will slowly sink lower in the reading. Here is an example for these situations: .990 solution. When fermentation is finished, the hydrometer will stop Example Using Potential Alcohol Scale for Wine: sinking. Original Reading: 12.5 Potential alcohol 1.000 Three Scales – What are they used for? – Each of our Fer- Final Reading: -.7 Potential alcohol mentap hydrometers comes with three scales. The Specific Gravity - - - - - - - - - scale is most often used in brewing. The Brix scale is most often used 1.010 (12.5+.7)=13.2 % alcohol by volume in winemaking.
    [Show full text]
  • Enhancement of Shaft Capacity of Cast-In- Place Piles Using a Hook System
    Enhancement of Shaft Capacity of Cast-in- Place Piles using a Hook System by Ghazi Abou El Hosn A thesis submitted to the Faculty of Graduate and Postdoctoral Affairs in partial fulfillment of the requirements for the degree of: Master of Applied Science in Civil Engineering Carleton University, Ottawa, Ontario ©2015 Ghazi Abou El Hosn * Abstract This research investigates an innovative approach to improve the shaft bearing capacity of cast- in-place pile foundations by utilizing passive inclusions (Hooks) that will be mobilized if movement occurs in pile system. An extensive experimental program was developed to study the shaft bearing capacity of cast-in-place piles with and without hook system in soft clay and sand. First phase of the experiment was developed to investigate the effect of passive inclusion on pile- soil interface shear strength behaviour, employing a modified direct shear test apparatus. The interface strength obtained for pile-soil specimens was found to significantly increase when passive inclusions were implemented. Apparent residual friction angle for concrete-sand interface increased from 22 to 29.5 when two hook elements were used at the pile-soil interface. The pile-clay apparent adhesion was also increased from 19 kPa to 34 kPa. A series of pile-load testing at field were performed on cast-in-place in soft clay to investigate the effect of passive inclusions on pile bearing capacity. The pile-load tests were conducted at Gloucester test site. Four model piles were cast with steel cages along with hooks (P1- no hook, P2-7 hooks, P3- 5 hooks and P4- 5 hooks) installed on the exterior side of the steel cages prior to filling the hole with concrete.
    [Show full text]
  • Soil Testing in Missouri a Guide for Conducting Soil Tests in Missouri
    Soil Testing In Missouri A Guide for Conducting Soil Tests in Missouri University Extension Division of Plant Sciences, College of Agriculture, Food and Natural Resources University of Missouri Revised 1/2012 EC923 Soil Testing In Missouri A Guide for Conducting Soil Tests in Missouri Manjula V. Nathan John A. Stecker Yichang Sun 2 Preface Missouri Agricultural Experiment Station Bulletin 734, An Explanation of Theory and Methods of Soil Testing by E. R. Graham (1) was published in 1959. It served for years as a guide. In 1977 Extension Circular 923, Soil Testing in Missouri, was published to replace Station Bulletin 734. Changes in soil testing methods that occurred since 1977 necessitated the first revision of EC923 in 1983. That revision replaced the procedures used in the county labs. This second revision adds several procedures for nutrient analyses not previously conducted by the laboratory. It also revises a couple of previously used analyses (soil organic matter and extractable zinc). Acknowledgement is extended to John Garrett and T. R. Fisher, co-authors of the 1977 edition of EC923 and to J. R. Brown and R.R. Rodriguez, co-authors of the 1983 edition. 3 Contents Introduction……………………………………………………………….….. 5 Sampling………………………………………………………………...……. 7 Sample Submission and Preparation…………….…………………..…..……… 7 Extraction and Measurement……………………………………………..……… 7 pH and Acidity Determination……………………...………………………..…. 8 Evaluation of Soil Tests…………………………………………………………. 9 Procedures………….……………………...……………………………....……. 10 Organic Matter Loss on Ignition……………...…...…...……………………… 11 Potassium Calcium, Magnesium and Sodium Ammonium Acetate Extraction…………………….….……………………………………….… 13 Phosphorus Bray I and Bray II Methods…………...…………………….…….... 16 Soil pH in Water (pHw) ……….………………………………………………. 20 Soil pH in a Dilute Salt Solution (pHs) ………………………….…………….... 22 Neutralizable Acidity (NA) New Woodruff Buffer Method………...…………… 24 Zinc, Iron, Manganese and Copper DPTA Extraction …….….…………….....
    [Show full text]
  • 5. Soil, Plant Tissue and Manure Analysis
    5. Soil, Plant Tissue and Manure Analysis Profitable crop production depends on applying enough nutrients to each Soil analysis field to meet the requirements of Handling and preparation the crop while taking full advantage When samples arrive for testing, of the nutrients already present in the laboratory: the soil. Since soils vary widely in their fertility levels, and crops in • checks submission forms and their nutrient demand, so does the samples to make sure they match amount of nutrients required. • ensures client name, sample IDs and requests are clear Soil and plant analysis are tools used • attaches the ID to the samples and to predict the optimum nutrient submission forms application rates for a specific crop in • prepares samples for the drying a specific field. oven by opening the boxes or bags and placing them on drying racks Soil tests help: • places samples in the oven at • determine fertilizer requirements 35°C until dry (1–5 days) (nitrate • determine soil pH and samples should be analyzed lime requirements without drying) • diagnose crop production problems • grinds dry samples to pass through • determine suitability for a 2 mm sieve, removing stones and biosolids application crop residue • determine suitability for • moves samples to the lab where specific herbicides sub-samples are analyzed Plant tissue tests help: What’s reported in a soil test Commercial soil-testing laboratories • determine fertilizer requirements offer different soil testing/analytical for perennial fruit crops packages. How the laboratory reports • diagnose nutrient deficiencies the results will also differ between • diagnose nutrient toxicities labs. It is important to select an • validate fertilizer programs analytical package that meets your requirements.
    [Show full text]
  • Mapping and Analysis of the Rio Chama Landslide and Evaluation of Regional Landslide Susceptibility, Archuleta County, Colorado
    MAPPING AND ANALYSIS OF THE RIO CHAMA LANDSLIDE AND EVALUATION OF REGIONAL LANDSLIDE SUSCEPTIBILITY, ARCHULETA COUNTY, COLORADO by Cole D. Rosenbaum A thesis submitted to the Faculty and the Board of Trustees of the Colorado School of Mines in partial fulfillment of the requirements for the degree of Masters of Science (Geological Engineering). Golden, Colorado Date_______ Signed: _______________________ Cole D. Rosenbaum Signed: _______________________ Dr. Wendy Zhou Thesis Advisor Signed: _______________________ Dr. Paul Santi Thesis Advisor Golden, Colorado Date_______ Signed: _______________________ Dr. M. Stephen Enders Professor and Interim Head Department of Geology and Geological Engineering ii ABSTRACT Recent landslides, such as the West Salt Creek landslide in Colorado and the Oso landslide in Washington, have brought to light the need for more extensive landslide evaluations in order to prevent disasters in the U.S.. The goal of this research is to characterize and map the Rio Chama landslide, evaluate conditions at failure, predict future behavior, and apply these findings to create a regional susceptibility model for similar failures. Based on the classification scheme proposed by Cruden and Varnes (1996), the Rio Chama landslide is an active multiple rotational debris slide and flow complex with observed activity since 1952, located near the headwaters of the Rio Chama River in south-central Colorado. Site reconnaissance was conducted in 2015 and 2016 and coupled with laboratory testing of samples and limit equilibrium stability analysis. A hierarchical heuristic model using an analytic hierarchy process was applied to evaluate the susceptibility of the region to failures similar to the Rio Chama landslide. Weights were assigned to parameters based on their influence on landslide susceptibility, and weighted parameters were combined to produce a regional susceptibility map.
    [Show full text]
  • Test Method and Discussion for the Particle Size Analysis of Soils by Hydrometer Method
    TEST METHOD AND DISCUSSION FOR THE PARTICLE SIZE ANALYSIS OF SOILS BY HYDROMETER METHOD GEOTECHNICAL TEST METHOD GTM-13 Revision #2 AUGUST 2015 GEOTECHNICAL TEST METHOD: TEST METHOD AND DISCUSSION FOR THE PARTICLE SIZE ANALYSIS OF SOILS BY HYDROMETER METHOD GTM-13 Revision #2 STATE OF NEW YORK DEPARTMENT OF TRANSPORTATION GEOTECHNICAL ENGINEERING BUREAU AUGUST 2015 EB 15-025 Page 1 of 32 TABLE OF CONTENTS PART 1: TEST METHOD FOR THE PARTICLE SIZE ANALYSIS OF SOILS BY HYDROMETER METHOD .............................................................................3 1. Scope ........................................................................................................................3 2. Apparatus and Supplies ............................................................................................3 3. Preparation of the Dispersing Agent ........................................................................4 4. Sample Preparation and Test Procedure ..................................................................4 5. Calculations..............................................................................................................7 6. Quick Reference Guide ..........................................................................................12 APPENDIX ....................................................................................................................................14 A. Determination of the Composite Correction for Hydrometer Readings ................14 B. Temperature Correction Value (Mt) ......................................................................15
    [Show full text]
  • Forest Calcium Depletion and Biotic Retention Along a Soil Nitrogen Gradient
    Forest calcium depletion and biotic retention along a soil nitrogen gradient Steven S. Perakis, Emily R. Sinkhorn, Christina E. Catricala, Thomas D. Bullen, John A. Fitzpatrick, Justin D. Hynicka, and Kermit Cromack, Jr. 2013. Forest calcium depletion and biotic retention along a soil nitrogen gradient. Ecological Applications 23:1947–1961. doi:10.1890/12-2204.1 10.1890/12-2204.1 Ecological Society of America Version of Record http://hdl.handle.net/1957/46931 http://cdss.library.oregonstate.edu/sa-termsofuse Ecological Applications, 23(8), 2013, pp. 1947–1961 Ó 2013 by the Ecological Society of America Forest calcium depletion and biotic retention along a soil nitrogen gradient 1,4 2 1 3 3 STEVEN S. PERAKIS, EMILY R. SINKHORN, CHRISTINA E. CATRICALA, THOMAS D. BULLEN, JOHN A. FITZPATRICK, 2 2 JUSTIN D. HYNICKA, AND KERMIT CROMACK,JR. 1U.S. Geological Survey, Forest and Rangeland Ecosystem Science Center, Corvallis, Oregon 97331 USA 2Oregon State University, Department of Forest Ecosystems and Society, Corvallis, Oregon 97331 USA 3U.S. Geological Survey, National Research Program, Menlo Park, California 94025 USA Abstract. High nitrogen (N) accumulation in terrestrial ecosystems can shift patterns of nutrient limitation and deficiency beyond N toward other nutrients, most notably phosphorus (P) and base cations (calcium [Ca], magnesium [Mg], and potassium [K]). We examined how naturally high N accumulation from a legacy of symbiotic N fixation shaped P and base cation cycling across a gradient of nine temperate conifer forests in the Oregon Coast Range. We were particularly interested in whether long-term legacies of symbiotic N fixation promoted coupled N and organic P accumulation in soils, and whether biotic demands by non-fixing vegetation could conserve ecosystem base cations as N accumulated.
    [Show full text]
  • Battery Service V1.1.Pdf
    BATTERY SERVICE This Automotive Series BATTERY SERVICE has been developed by Kevin R. Sullivan Professor of Automotive Technology Skyline College All Rights Reserved v1.1 Visit us on the web at: www.autoshop101.com BATTERY SERVICE Battery services are routinely performed. These services include: 1. Testing 2. Charging 3. Cleaning 4. Jumping a dead battery. 5. Adding water. Page 1 © Autoshop101.com. All rights reserved. BATTERY TESTING Battery testing has changed in recent years; although the three areas are basically the same, the equipment has improved. 1. Visual Inspection 2. State of Charge a. Specific Gravity b. Open Circuit Voltage 3. Capacity or Heavy Load Test Note: This does not include the Midtronics battery tester which has a different test procedure and will be discussed later in this module. Page 2 © Autoshop101.com. All rights reserved. VISUAL INSPECTION Battery service should begin with a thorough visual inspection. This inspection may reveal simple, easily corrected problems. 1 . Check for cracks in the battery case and broken terminals. Either may allow electrolyte leakage, which requires battery replacement. 2. Check for cracked or broken cables or connections. Replace, as needed. 3. Check for corrosion on terminals and dirt or acid on the case top. Clean the terminals and case top with a mixture of water and baking soda. A battery wire brush tool is needed for heavy corrosion on the terminals. 4. Check for a loose battery hold-down or loose cable connections. Clean and tighten, as needed. Page 3 © Autoshop101.com. All rights reserved. VISUAL INSPECTION CONTINUED 5. Check the electrolyte fluid level.
    [Show full text]
  • Design Standard 13
    Design Standards No. 13 Embankment Dams Chapter 19: Geotextiles Phase 4 Final U.S. Department of Interior Bureau of Reclamation June 2014 Mission Statements The U.S. Department of the Interior protects America’s natural resources and heritage, honors our cultures and tribal communities, and supplies the energy to power our future. The mission of the Bureau of Reclamation is to manage, develop, and protect water and related resources in an environmentally and economically sound manner in the interest of the American public. Design Standards Signature Sheet Design Standards No. 13 Embankment Dams DS-13(19)-1: Phase 4 Final June 2014 Chapter 19: Geotextiles Foreword Purpose The Bureau of Reclamation (Reclamation) design standards present technical requirements and processes to enable design professionals to prepare design documents and reports necessary to manage, develop, and protect water and related resources in an environmentally and economically sound manner in the interest of the American public. Compliance with these design standards assists in the development and improvement of Reclamation facilities in a way that protects the public’s health, safety, and welfare; recognizes needs of all stakeholders; and achieves lasting value and functionality necessary for Reclamation facilities. Responsible designers accomplish this goal through compliance with these design standards and all other applicable technical codes, as well as incorporation of the stakeholders’ vision and values, that are then reflected in the constructed facilities. Application of Design Standards Reclamation design activities, whether performed by Reclamation or by a non-Reclamation entity, must be performed in accordance with established Reclamation design criteria and standards, and approved national design standards, if applicable.
    [Show full text]
  • How to Read a Hydrometer
    ® How To Use a Hydrometer Everyone wants to make good beer but it is not only about using quality ingredients. Sanitizing, racking to a secondary fermenter, and taking hydrometer readings all help ensure a better end result. Of these, the hydrometer reading is the most skipped process by home brewers. It may be the thought that it is difficult or simply not a useful resource. Either way, not taking a hydrometer reading is a huge mistake! A hydrometer, by definition, is a sealed graduated tube containing a weighted bulb, used to determine the specific gravity or density of a liquid. For home brewing, the purpose of this device is to measure the amount of sugar in a solution which can be converted into alcohol. Hydrometer readings should be recorded both before and after fermentation. Taking a Hydrometer Reading 1. Sanitize all equipment that will come in contact with your wine or beer. 2. Take a sample of the liquid before you add the yeast. 3. Place the sample in a hydrometer test jar. If you have a sampler or pipette, you do not need to do this as the sampler or pipette doubles as a test jar. 4. Spin the hydrometer to remove any bubbles that might be clinging to it. 5. With the sample at eye level, look to see where the liquid crosses the markings. 6. Write down the reading. This is your starting gravity. Check your recipe to see what the proper original gravity (OG) range is for your kit. 7. Let the wine or beer ferment completely and then take a reading just before bottling.
    [Show full text]