Draft Revised Technical Paper TP.FNTP

Total Page:16

File Type:pdf, Size:1020Kb

Draft Revised Technical Paper TP.FNTP International Telecommunication Union ITU-T Technical Paper TELECOMMUNICATION STANDARDIZATION SECTOR OF ITU (30 November 2015) Future social media and knowledge society Forward This Technical Paper was developed by Mr. Jun Kyun Choi. ITU-T Technical Paper (2015-12) i CONTENTS Page 1 Scope ............................................................................................................................................ 3 2 Definitions .................................................................................................................................... 3 3 Abbreviations ............................................................................................................................... 4 4 Vision and technology trends toward knowledge society ............................................................ 6 4.1 Vision toward knowledge society ............................................................................................ 6 4.2 New technologies for knowledge society .............................................................................. 18 5 Vision and technology trends of social media ........................................................................... 30 5.1 New trends of social media .................................................................................................... 30 5.2 New technologies for social media ........................................................................................ 36 6 Risks of knowledge society........................................................................................................ 43 7 New opportunity of knowledge society and social media ......................................................... 50 8 ICT standardization for future knowledge society ..................................................................... 61 9 Conclusions ................................................................................................................................ 67 10 References and bibliography ...................................................................................................... 69 List of Figures Figure 1 – From agricultural society to knowledge society ................................................................. 7 Figure 2 – Expecting value of knowledge by classification of intelligences ..................................... 12 Figure 3 – Key features of knowledge society ................................................................................... 13 Figure 4 – Data-information-knowledge-wisdom (DIKW) process (ref. [14]) ................................. 16 Figure 5 – Recursive cycle of knowledge creation (ref. [15]) ........................................................... 17 Figure 6 – Evolution of social business [41]...................................................................................... 51 Figure 7 – Social information infrastructure via ICTs ....................................................................... 53 Figure 8 – ICT conceptual vision of future ICT infrastructure .......................................................... 54 Figure 9 – Key trends of future ICT eco-society ............................................................................... 56 Figure 10 – Value-added services of future ICT infrastructure ......................................................... 57 Figure 11 – Emerging applications of future ICT infrastructure ....................................................... 58 Figure 12 – Strategic trends for future ICT infrastructure ................................................................. 59 Figure 13 – Step-wise evolution toward future ICT infrastructure .................................................... 60 Figure 14 – Recursive standardization process for knowledge information infrastructure ............... 66 ITU-T Technical Paper (2015-12) ii ITU-T Technical Paper Future social media and knowledge society Introduction Smartphone addiction Most mothers claim "my children are dying brain" since they use smartphones the whole day. They feel that smartphones are similar to "Digital Drugs". Even when children go to bed, they have their smartphones with them. If the battery is almost worn out, most children panic easily. Many couples too often fight to use the smartphone. Most people send and receive an unlimited number of short messages by using social networking services, such as Twitter and Facebook. Smartphone addictions are due to a hyper-connected society of Internet, and they are more serious than Internet addiction or video game addiction. The average usage time per day of smartphone addiction is more than eight hours, while normal users use three hours. The main purpose of using smartphones is chatting, news searching, listening to music, and games. In the near future, mobile phone manufacturers may have to attach mandatory warning on smartphones such as "Excessive use of smartphones is harmful to your health and family reconciliation". Data explosion In Cisco's report on visual networking index in 2013, the volume of global Internet traffic is expected to reach 1.6 zeta bytes. (Note that 1 zettabyte = 1021 bytes = 1 billion terabytes = 1000 exabytes [1].) It has been announced that global Internet protocol (IP) traffic is expected to increase by about three-fold during the next five years. Wireless mobile traffic will exceed wired traffic, and video traffic with high definition quality will be the best. The major factor of traffic increase is the increase of Internet users and mobile devices, which are the result of the increase of broadband network bandwidth and video watching. The traffic volume of mobile devices will exceed the volume of personal computer (PC) traffic. Moreover, wireless fidelity (WiFi) traffic will exceed wired traffic for the first time. The percentage share of video traffic with high definition quality of all the traffic is expected to increase to 79% in 2018 compared to 66% in 2013. Traffic for Internet of things/machine-to-machine (IoT/M2M) applications will increase sharply in the near future. New habit of online society While people frequently use the Internet, they develop new habits. Currently, Internet users are increasing drastically. More than 50% of the people in the world are plugged-in at the Internet. The penetration ratio of smartphones is also steeply rising to more than 50%. Such penetration is causing change in the daily lives of people. Lately, many people may have the habit of checking their smartphones first thing in the morning; they check their schedule of the day to decide what clothes they have to wear, depending on their meeting and business schedule. On their way to work, they check their e-mails and mobile messages. For their daily lives and businesses, most people always connect to the online environment by using smartphones. If they have a question during a meeting or a conversation, they directly check the related websites by using the smartphone so that they can obtain the facts from the Internet without a serious debate. To get the opinion of faraway experts, people call them immediately during the meeting. Sometimes, the meeting makes a vote from the all the participants including those who participated remotely. In some strange cases during face-to-face meetings, people start the meeting by using the social networking services in order to record the meeting results even though all the members are present in the same location. In their day-to-day life, people check their personal schedule by using the Internet. They fix dates with their girlfriends, and book movie tickets by using the smartphone. When a girlfriend does not find the exact meeting place, her boyfriend directs her from her current location. Sometimes, he ITU-T Technical Paper (2015-12) 1 asks his friends to find out a nice venue to meet. He may enjoy a major event nearby like a street parade or fireworks. He can receive a discount coupon for a nearby restaurant while he is looking for a nice place. By using the smartphone, he meets with his family and friends every day even though he could not meet them physically. Most mothers worry about their daughters when they come back home late in the evening; they can contact their daughters by using the smartphone to ensure that they return safely. Social effects of online connectivity At least once a day, people visit their social networking service like Twitter and Facebook, etc. When people are excluded to join as a friend or be a member of the social networking services, they are very disappointed and they think that are being bullied. People may worry about such online as well as offline exclusion from these communities. When people post the latest news and gossip on their social networking sites, they observe and wonder how to appeal or how to react to their friends. People may want to learn about new cultures of online social communities regardless of where they are or what they are working at. They may exercise new skills on how to live in an open culture of an online society. This online culture may be similar to a community culture like the Confucian civilization of Far East Asia. Impact of technology development toward future society The recent new technologies such as cloud computing, the web, and social networking services over the Internet are just the beginning of a wide variety of technological developments for the future. The future society is ready to invite new technologies like big data analytics, deep learning, augmented
Recommended publications
  • Why Machines Don't
    KI - Künstliche Intelligenz https://doi.org/10.1007/s13218-019-00599-w SURVEY Why Machines Don’t (yet) Reason Like People Sangeet Khemlani1 · P. N. Johnson‑Laird2,3 Received: 15 February 2019 / Accepted: 19 June 2019 © This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply 2019 Abstract AI has never come to grips with how human beings reason in daily life. Many automated theorem-proving technologies exist, but they cannot serve as a foundation for automated reasoning systems. In this paper, we trace their limitations back to two historical developments in AI: the motivation to establish automated theorem-provers for systems of mathematical logic, and the formulation of nonmonotonic systems of reasoning. We then describe why human reasoning cannot be simulated by current machine reasoning or deep learning methodologies. People can generate inferences on their own instead of just evaluating them. They use strategies and fallible shortcuts when they reason. The discovery of an inconsistency does not result in an explosion of inferences—instead, it often prompts reasoners to abandon a premise. And the connectives they use in natural language have diferent meanings than those in classical logic. Only recently have cognitive scientists begun to implement automated reasoning systems that refect these human patterns of reasoning. A key constraint of these recent implementations is that they compute, not proofs or truth values, but possibilities. Keywords Reasoning · Mental models · Cognitive models 1 Introduction problems for mathematicians). Their other uses include the verifcation of computer programs and the design of com- The great commercial success of deep learning has pushed puter chips.
    [Show full text]
  • Wikipedia Knowledge Graph with Deepdive
    The Workshops of the Tenth International AAAI Conference on Web and Social Media Wiki: Technical Report WS-16-17 Wikipedia Knowledge Graph with DeepDive Thomas Palomares Youssef Ahres [email protected] [email protected] Juhana Kangaspunta Christopher Re´ [email protected] [email protected] Abstract This paper is organized as follows: first, we review the related work and give a general overview of DeepDive. Sec- Despite the tremendous amount of information on Wikipedia, ond, starting from the data preprocessing, we detail the gen- only a very small amount is structured. Most of the informa- eral methodology used. Then, we detail two applications tion is embedded in unstructured text and extracting it is a non trivial challenge. In this paper, we propose a full pipeline that follow this pipeline along with their specific challenges built on top of DeepDive to successfully extract meaningful and solutions. Finally, we report the results of these applica- relations from the Wikipedia text corpus. We evaluated the tions and discuss the next steps to continue populating Wiki- system by extracting company-founders and family relations data and improve the current system to extract more relations from the text. As a result, we extracted more than 140,000 with a high precision. distinct relations with an average precision above 90%. Background & Related Work Introduction Until recently, populating the large knowledge bases relied on direct contributions from human volunteers as well With the perpetual growth of web usage, the amount as integration of existing repositories such as Wikipedia of unstructured data grows exponentially. Extract- info boxes. These methods are limited by the available ing facts and assertions to store them in a struc- structured data and by human power.
    [Show full text]
  • An Overview of Automated Reasoning
    An overview of automated reasoning John Harrison Intel Corporation 3rd February 2014 (10:30{11:30) Talk overview I What is automated reasoning? I Early history and taxonomy I Automation, its scope and limits I Interactive theorem proving I Hobbes (1651): \Reason . is nothing but reckoning (that is, adding and subtracting) of the consequences of general names agreed upon, for the marking and signifying of our thoughts." I Leibniz (1685) \When there are disputes among persons, we can simply say: Let us calculate [calculemus], without further ado, to see who is right." Nowadays, by `automatic and algorithmic' we mean `using a computer program'. What is automated reasoning? Attempting to perform logical reasoning in an automatic and algorithmic way. An old dream! I Leibniz (1685) \When there are disputes among persons, we can simply say: Let us calculate [calculemus], without further ado, to see who is right." Nowadays, by `automatic and algorithmic' we mean `using a computer program'. What is automated reasoning? Attempting to perform logical reasoning in an automatic and algorithmic way. An old dream! I Hobbes (1651): \Reason . is nothing but reckoning (that is, adding and subtracting) of the consequences of general names agreed upon, for the marking and signifying of our thoughts." Nowadays, by `automatic and algorithmic' we mean `using a computer program'. What is automated reasoning? Attempting to perform logical reasoning in an automatic and algorithmic way. An old dream! I Hobbes (1651): \Reason . is nothing but reckoning (that is, adding and subtracting) of the consequences of general names agreed upon, for the marking and signifying of our thoughts." I Leibniz (1685) \When there are disputes among persons, we can simply say: Let us calculate [calculemus], without further ado, to see who is right." What is automated reasoning? Attempting to perform logical reasoning in an automatic and algorithmic way.
    [Show full text]
  • Expert Systems: an Introduction -46
    GENERAL I ARTICLE Expert Systems: An Introduction K S R Anjaneyulu Expert systems encode human expertise in limited domains by representing it using if-then rules. This article explains the development and applications of expert systems. Introduction Imagine a piece of software that runs on your PC which provides the same sort of interaction and advice as a career counsellor helping you decide what education field to go into K S R Anjaneyulu is a and perhaps what course to pursue .. Or a piece of software Research Scientist in the Knowledge Based which asks you questions about your defective TV and provides Computer Systems Group a diagnosis about what is wrong with it. Such software, called at NeST. He is one of the expert systems, actually exist. Expert systems are a part of the authors of a book on rule larger area of Artificial Intelligence. based expert systems. One of the goals of Artificial Intelligence is to develop systems which exhibit 'intelligent' human-like behaviour. Initial attempts in the field (in the 1960s) like the General Problem Solver created by Allen Newell and Herbert Simon from Carnegie Mellon University were to create general purpose intelligent systems which could handle tasks in a variety of domains. However, researchers soon realized that developing such general purpose systems was too difficult and it was better to focus on systems for limited domains. Edward Feigenbaum from Stanford University then proposed the notion of expert systems. Expert systems are systems which encode human expertise in limited domains. One way of representing this human knowledge is using If-then rules.
    [Show full text]
  • Racer - an Inference Engine for the Semantic Web
    Racer - An Inference Engine for the Semantic Web Volker Haarslev Concordia University Department of Computer Science and Software Enineering http://www.cse.concordia.ca/~haarslev/ Collaboration with: Ralf Möller, Hamburg University of Science and Technology Basic Web Technology (1) Uniform Resource Identifier (URI) foundation of the Web identify items on the Web uniform resource locator (URL): special form of URI Extensible Markup Language (XML) send documents across the Web allows anyone to design own document formats (syntax) can include markup to enhance meaning of document’s content machine readable Volker Haarslev Department of Computer Science and Software Engineering Concordia University, Montreal 1 Basic Web Technology (2) Resource Description Framework (RDF) make machine-processable statements triple of URIs: subject, predicate, object intended for information from databases Ontology Web Language (OWL) based on RDF description logics (as part of automated reasoning) syntax is XML knowledge representation in the web What is Knowledge Representation? How would one argue that a person is an uncle? Jil We might describe family has_parent has_child relationships by a relation has_parent and its inverse has_child Joe Sue Now can can define an uncle a person (Joe) is an uncle if has_child and only if he is male he has a parent (Jil) and this ? parent has a second child this child (Sue) is itself a parent Sue is called a sibling of Joe and vice versa Volker Haarslev Department of Computer Science and Software Engineering Concordia University,
    [Show full text]
  • Automated Reasoning for Explainable Artificial Intelligence∗
    EPiC Series in Computing Volume 51, 2017, Pages 24–28 ARCADE 2017. 1st International Workshop on Automated Reasoning: Challenges, Appli- cations, Directions, Exemplary Achievements Automated Reasoning for Explainable Artificial Intelligence∗ Maria Paola Bonacina1 Dipartimento di Informatica Universit`adegli Studi di Verona Strada Le Grazie 15 I-37134 Verona, Italy, EU [email protected] Abstract Reasoning and learning have been considered fundamental features of intelligence ever since the dawn of the field of artificial intelligence, leading to the development of the research areas of automated reasoning and machine learning. This paper discusses the relationship between automated reasoning and machine learning, and more generally be- tween automated reasoning and artificial intelligence. We suggest that the emergence of the new paradigm of XAI, that stands for eXplainable Artificial Intelligence, is an oppor- tunity for rethinking these relationships, and that XAI may offer a grand challenge for future research on automated reasoning. 1 Artificial Intelligence, Automated Reasoning, and Ma- chine Learning Ever since the beginning of artificial intelligence, scientists concurred that the capability to learn and the capability to reason about problems and solve them are fundamental pillars of intelligent behavior. Similar to many subfields of artificial intelligence, automated reasoning and machine learning have grown into highly specialized research areas. Both have experienced the dichotomy between the ideal of imitating human intelligence, whereby the threshold of success would be the indistinguishability of human and machine, as in the Turing’s test [12], and the ideal that machines can and should learn and reason in their own way. According to the latter ideal, the measure of success is independent of similarity to human behavior.
    [Show full text]
  • First-Orderized Researchcyc: Expressivity and Efficiency in A
    First-Orderized ResearchCyc : Expressivity and Efficiency in a Common-Sense Ontology Deepak Ramachandran1 Pace Reagan2 and Keith Goolsbey2 1Computer Science Department, University of Illinois at Urbana-Champaign, Urbana, IL 61801 [email protected] 2Cycorp Inc., 3721 Executive Center Drive, Suite 100, Austin, TX 78731 {pace,goolsbey}@cyc.com Abstract The second sentence is non-firstorderizable if we consider Cyc is the largest existing common-sense knowledge base. Its “anyone else” to mean anyone who was not in the group of ontology makes heavy use of higher-order logic constructs Fianchetto’s men who went into the warehouse. such as a context system, first class predicates, etc. Many Another reason for the use of these higher-order con- of these higher-order constructs are believed to be key to structs is the ability to represent knowledge succinctly and Cyc’s ability to represent common-sense knowledge and rea- in a form that can be taken advantage of by specialized rea- son with it efficiently. In this paper, we present a translation soning methods. The validation of this claim is one of the of a large part (around 90%) of the Cyc ontology into First- Order Logic. We discuss our methodology, and the trade- contributions of this paper. offs between expressivity and efficiency in representation and In this paper, we present a tool for translating a significant reasoning. We also present the results of experiments using percentage (around 90%) of the ResearchCyc KB into First- VAMPIRE, SPASS, and the E Theorem Prover on the first- Order Logic (a process we call FOLification).
    [Show full text]
  • Semantic Web & Relative Analysis of Inference Engines
    International Journal of Engineering Research & Technology (IJERT) ISSN: 2278-0181 Vol. 2 Issue 10, October - 2013 Semantic Web & Relative Analysis of Inference Engines Ravi L Verma 1, Prof. Arjun Rajput 2 1Information Technology, Technocrats Institute of Technology 2Computer Engineering, Technocrats Institute of Technology, Excellence Bhopal, MP Abstract - Semantic web is an enhancement to the reasoners to make logical conclusion based on the current web that will provide an easier path to find, framework. Use of inference engine in semantic web combine, share & reuse the information. It brings an allows the applications to investigate why a particular idea of having data to be defined & linked in a way that solution has been reached, i.e. semantic applications can can be used for more efficient discovery, integration, provide proof of the derived conclusion. This paper is a automation & reuse across many applications.Today’s study work & survey, which demonstrates a comparison web is purely based on documents that are written in of different type of inference engines in context of HTML, used for coding a body of text with interactive semantic web. It will help to distinguish among different forms. Semantic web provides a common language for inference engines which may be helpful to judge the understanding how data related to the real world various proposed prototype systems with different views objects, allowing a person or machine to start with in on what an inference engine for the semantic web one database and then move through an unending set of should do. databases that are not connected by wires but by being about the same thing.
    [Show full text]
  • The Ratiolog Project: Rational Extensions of Logical Reasoning
    The RatioLog Project: Rational Extensions of Logical Reasoning Ulrich Furbach · Claudia Schon · Frieder Stolzenburg · Karl-Heinz Weis · Claus-Peter Wirth Abstract Higher-level cognition includes logical reasoning 1 Rational Reasoning and Question Answering and the ability of question answering with common sense. The RatioLog project addresses the problem of rational rea- The development of formal logic played a big role in the soning in deep question answering by methods from auto- field of automated reasoning, which led to the development mated deduction and cognitive computing. In a first phase, of the field of artificial intelligence (AI). Applications of au- we combine techniques from information retrieval and ma- tomated deduction in mathematics have been investigated chine learning to find appropriate answer candidates from from the early years on. Nowadays automated deduction the huge amount of text in the German version of the free techniques are successfully applied in hard- and software encyclopedia “Wikipedia”. In a second phase, an automated verification and many other areas (for an overview see [2]). theorem prover tries to verify the answer candidates on In contrast to formal logical reasoning, however, human the basis of their logical representations. In a third phase reasoning does not strictly follow the rules of classical logic. — because the knowledge may be incomplete and inconsis- Reasons may be incomplete knowledge, incorrect beliefs, tent —, we consider extensions of logical reasoning to im- and inconsistent norms. From the very beginning of AI re- prove the results. In this context, we work toward the appli- search, there has been a strong emphasis on incorporating cation of techniques from human reasoning: We employ de- mechanisms for rationality, such as abductive or defeasible feasible reasoning to compare the answers w.r.t.
    [Show full text]
  • Toward a Logic of Everyday Reasoning
    Toward a Logic of Everyday Reasoning Pei Wang Abstract: Logic should return its focus to valid reasoning in real-world situations. Since classical logic only covers valid reasoning in a highly idealized situation, there is a demand for a new logic for everyday reasoning that is based on more realistic assumptions, while still keeps the general, formal, and normative nature of logic. NAL (Non-Axiomatic Logic) is built for this purpose, which is based on the assumption that the reasoner has insufficient knowledge and resources with respect to the reasoning tasks to be carried out. In this situation, the notion of validity has to be re-established, and the grammar rules and inference rules of the logic need to be designed accordingly. Consequently, NAL has features very different from classical logic and other non-classical logics, and it provides a coherent solution to many problems in logic, artificial intelligence, and cognitive science. Keyword: non-classical logic, uncertainty, openness, relevance, validity 1 Logic and Everyday Reasoning 1.1 The historical changes of logic In a broad sense, the study of logic is concerned with the principles and forms of valid reasoning, inference, and argument in various situations. The first dominating paradigm in logic is Aristotle’s Syllogistic [Aristotle, 1882], now usually referred to as traditional logic. This study was carried by philosophers and logicians including Descartes, Locke, Leibniz, Kant, Boole, Peirce, Mill, and many others [Bochenski,´ 1970, Haack, 1978, Kneale and Kneale, 1962]. In this tra- dition, the focus of the study is to identify and to specify the forms of valid reasoning Pei Wang Department of Computer and Information Sciences, Temple University, Philadelphia, USA e-mail: [email protected] 1 2 Pei Wang in general, that is, the rules of logic should be applicable to all domains and situa- tions where reasoning happens, as “laws of thought”.
    [Show full text]
  • Automated Reasoning on the Web
    Automated Reasoning on the Web Slim Abdennadher1, Jos´eJ´ulioAlves Alferes2, Grigoris Antoniou3, Uwe Aßmann4, Rolf Backofen5, Cristina Baroglio6, Piero A. Bonatti7, Fran¸coisBry8, W lodzimierz Drabent9, Norbert Eisinger8, Norbert E. Fuchs10, Tim Geisler11, Nicola Henze12, Jan Ma luszy´nski4, Massimo Marchiori13, Alberto Martelli14, Sara Carro Mart´ınez15, Wolfgang May16, Hans J¨urgenOhlbach8, Sebastian Schaffert8, Michael Schr¨oder17, Klaus U. Schulz8, Uta Schwertel8, and Gerd Wagner18 1 German University in Cairo (Egypt), 2 New University of Lisbon (Portugal), 3 Institute of Computer Science, Foundation for Research and Technology – Hel- las (Greece), 4 University of Link¨oping (Sweden), 5 University of Jena (Germany), 6 University of Turin (Italy), 7 University of Naples (Italy), 8 University of Mu- nich (Germany), 9 Polish Academy of Sciences (Poland), 10 University of Zurich (Switzerland), 11 webXcerpt (Germany), 12 University of Hannover (Germany), 13 University of Venice (Italy), 14 University of Turin (Italy), 15 Telef´onica Investi- gaci´ony Desarollo (Spain), 16 University of G¨ottingen(Germany), 17 University of Dresden (Germany), 18 University of Eindhoven (The Netherlands) Abstract Automated reasoning is becoming an essential issue in many Web systems and applications, especially in emerging Semantic Web applications. This article first discusses reasons for this evolution. Then, it presents research issues currently investigated towards automated reasoning on the Web and it introduces into selected applications demonstrating the practical impact of the approach. Finally, it introduces a research endeavor called REWERSE (cf. http://rewerse.net) recently launched by the authors of this article which is concerned with developing automated reasoning methods and tools for the Web as well as demonstrator applications.
    [Show full text]
  • A Knowledge-Based Approach to Network Security: Applying Cyc in the Domain of Network Risk Assessment
    A Knowledge-Based Approach to Network Security: Applying Cyc in the Domain of Network Risk Assessment Blake Shepard, Cynthia Matuszek, C. Bruce Fraser, William Wechtenhiser, David Crabbe, Zelal Güngördü, John Jantos, Todd Hughes, Larry Lefkowitz, Michael Witbrock, Doug Lenat, Erik Larson Cycorp, Inc., 3721 Executive Center Drive, Suite 100, Austin, TX 78731 {blake, cynthia, dcrabbe, zelal, jantos, larry, witbrock, lenat}@cyc.com [email protected], [email protected], [email protected], [email protected] Abstract about what computers are on the network, what programs are installed or running on those computers, what privileges CycSecureTM is a network risk assessment and network monitoring the running programs have, what users are logged into the application that relies on knowledge-based artificial intelligence computers, how the parameters of critical operating system technologies to improve on traditional network vulnerability as- files are set, etc. The formal model is stored directly in the sessment. CycSecure integrates public reports of software faults KB, where it is accessible for inference and planning. This from online databases, data gathered automatically from computers on a network and hand-ontologized information about computers formal representation also allows users to interact directly and computer networks. This information is stored in the Cyc® with the model of the network using ontology editing tools, knowledge base (KB) and reasoned about by the Cyc inference allowing testing of proposed changes or corrections to the engine and planner to provide detailed analyses of the security (and network before implementation. vulnerability) of networks. CycSecure Server CycSecure Outputs Sentinels 1 Introduction Dynamic HTML User Interfaces Natural language (NL) descriptions of Network Model Network Attack Query network attack plans Statistics Plan In maintaining secure computer networks, system adminis- Editor Viewer Tool Tool Analyzer trators face an increasingly time-consuming task.
    [Show full text]