Forward Teaching: Recommendations for Improving Statistical Literacy in Psychological 2 and Behavioral Sciences

Total Page:16

File Type:pdf, Size:1020Kb

Forward Teaching: Recommendations for Improving Statistical Literacy in Psychological 2 and Behavioral Sciences 1 Forward teaching: Recommendations for improving statistical literacy in psychological 2 and behavioral sciences 3 Kai Ruggeri12 4 1 Department of Psychology, University of Cambridge, Cambridge, United Kingdom 5 2 Department of Health Policy and Management, Mailman School of Public Health, Columbia 6 University in the City of New York, USA 7 Corresponding Author: 8 Kai Ruggeri 9 10 Email address: [email protected] 1 PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3265v1 | CC BY 4.0 Open Access | rec: 19 Sep 2017, publ: 19 Sep 2017 11 Abstract 12 To improve outcomes in statistics education - namely the acquisition of statistical literacy - we 13 need a new approach to how the subject is delivered in psychology and behavioral sciences. To do 14 this, key indicators and impacts of barriers to learning statistics can be utilized from existing 15 evidence from recent findings on statistical literacy. Using these, this paper proposes nine elements 16 seen as critical for improving the delivery and associated outcomes for statistics teaching in higher 17 education. Each of the nine elements may be systematically assessed and translated for wider use 18 if effective. 2 PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3265v1 | CC BY 4.0 Open Access | rec: 19 Sep 2017, publ: 19 Sep 2017 19 Introduction 20 Students do not like the way statistics are taught. This may not come as a surprise to many, but the 21 consequences of this negative experience are significant for students (Chiesi & Primi, 2010) as 22 well as for professors (Uttl & Smibert, 2017) and populations (Calzada Prado & Marzal, 2013). 23 These implications have been highlighted in a recent paper in this journal, which indicates that 24 teaching in quantitative subjects is a strong predictor of lower student evaluations when compared 25 to other topics Uttl & Smibert, 2017). These findings were tied to negative outcomes for academic 26 career progression, which likely has unstudied consequences on the experience level of those 27 responsible for teaching the course. 28 Those who attempt statistical teaching interventions should be commended for recognizing that 29 traditional approaches to teaching statistics may not be as effective or as desirable. The perpetuity 30 of similar findings implies that not everyone acknowledges an issue even exists, though this may 31 also be linked to high turnover in who teaches. While some academics attempt various efforts and 32 even build interventions through a solid theoretical base, this approach has been generally limited. 33 While some techniques may appear obvious, even the cursory scanning of teaching guidance for 34 statistics will reveal much advice has little evidence base and resorts to anecdotes (e.g. ‘In my 35 experience…’), blogs, or untested pieces whose review is limited to the idea rather than empirical 36 evidence – an odd result considering the sources. 37 There is a growing body of evidence for understanding what hinders acquisition of statistical 38 thinking. As those become better identified, academics should be encouraged to attempt 39 scientifically validated improvements to how we engage our classrooms (Kottemann & Salimian, 40 2008), especially when it comes to deep understanding of statistics anxiety (Chew & Dillon, 2014). 41 That educators are now working in earnest to contribute to this presents a positive outlook for a 42 potential future of long-awaited statistically literate populations (Wallman, 1993). Anecdotes, 43 however, have yet to produce a sustained improvement. We need more than this. 44 Take the example of classroom activities used early in the teaching of statistics as a way to improve 45 outcomes (Chiou et al., 2014). This method employs a previously validated one-minute exercise 46 (Stead, 2005) meant to engage students in such a way that statistics anxiety should be reduced and 47 lead to improved test scores. The result: grades increase marginally, a contribution is added to the 48 ‘bag of tricks’ (Gelman & Nolan, 2002), and another anecdote goes into circulation. Without 49 seeking to discredit interventions that show some benefit, the following piece is an argument – 50 even a plea – that if we are truly devoted to gainful change from teaching statistics, it will require 51 more than a minute, clever lecture anecdotes, or new approaches to assessment. 52 We require a new way of thinking about how to deliver the skills, techniques, and mindset 53 necessary for populations that can think statistically. Such abilities enable more people to make 54 better decisions based on information provided, whether in scientific study, government policy, or 55 everyday living (Chew & Dillon, 2014). Unfortunately, the same studies that generate these 56 insights indicate that statistics anxiety is a major barrier to realizing them, largely due to statistics 57 anxiety (Chew & Dillon, 2014). The necessary, substantial change to overcome this begins with 58 the person at the front of the lecture hall. However, this requires implementing evidence-backed 59 approaches to teaching, not simply more assessment of interventions and the students enrolled in 60 them. 3 PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3265v1 | CC BY 4.0 Open Access | rec: 19 Sep 2017, publ: 19 Sep 2017 61 To respond to this, we propose a way of moving forward with our teaching (or ‘teaching forward’). 62 To do so, this piece offers a brief review of relevant barriers to acquiring statistical literacy, namely 63 statistics anxiety, followed by a set of evidence-based proposals for how to reduce those challenges 64 through better teaching. Though some elements will seem common sense, evidence indicates there 65 are many instances where they are not in place, and it is hoped that this will at least spur meaningful 66 debate toward that end. 67 What we already know 68 Statistics anxiety, its precursors, and its impacts, are well understood. This has largely been 69 through work using the Statistics Anxiety Rating Scale (STARS; Cruise, Cash, & Bolton, 1980). 70 STARS has been the prevailing measure for study, and recent validation work confirms most of 71 its properties continue to hold (DeVaney, 2016). Statistics anxiety is not limited to the social 72 sciences or to English-speaking regions, which has been confirmed by recent work in medical 73 students (Stanisavljevic et al., 2014; Gaudet, et al. 2014) as well as on several continents (Papousek 74 et al. 2012; Liu et al., 2011). To briefly summarize: 75 1. Students in the behavioral, social, and biological sciences are pretty anxious about statistics 76 as a class, assignment, and examination (Field, 2014; Baloglu & Zelhart, 2004). 77 2. Some anxiety is not a bad thing; a lot of anxiety is (Macher et al., 2015). 78 3. Performance in statistics is a subjective measure – we can do better as educators at 79 assessing this (Macher et al., 2013) but should be careful about teaching to the test. 80 4. Teaching is the ultimate moderator: do it right and you are much more likely to get a 81 positive result with a larger number of students; do it wrong and you lose people (Ruggeri 82 et al., 2008). The latter is much easier and more common. 83 5. The people who teach statistics are not always in love with the subject, either (Martins et 84 al., 2012). 85 6. Introducing innovative activities, materials, and teaching styles in the classroom may lead 86 to improved outcomes, but many proposed approaches have not been rigorously evaluated 87 or followed up (Chiou et al., 2014; Gould, 2010; Field, 2009). 88 7. Statistics anxiety is not merely a classroom and performance issue, but one that may impact 89 student well-being, particularly of more vulnerable groups (Jordan, et al., 2014). 90 What can we take from the evidence so far? 91 No first-day activity, no single joke, no vivid anecdote is likely to address all issues faced in 92 ensuring statistical literacy is gained by the greatest number of students. This holds true even if 93 lecturers are able to deliver them. Why is this a problem? If the people who are trained specifically 94 to be analytical (i.e. scientists) struggle to grasp statistical inference, then it is unlikely the general 95 population can easily understand quantitative information presented from any number of sources 96 (Ruggeri et al., 2011). Such arguments are backed up by any number of examples from mainstream 97 media and scientific papers about misunderstanding topics such as risk (e.g. Spiegelhalter, 2013). 98 Instead of a simple response, we need to rethink our approach to how the subject is taught from 99 the outset. One-off activities may offer some impact, but even so, the potential gain from going 100 further than this cannot be missed based on small increases in exam scores. The same may be said 101 of using humor (Field, 2009), guest speakers from professions of interest to students (Ruggeri, 4 PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3265v1 | CC BY 4.0 Open Access | rec: 19 Sep 2017, publ: 19 Sep 2017 102 20091) and other ‘tricks’ (Gelman & Nolan, 2002). It is unsurprising that these may offer little 103 impact when not utilized within a wider strategy but instead simply called upon for the occasional 104 change of pace. 105 The evidence ultimately indicates that we need systematically assessed approaches to teaching that 106 demonstrably and reliably reduce the legitimate impacts created by mathematical and statistical 107 anxiety. These barriers currently result in low retention of students and knowledge acquisition as 108 well as the avoidance of quantitative information in some more severe cases (Alexander & 109 Onwuegbuzie, 2007). Any new approach should extend beyond simply new forms of presenting 110 the same information for improved test performance, but instead to aim for advances in statistical 111 thinking relevant to modern influences and demands (Cumming, 2014; Gould, 2010).
Recommended publications
  • AMSTATNEWS the Membership Magazine of the American Statistical Association •
    January 2015 • Issue #451 AMSTATNEWS The Membership Magazine of the American Statistical Association • http://magazine.amstat.org AN UPDATE to the American Community Survey Program ALSO: Guidelines for Undergraduate Programs in Statistical Science Updated Meet Brian Moyer, Director of the Bureau of Economic Analysis AMSTATNEWS JANUARY 2015 • ISSUE #451 Executive Director Ron Wasserstein: [email protected] Associate Executive Director and Director of Operations Stephen Porzio: [email protected] features Director of Science Policy 3 President’s Corner Steve Pierson: [email protected] 5 Highlights of the November 2014 ASA Board of Directors Director of Education Meeting Rebecca Nichols: [email protected] 7 ASA Leaders Reminisce: Meet ASA Past President Managing Editor Megan Murphy: [email protected] Marie Davidian Production Coordinators/Graphic Designers 11 Benefits of the New All-Member Forum Sara Davidson: [email protected] Megan Ruyle: [email protected] 12 ASA, STATS.org Partner to Help Raise Media Statistical Literacy Publications Coordinator 13 White House Issues Policy Directive Bolstering Federal Val Nirala: [email protected] Statistical Agencies Advertising Manager 14 An Update to the American Community Survey Program Claudine Donovan: [email protected] 17 CHANCE Highlights: Special Issue Devoted to Women in Contributing Staff Members Statistics Jeff Myers • Amy Farris • Alison Smith 18 JQAS Highlights: Football, Golf, Soccer, Fly-Fishing Featured Amstat News welcomes news items and letters from readers on matters in December Issue of interest to the association and the profession. Address correspondence to Managing Editor, Amstat News, American Statistical Association, 732 North Washington Street, Alexandria VA 22314-1943 USA, or email amstat@ 19 NISS Meeting Addresses Transition amstat.org.
    [Show full text]
  • Developing Statistical Literacy in Mathematics Education?
    Iddo GAL, Haifa Developing statistical literacy in mathematics education? Navigating between current gaps and new needs and contents Abstract: This paper summarizes selected points raised during my plenary talk, which examined challenges facing the promotion of statistical literacy and statistical ideas within mathematics education, and pointed to some new developments related to statistical literacy. The paper focuses on one of these new developments, i.e., ideas regarding the knowledge and skills related to engaging with "civic statistics", based on work by ProCivicStat project, and on some implications. Introduction: About statistical literacy The place of statistics education within mathematics education has been problematic for many years, and continues to challenge mathematics educators and mathematicians, as well as school systems. This is despite the fact that "Data and Chance," "Statistics and Probability," or "Stochastics" are a major sub-area in the mathematics curriculum in all western countries. Within the domain of statistics education, teaching for the development of statistical literacy has a special place. Statistical literacy is a construct related to adult numeracy (Gal, 1997) and mathematical literacy, but goes beyond them. It refers to comprehension of and engagement with statistical messages that may appear in the media, at work, and other contexts. Statistical Literacy has been defined in several ways in the literature (Haack, 1979). My own definition (Gal, 2002) reads: “The motivation and ability to access, understand, interpret, critically evaluate, and if relevant express opinions, regarding statistical messages, data-related arguments, or issues involving uncertainty and risk” The definition above implies that statistical literacy is part of a larger family of "literacies" or competencies that all adults are expected to possess, including not only numeracy but also scientific literacy, financial literacy, health literacy, and more.
    [Show full text]
  • Adult Literacy Programs of the Future
    DOCUMENT RESUME ED 317 976 CS 010 024 AUTHOR Powell, William R. TITLE Adult Literacy Programs of the Future. PUB DATE May 90 NOTE 23p.; Paper presented at the Annual Meeting of the International Reading AssociatIon (35th, Atlanta, GA, May 6-11, 1990). PUB TYPE Speeches/Conference Papers (150) -- Viewpoints (120) EDRS PRICE MF01/PC01 Plus Postage. DESCRIPTORS Adult Basic Eduilation; *Adult Literacy; Educational Policy; Functiclal Literacy; *Futures (of Society); *Government Role; *Literacy; World Problems ABSTRACT The retention factor of literacy must be the target variable in any projection of literacy programs of the future. Further, the success of literacy programs of the future is contingent upon the resolution of three major problem areas:(1) the concept of literacy;(2) the programs of literacy; and (3) the politics of literacy. A concept of literacy is needed for the stabilization of what precisely constitutes literacy. A concept provides a more enduring description, definitions do riot. The central issue is: When is an individual permanently literate, now and forever? The adult literacy efforts of the past have been piece-meal, haphazard, and spasmodic at best. This is not to belittle the remarkable attempts, but only to admit the obvious. The fact that the level of basic literacy is attainable for nearly 100% of any population in any culture in any sovereign country does not speak well for the governing groups which are responsible for education. Governmental commitment, professional involvement, and "turfism" will have to change to enhance the future of adult literacy programs. (One figure is included; 18 references are attached.) (RS) *********************************************************************** Reproductions supplied by EDRS are the best that can be made from the original document.
    [Show full text]
  • Three Kinds of Statistical Literacy: What Should We Teach?
    ICOTS6, 2002: Schield THREE KINDS OF STATISTICAL LITERACY: WHAT SHOULD WE TEACH? Milo Schield Augsburg College Minneapolis USA Statistical literacy is analyzed from three different approaches: chance-based, fallacy-based and correlation-based. The three perspectives are evaluated in relation to the needs of employees, consumers, and citizens. A list of the top 35 statistically based trade books in the US is developed and used as a standard for what materials statistically literate people should be able to understand. The utility of each perspective is evaluated by reference to the best sellers within each category. Recommendations are made for what content should be included in pre-college and college statistical literacy textbooks from each kind of statistical literacy. STATISTICAL LITERACY Statistical literacy is a new term and both words (statistical and literacy) are ambiguous. In today’s society literacy means functional literacy: the ability to review, interpret, analyze and evaluate written materials (and to detect errors and flaws therein). Anyone who lacks this type of literacy is functionally illiterate as a productive worker, an informed consumer or a responsible citizen. Functional illiteracy is a modern extension of literal literacy: the ability to read and comprehend written materials. Statistics have two functions depending on whether the data is obtained from a random sample. If a statistic is not from a random sample then one can only do descriptive statistics and statistical modeling even if the data is the entire population. If a statistic is from a random sample then one can also do inferential statistics: sampling distributions, confidence intervals and hypothesis tests.
    [Show full text]
  • Virginia Mathematics Teacher
    Virginia Mathematics Teacher Volume 37, No. 2 Spring, 2011 The Five Platonic Solids A Resource Journal for Mathematics Teachers at all Levels. Virginia MatheMatics teacher Volume 37, No. 2 Spring, 2011 The VIRGINIA MATHEMATICS TABLE OF CONTENTS TEACHER (VMT) is published twice yearly by the Virginia Council of Teach- Grade Levels Titles and Authors ................................................................. Turn to Page ers of Mathematics. Non-profit organizations are granted permission to reprint articles appearing in the VMT provided that one copy of the General President’s Message ..........................................................................1 publication in which the material is reprinted is sent to the Editor and (Beth Williams) the VMT is cited as the original source. EDITORIAL STAFF General Statistical Outreach and the Census: A Summer David Albig, Editor, Learning Experience. ..........................................................................2 e-mail: [email protected] (Gail Englert) Radford University Editorial Panel General Teaching Time Savers: Reviewing Homework....................................3 Bobbye Hoffman Bartels, Christopher Newport University; (Jane M. Wilburne) David Fama, Germana Community College; Jackie Getgood, Spotsylvania County Mathematics Supervisor; Sherry Pugh, Southwest VA Governor’s School; General Enlivening School Mathematics Through the History Wendy Hageman-Smith, Longwood University; of Mathematics ...................................................................................4
    [Show full text]
  • New Tools to Improve Statistical Literacy – Developments and Projects
    New tools to improve statistical literacy – developments and projects - an ESS priority and reality Louise Corselli-Nordblad, Britta Gauckler Eurostat Paper prepared for the 16th Conference of IAOS OECD Headquarters, Paris, France, 19-21 September 2018 Session 3 E, Thursday, 20/09, 10h30: Improving statistical literacy Louise Corselli-Nordblad [email protected] European Commission-Eurostat Britta Gauckler [email protected] European Commission-Eurostat New tools to improve statistical literacy – developments and projects Prepared for the 16th Conference of the International Association of Official Statisticians (IAOS) OECD Headquarters, Paris, France, 19-21 September 2018 Note: This Paper should not be reported as representing the views of Eurostat. The views expressed are those of the authors. ABSTRACT The need for statistical organisations to invest in statistical literacy is commonly agreed and reinforced by the current concerns around "fake news". Yet, there are numerous open questions around how and what the official statistics community should best invest in this endeavour. An overarching strategy for the European Statistical System (ESS) is missing and one can question if in a fast-paced world a long-term strategy is useful to tackle the issues. As Wild puts it, the statistics education should invest in ways to "…deliver lasting benefits in a fast changing world."1 Under the ESS Vision 2020 project Digital communication, User analytics and Innovative products (DIGICOM) the ESS has started to invest in this area. Initiatives range from building new partnerships with the educational system, piloting innovative tools, such as gamification and competitions, to digital tools which explain statistics in a clear and easy way.
    [Show full text]
  • Teaching Statistics with a Critical Pedagogy
    TEACHING STATISTICS WITH A CRITICAL PEDAGOGY A Dissertation by TONI DIMELLA Submitted to the School of Graduate Studies at Appalachian State University in partial fulfillment of the requirements for the degree of DOCTOR OF EDUCATION August 2019 Educational Leadership Doctoral Program Reich College of Education TEACHING STATISTICS WITH A CRITICAL PEDAGOGY A Dissertation by TONI DIMELLA August 2019 APPROVED BY: Tracy Goodson-Epsy, Ed.D Chairperson, Dissertation Committee Lisa Poling, Ph.D Member, Dissertation Committee Tracie Salinas, Ph.D Member, Dissertation Committee Vachel Miller, Ed.D Director, Educational Leadership Doctoral Program Mike McKenzie, Ph.D. Dean, Cratis D. Williams School of Graduate Studies Copyright by Toni DiMella 2019 All Rights Reserved Abstract TEACHING STATISTICS WITH A CRITICAL PEDAGOGY Toni DiMella A.A.S., SUNY Sullivan B.A., Mount Saint Mary College M.S.Ed., Mount Saint Mary College Ed.S., Appalachian State University Ed.D., Appalachian State University Dissertation Committee Chairperson: Dr. Tracy Goodson-Epsy After President Obama shifted the country’s focus from K-12 towards higher education, post-secondary schools found themselves under significant public, financial, and political pressure. To close the achievement gap and meet new standards of accountability, higher education institutions began looking for methods to increase student access and success. With a growing emphasis on degree completion and quantitative literacy, some researchers began to explore the use of critical pedagogies to better serve a more diverse population (Ukpokodu, 2011). This quantitative study measured the effectiveness of implementing a critical statistics pedagogy in an undergraduate introductory statistics classroom and its impact on course success, persistence, and mathematical empowerment.
    [Show full text]
  • Deficits in the Statistical and Probabilistic Literacy of Citizens
    mathematics Article Deficits in the Statistical and Probabilistic Literacy of Citizens: Effects in a World in Crisis Laura Muñiz-Rodríguez 1 , Luis J. Rodríguez-Muñiz 1,* and Ángel Alsina 2 1 Department of Statistics and O.R. and Mathematics Education, Faculty of Geology, University of Oviedo, Calle Jesús Arias de Velasco, s/n, 33005 Oviedo, Asturias, Spain; [email protected] 2 Department of Subject-Specific Education, Faculty of Education, University of Girona, Plaça Sant Domènec, 9, 17004 Girona, Catalonia, Spain; [email protected] * Correspondence: [email protected] Received: 30 September 2020; Accepted: 15 October 2020; Published: 29 October 2020 Abstract: The emergency caused by coronavirus disease 2019 (COVID-19) has revealed significant deficiencies in citizens’ statistical and probabilistic knowledge and in people’s understanding of mathematical and, particularly, stochastic models, which may lead to wrong personal or institutional choices, with critical consequences for the entire population. Mathematics teachers play an essential role in ensuring citizens’ statistical and probabilistic literacy. This study aimed at analyzing the pedagogical content knowledge that teachers utilized to teach statistics and probability through considering contextualized situations. In order to accomplish this purpose, fourteen secondary mathematics teachers participated in a formative and evaluative activity that was designed using the transformational professional competence model. During each evaluative phase, a group discussion was conducted. Participants were asked to reflect on their actions when promoting statistical and probabilistic literacy by considering a range of topics (data science, didactic resources, and methodological approaches) that were addressed during the training phase. A mixed, quantitative–qualitative methodological design was used for the data collection and analysis, which involved open-ended, multiple-choice, or scale-type questions that were moderated by the Metaplan® approach and the Mentimeter® software.
    [Show full text]
  • Exploration of Problem Solving Processes of Students with Learning Disabilities
    ICOTS9 (2014) Contributed Paper Mocko & Crow EXPLORATION OF PROBLEM SOLVING PROCESSES OF STUDENTS WITH LEARNING DISABILITIES Megan Mocko and Melissa Crow Department of Statistics, University of Florida, USA [email protected], [email protected] Students with learning disabilities (LD) comprise an increasing portion of the university population. These students often face a disproportionate host of educational and attitudinal challenges, including dysgraphia, ADHD, reading comprehension issues, problems with information retention, and learned helplessness. Current instructional practices may not address obstacles faced by these students. In this study, students with LD will verbalize their thought processes and strategies as they work through a confidence interval word problem. We first identify several primary obstacles to student success. We also explore students’ response patterns and their attempts to use aids to overcome obstacles. By gaining an improved understanding of how learning disabilities affect students’ efforts toward statistical problem solving, we hope to develop more effective methods to sustain statistical literacy for their long term success. PURPOSE The percentage of students with registered learning disabilities in college increased from only 0.5% in 1983 to 2.8% in 2004 (Pryor, 2007). It seems safe to assume that more students with learning disabilities on college campuses will lead to more students with learning disabilities enrolled in introductory statistics courses. These students may experience disproportionate challenges in problem solving. In order to further explore the issues faced by these students, an exploratory investigation was conducted through clinical interviews. BACKGROUND Statistical problem solving involves a complex interplay of statistical literacy, reasoning, and thinking—three ideas which have featured prominently in statistics education research over the last two decades (c.f.
    [Show full text]
  • IASE Review 2004 3 3
    REVIEW December 2004 INTERNATIONAL ASSOCIATION FOR STATISTICAL EDUCATION http://www.stat.auckland.ac.nz/~iase/ 1. IASE Executive 2003-2005 2 2. Inside IASE Review 2004 3 3. Education Is Everybody’s Responsibility by Chris Wild 3 4. Statistics And Statistics Education In China by Yuan Wei 4 5. Memories of Lund by Anthony Harradine and Rob Gould 5 6. Overview of the 2004 IASE Roundtable: Curricular Development in Statistics 7 Education by Gail Burrill 7. Report of the “Curriculum: Content and Framing” Working Group by Andy Begg, 10 Timothy Erickson, Helen MacGillivray and Timothy Matis 8. IASE Sponsored Sessions at The Joint Statistical Meetings by Carol Joyce 13 Blumberg 9. Statistics Education at ICME-10 by Joe Wisenbaker 13 10. IASE Satellite Conferences by Brian Phillips 14 11. IASE Activities at the 55th Session of the International Statistical Institute 15 by Chris Wild 12. Getting Excited About ICOTS 7 by Carmen Batanero 17 13. Statistics Education Research Journal (SERJ) by Iddo Gal 19 14. Update on Other IASE Publications by Carol Joyce Blumberg 20 15. 2004 Update on the International Statistical Literacy Project (ISLP) 21 by Carol Joyce Blumberg 16. Meetings related to Statistics Education in 2004 22 17. National Correspondents 23 18. Becoming a Member of IASE 23 Editor: Chris Wild, Department of Statistics, The University of Auckland, Private Bag 92019, Auckland, New Zealand, Email: [email protected] IASE Review, November, 2003 ______________________________________________________________________________________________________________________ 1. IASE Executive 2003-2005 From left to right: Lisbeth Cordani, Chris Wild, Carmen Batanero, Chris Reading, Carol J. Blumberg, Larry Weldon, Gilberte Schuyten, Susan Starkings.
    [Show full text]
  • Approaches to Building Big Data Literacy
    Approaches to Building Big Data Literacy Catherine D’Ignazio Rahul Bhargava Emerson Engagement Lab MIT Center for Civic Media 160 Boylston St. (4th floor) 20 Ames St. Boston, MA 02116, USA Cambridge, MA 02142, USA [email protected] [email protected] ABSTRACT mental data [26]. And the recent Snowden Affair [2] led to Big Data projects are being rapidly embraced by organiza- widespread discussion of the perils of Big Data in regard to tions working in the social good sector. This has led to a pro- compromising privacy and surveillance [5]. liferation of new projects, with strong criticisms in response Policy-makers and researchers are working on addressing focusing on the disempowering aspects of these projects. these critiques. Argentina and the European Union, for ex- This paper identifies four main problematic aspects of Big ample, have passed "Right to be Forgotten" laws which grant Data projects in the social good sector to focus on: lack of digital users more control over the retention of their data transparency, extractive collection, technological complexity, [9]. Lawmakers in California and the UK have special pro- and control of impact. Leveraging Paulo Freire’s concept visions for minors regarding personal data [33]. Technical of "Popular Education", we identify an opportunity to work solutions are being built to provide better anonymization on these issues in empowering ways through literacy educa- and finer-grained control of personal data [18]. And visual- tion. We discuss existing definitions of data literacy and find ization projects such as Mozilla Lightbeam [3], Immersion a need to create an extended definition of Big Data literacy.
    [Show full text]
  • A Short Course for Adults
    Section on Statistical Education – JSM 2010 Numbers in Everyday Life: A Short Course for Adults Gerald J. Hahn1, Necip Doganaksoy2, Ricki Lewis3, Jane E. Oppenlander4, Josef Schmee5 1GE Global Research, (Retired) Manager-Applied Statistics 2GE Global Research, Principal Technologist-Statistician 3Geneticist and Science Writer 4Adjunct Professor, Union Graduate College 5Professor Emeritus, Union Graduate College Abstract We recently developed and gave a five-session course on Numbers in Everyday Life at the Union College Academy for Lifelong Learning. We describe how we put the course together, what we presented, and how things worked out. Copies of most of our presentation slides and other materials can be accessed via a cited Web site. Key Words: Communications, introductory statistics course, statistical literacy, statistics for consumers, teaching statistics. 1. Introduction Statistical literacy has been defined by Katherine Wallman as “the ability to understand and critically evaluate statistical results that permeate our daily lives.” On a more technical level, Schield (2010) defines “Statistical literacy is the ability to read and interpret summary statistics in the everyday media: in graphs, tables, statements, surveys and studies.” Building a statistically literate community is one of our profession’s major responsibilities and challenges, as emphasized by numerous ASA presidents, including Bob Mason, Richard Scheaffer, and Katherine Wallman. David Moore, another ASA president, distinguishes statistical literacy—“what every educated person should know about statistical thinking”—from statistical competence—“roughly the content of a first course for those who must deal with data in their work.” The need to build statistical literacy is also reflected in the ASA strategic plan, with an objective to “stimulate public awareness of the role of statistics and statisticians in issues that affect public life.” Many, including Debora J.
    [Show full text]