CYP2W1 in Colorectal Cancer – Aspects of Risk, Prognosis and Future Treatment Options

Total Page:16

File Type:pdf, Size:1020Kb

CYP2W1 in Colorectal Cancer – Aspects of Risk, Prognosis and Future Treatment Options Department of Molecular Medicine and Surgery, Division of Surgery Karolinska Institutet, Stockholm CYP2W1 in colorectal cancer – aspects of risk, prognosis and future treatment options Kristina Stenstedt Stockholm 2013 1 Kristina Stenstedt All previously published papers were reproduced with permission from the publisher. Published by Karolinska Institutet Printed by Universitetsservice AB Layout Ringvor Hägglöf ©Kristina Stenstedt 2013 ISBN: 978-91-7549-332-9 2 Live as if you were going to die tomorrow, Learn as if you were going to live forever. Mahatma Gandhi 3 Kristina Stenstedt 4 Contents ABSTRACT......................................................................................................... 7 LIST OF ABBREVIATIONS ............................................................................. 9 LIST OF PUBLICATIONS ............................................................................... 11 THESIS AT A GLANCE ................................................................................... 13 INTRODUCTION ............................................................................................ 15 Colorectal cancer – epidemiology ............................................................. 15 Staging and survival .................................................................................. 15 Treatment of colorectal cancer .................................................................. 16 Colorectal cancer risk – inherited factors ................................................. 17 High penetrance genes .................................................................. 18 Low penetrance genes.................................................................... 19 Colorectal cancer risk – environmental factors.......................................... 20 Physical activity ............................................................................ 20 Diet ................................................................................................ 21 Carcinogenic compounds in food .................................................. 22 Interactions between diet and low penetrance genes ..................... 23 Development of colorectal cancer – molecular mechanisms...................... 23 Genetics.......................................................................................... 23 Epigenetics ..................................................................................... 25 Colonic stem cells and cancer ........................................................ 26 Tumor stroma and inflammation .................................................... 29 Biology of the invasion – metastasis cascade ................................ 30 Prognostic and predictive factors ............................................................... 32 Cytochromes P450 – a family of enzymes ................................................. 35 Polymorphism in CYP genes ......................................................... 36 CYPs and cancer risk ..................................................................... 36 CYPs and prognosis........................................................................ 37 CYP2W1 .................................................................................................... 37 Regulation of the CYP2W1 transcription ...................................... 38 Polymorphism in the CYP2W1 gene .............................................. 38 Substrates to CYP2W1 ................................................................... 38 Using tumor specific CYP2W1 as a target for pro-drug activation. 39 AIMS OF THE THESIS ..................................................................................... 41 MATERIALS AND METHODS ........................................................................ 43 Patients ....................................................................................................... 43 Immunofluorescence .................................................................................. 45 Immunohistochemistry .............................................................................. 45 5 Kristina Stenstedt Polymerase chain reaction .............................................................................. 46 cDNA constructs, transfections and cell viability assay ................................. 47 CYP2W1 functional assay .............................................................................. 48 Statistical Methods........................................................................................... 48 RESULTS AND DISCUSSION .............................................................................. 49 CYP2W1 expression in primary colorectal tumors ........................................ 49 CYP2W1 expression in primary tumors and relation to prognosis................. 50 Polymorphism in the CYP2W1 gene and colorectal cancer risk..................... 53 CYP2W1 expression in colorectal metastsases............................................... 53 CONCLUSIONS ..................................................................................................... 57 FUTURE PERSPECTIVES .................................................................................... 59 POPULÄRVETENSKAPLIG SAMMANFATTNING PÅ SVENSKA.................. 61 ACKNOWLEDGEMENTS .................................................................................... 63 REFERENCES ........................................................................................................ 67 PAPERS l-lV 6 AbstrACt Colorectal cancer (CRC) is a common disease and a major cause of cancer related death globally. Prognosis is rather good in early stages but worse in cases with disseminated disease. There is a constant need of developing all treatment modalities, which also has been done over the last decades. There are needs to find predictive markers in order to assess who will and who will not benefit of chemotherapy, just as there are needs to develop drugs targeting novel pathways and proteins prevalent in primary tumors and metastases. CYP2W1 is a member of the cytochrome P450 superfamily of enzymes with unknown physiological functions but found to have the capacity to metabolize both carcinogens and various other xenobiotic substances. It is expressed in fetal rat colonic tissue and in human colorectal tumors, but not to our knowledge in any adult normal human tissue. CYP2W1 expression, both mRNA and protein, has previously been studied in a material consisting of about 50 colorectal tumor samples. We wanted to investigate the extent of CYP2W1 expression in a larger tumor material using immunohistochemistry. We found it also interesting to see if CYP2W1 expression affects prognosis. Another aim of the thesis was to assess the association between polymorphism in the CYP2W1 gene and risk to develop CRC. A last aim was to evaluate the CYP2W1 expression in metastases. For the first aim, we used three different patient cohorts, two of which were derived from a randomized Nordic trial aiming to compare no adjuvant versus adjuvant treatment in patients with stage II and III CRC. These cohorts consisted of 162 and 235 patients respectively. The third patient cohort consisted of 96 patients being resected for liver metastases from CRC. All tumor manifestations in these patients were investigated with immunohistochemistry, addressing both the first and the last aim, and the findings indicate that CYP2W1 is expressed at high levels in between 26-36% of the primary tumors. It is expressed in about one third of lymph node metastases and almost half of the liver metastases. We performed two investigations regarding CYP2W1 as a prognostic factor using the two cohorts from the Nordic study (n=162 and n=235). In the first study, high CYP2W1 expression was of independent prognostic value for poor survival together with stage. In the second study aiming to reproduce this, the result was not as clear-cut, CYP2W1 was of prognostic value only in multivariate analysis but not in univariate analysis. In the subgroup of patients with stage III CRC (n=132), CYP2W1 expression was of independent prognostic value. The third aim was addressed using a material of DNA from individuals in a large case- control study aiming to investigate various polymorphisms and their relation to CRC risk. DNA from 1785 CRC patients and 1761 control subject was analyzed regarding 7 Kristina Stenstedt three CYP2W1 variants. We also experimentally assessed enzymatic activity of the gene products of the variants studied. No difference was seen, neither in CRC risk between cases and controls, nor in enzymatic activity between the three variant proteins. In conclusion, CYP2W1 seems to be expressed in about one third of primary CRC and half of the liver metastases. The association with prognosis in CRC requires further studies to be elucidated. Genetic polymorphism in the CYP2W1 gene does not seem to have any impact on CRC risk. The tumor specific expression of a catalytic enzyme in CRC and metastases is interesting in the aspect of future targeted anti-cancer therapies. 8 List of AbbreviAtions AA Arachidonic acid AhR Aryl hydrocarbon receptor Ala Alanine APC Adenomatous polyposis coli ARNT Aryl hydrocarbon receptor nuclear translocator BMP Bone morphogenetic protein COX Cyclooxygenase CRC Colorectal cancer CRP C-reactive protein CYP Cytochrome P450 EGFR Epidermal growth factor receptor EMT Epithelial – mesenchymal transition FAP Familial adenomatous polyposis GWAS Genome-wide association studies HCA
Recommended publications
  • Identification and Developmental Expression of the Full Complement Of
    Goldstone et al. BMC Genomics 2010, 11:643 http://www.biomedcentral.com/1471-2164/11/643 RESEARCH ARTICLE Open Access Identification and developmental expression of the full complement of Cytochrome P450 genes in Zebrafish Jared V Goldstone1, Andrew G McArthur2, Akira Kubota1, Juliano Zanette1,3, Thiago Parente1,4, Maria E Jönsson1,5, David R Nelson6, John J Stegeman1* Abstract Background: Increasing use of zebrafish in drug discovery and mechanistic toxicology demands knowledge of cytochrome P450 (CYP) gene regulation and function. CYP enzymes catalyze oxidative transformation leading to activation or inactivation of many endogenous and exogenous chemicals, with consequences for normal physiology and disease processes. Many CYPs potentially have roles in developmental specification, and many chemicals that cause developmental abnormalities are substrates for CYPs. Here we identify and annotate the full suite of CYP genes in zebrafish, compare these to the human CYP gene complement, and determine the expression of CYP genes during normal development. Results: Zebrafish have a total of 94 CYP genes, distributed among 18 gene families found also in mammals. There are 32 genes in CYP families 5 to 51, most of which are direct orthologs of human CYPs that are involved in endogenous functions including synthesis or inactivation of regulatory molecules. The high degree of sequence similarity suggests conservation of enzyme activities for these CYPs, confirmed in reports for some steroidogenic enzymes (e.g. CYP19, aromatase; CYP11A, P450scc; CYP17, steroid 17a-hydroxylase), and the CYP26 retinoic acid hydroxylases. Complexity is much greater in gene families 1, 2, and 3, which include CYPs prominent in metabolism of drugs and pollutants, as well as of endogenous substrates.
    [Show full text]
  • Methylation Status of Vitamin D Receptor Gene Promoter in Adrenocortical Carcinoma
    UNIVERSITÀ DEGLI STUDI DI PADOVA DEPARTMENT OF CARDIAC, THORACIC AND VASCULAR SCIENCES Ph.D Course Medical Clinical and Experimental Sciences Curriculum Clinical Methodology, Endocrinological, Diabetological and Nephrological Sciences XXIX° SERIES METHYLATION STATUS OF VITAMIN D RECEPTOR GENE PROMOTER IN ADRENOCORTICAL CARCINOMA Coordinator: Ch.mo Prof. Annalisa Angelini Supervisor: Ch.mo Prof. Francesco Fallo Ph.D Student: Andrea Rebellato TABLE OF CONTENTS SUMMARY 3 INTRODUCTION 4 PART 1: ADRENOCORTICAL CARCINOMA 4 1.1 EPIDEMIOLOGY 4 1.2 GENETIC PREDISPOSITION 4 1.3 CLINICAL PRESENTATION 6 1.4 DIAGNOSTIC WORK-UP 7 1.4.1 Biochemistry 7 1.4.2 Imaging 9 1.5 STAGING 10 1.6 PATHOLOGY 11 1.7 MOLECULAR PATHOLOGY 14 1.7.1 DNA content 15 1.7.2 Chromosomal aberrations 15 1.7.3 Differential gene expression 16 1.7.4 DNA methylation 17 1.7.5 microRNAs 18 1.7.6 Gene mutations 19 1.8 PATHOPHYSIOLOGY OF MOLECULAR SIGNALLING 21 PATHWAYS 1.8.1 IGF-mTOR pathway 21 1.8.2 WNTsignalling pathway 22 1.8.3 Vascular endothelial growth factor 23 1.9 THERAPY 24 1.9.1 Surgery 24 1.9.2 Adjuvant Therapy 27 1.9.2.1 Mitotane 27 1.9.2.2 Cytotoxic chemotherapy 30 1.9.2.3 Targeted therapy 31 1.9.2.4 Therapy for hormone excess 31 1.9.2.5 Radiation therapy 32 1.9.2.6 Other local therapies 32 1.10 PROGNOSTIC FACTORS AND PREDICTIVE MARKERS 32 PART 2: VITAMIN D 35 2.1 VITAMIN D AND ITS BIOACTIVATION 35 2.2 THE VITAMIN D RECEPTOR 37 2.3 GENOMIC MECHANISM OF 1,25(OH)2D3-VDR COMPLEX 38 2.4 CLASSICAL ROLES OF VITAMIN D 40 2.4.1 Intestine 40 2.4.2 Kidney 41 2.4.3 Bone 41 2.5 PLEIOTROPIC
    [Show full text]
  • Cytochrome P450 Enzymes in Oxygenation of Prostaglandin Endoperoxides and Arachidonic Acid
    Comprehensive Summaries of Uppsala Dissertations from the Faculty of Pharmacy 231 _____________________________ _____________________________ Cytochrome P450 Enzymes in Oxygenation of Prostaglandin Endoperoxides and Arachidonic Acid Cloning, Expression and Catalytic Properties of CYP4F8 and CYP4F21 BY JOHAN BYLUND ACTA UNIVERSITATIS UPSALIENSIS UPPSALA 2000 Dissertation for the Degree of Doctor of Philosophy (Faculty of Pharmacy) in Pharmaceutical Pharmacology presented at Uppsala University in 2000 ABSTRACT Bylund, J. 2000. Cytochrome P450 Enzymes in Oxygenation of Prostaglandin Endoperoxides and Arachidonic Acid: Cloning, Expression and Catalytic Properties of CYP4F8 and CYP4F21. Acta Universitatis Upsaliensis. Comprehensive Summaries of Uppsala Dissertations from Faculty of Pharmacy 231 50 pp. Uppsala. ISBN 91-554-4784-8. Cytochrome P450 (P450 or CYP) is an enzyme system involved in the oxygenation of a wide range of endogenous compounds as well as foreign chemicals and drugs. This thesis describes investigations of P450-catalyzed oxygenation of prostaglandins, linoleic and arachidonic acids. The formation of bisallylic hydroxy metabolites of linoleic and arachidonic acids was studied with human recombinant P450s and with human liver microsomes. Several P450 enzymes catalyzed the formation of bisallylic hydroxy metabolites. Inhibition studies and stereochemical analysis of metabolites suggest that the enzyme CYP1A2 may contribute to the biosynthesis of bisallylic hydroxy fatty acid metabolites in adult human liver microsomes. 19R-Hydroxy-PGE and 20-hydroxy-PGE are major components of human and ovine semen, respectively. They are formed in the seminal vesicles, but the mechanism of their biosynthesis is unknown. Reverse transcription-polymerase chain reaction using degenerate primers for mammalian CYP4 family genes, revealed expression of two novel P450 genes in human and ovine seminal vesicles.
    [Show full text]
  • Synonymous Single Nucleotide Polymorphisms in Human Cytochrome
    DMD Fast Forward. Published on February 9, 2009 as doi:10.1124/dmd.108.026047 DMD #26047 TITLE PAGE: A BIOINFORMATICS APPROACH FOR THE PHENOTYPE PREDICTION OF NON- SYNONYMOUS SINGLE NUCLEOTIDE POLYMORPHISMS IN HUMAN CYTOCHROME P450S LIN-LIN WANG, YONG LI, SHU-FENG ZHOU Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, P. R. China (LL Wang & Y Li) Discipline of Chinese Medicine, School of Health Sciences, RMIT University, Bundoora, Victoria 3083, Australia (LL Wang & SF Zhou). 1 Copyright 2009 by the American Society for Pharmacology and Experimental Therapeutics. DMD #26047 RUNNING TITLE PAGE: a) Running title: Prediction of phenotype of human CYPs. b) Author for correspondence: A/Prof. Shu-Feng Zhou, MD, PhD Discipline of Chinese Medicine, School of Health Sciences, RMIT University, WHO Collaborating Center for Traditional Medicine, Bundoora, Victoria 3083, Australia. Tel: + 61 3 9925 7794; fax: +61 3 9925 7178. Email: [email protected] c) Number of text pages: 21 Number of tables: 10 Number of figures: 2 Number of references: 40 Number of words in Abstract: 249 Number of words in Introduction: 749 Number of words in Discussion: 1459 d) Non-standard abbreviations: CYP, cytochrome P450; nsSNP, non-synonymous single nucleotide polymorphism. 2 DMD #26047 ABSTRACT Non-synonymous single nucleotide polymorphisms (nsSNPs) in coding regions that can lead to amino acid changes may cause alteration of protein function and account for susceptivity to disease. Identification of deleterious nsSNPs from tolerant nsSNPs is important for characterizing the genetic basis of human disease, assessing individual susceptibility to disease, understanding the pathogenesis of disease, identifying molecular targets for drug treatment and conducting individualized pharmacotherapy.
    [Show full text]
  • A Bayesian Approach to Mediation Analysis Predicts 206 Causal Target Genes in Alzheimer’S Disease
    bioRxiv preprint first posted online Nov. 14, 2017; doi: http://dx.doi.org/10.1101/219428. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission. Title A Bayesian approach to mediation analysis predicts 206 causal target genes in Alzheimer’s disease Authors Yongjin Park+;1;2, Abhishek K Sarkar+;3, Liang He+;1;2, Jose Davila-Velderrain1;2, Philip L De Jager2;4, Manolis Kellis1;2 +: equal contribution. 1: Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA 2: Broad Institute of MIT and Harvard, Cambridge, MA, USA 3: Department of Human Genetics, University of Chicago, Chicago, IL, USA 4: Department of Neurology, Columbia University Medical Center, New York, NY, USA MK: [email protected] Abstract Characterizing the intermediate phenotypes, such as gene expression, that mediate genetic effects on complex dis- eases is a fundamental problem in human genetics. Existing methods utilize genotypic data and summary statistics to identify putative disease genes, but cannot distinguish pleiotropy from causal mediation and are limited by overly strong assumptions about the data. To overcome these limitations, we develop Causal Multivariate Mediation within Extended Linkage disequilibrium (CaMMEL), a novel Bayesian inference framework to jointly model multiple medi- ated and unmediated effects relying only on summary statistics. We show in simulation that CaMMEL accurately distinguishes between mediating and pleiotropic genes unlike existing methods. We applied CaMMEL to Alzheimer’s disease (AD) and found 206 causal genes in sub-threshold loci (p < 10−4).
    [Show full text]
  • I Copyright® Ariel R. Topletz, 2013
    Copyright® Ariel R. Topletz, 2013 i The Relative Importance of CYP26A1 and CYP26B1 in Mediating Retinoid Homeostasis: Studies on the Formation, Elimination and Biological Activity of All-trans-Retinoic Acid Metabolites Ariel R. Topletz A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Washington 2013 Reading Committee: Nina Isoherranen, Chair Jashvant D Unadkat Joanne Wang Program Authorized to Offer Degree: Department of Pharmaceutics ii University of Washington Abstract Ariel R. Topletz Chair of the Supervisory Committee: Associate Professor Nina Isoherranen Department of Pharmaceutics All-trans-retinoic acid (atRA), the active metabolite of Vitamin A (retinol), is an essential nutrient during both fetal development and adult life. The concentration of atRA within a cell is tightly regulated by the synthesis and elimination of atRA. One of the major elimination pathways for atRA is oxidation, predominantly by the cytochrome P450s CYP26A1 and CYP26B1 that efficiently hydroxylate atRA. The role of both CYP26A1 and CYP26B1 is believed to be to inactivate atRA, and both are essential for correct fetal development. It is not known whether both enzymes play crucial roles during adult life. In this work, the differences in the catalytic efficiency of CYP26A1 and CYP26B1 and the metabolites formed from atRA by CYP26A1 and CYP26B1 were explored. The subsequent metabolism and the activity of atRA metabolites were also evaluated. CYP26A1 was determined to form 4-OH-RA from atRA more efficiently (Km = 50 nM, Clint = 190 µL/min/pmoles P450) than CYP26B1 (Km = 19 nM, Clint = 43 µL/min/pmoles P450). In addition, formation of 4-OH-RA by CYP26A1 was stereoselective resulting in formation of (4S)-OH-RA whereas no significant stereoselectivity in 4-OH-RA formation by CYP26B1was observed.
    [Show full text]
  • The Transcriptomic Landscape of Prostate Cancer Development and Progression: an Integrative Analysis
    cancers Article The Transcriptomic Landscape of Prostate Cancer Development and Progression: An Integrative Analysis Jacek Marzec 1,† , Helen Ross-Adams 1,*,† , Stefano Pirrò 1 , Jun Wang 1 , Yanan Zhu 2, Xueying Mao 2, Emanuela Gadaleta 1 , Amar S. Ahmad 3, Bernard V. North 3, Solène-Florence Kammerer-Jacquet 2, Elzbieta Stankiewicz 2, Sakunthala C. Kudahetti 2, Luis Beltran 4, Guoping Ren 5, Daniel M. Berney 2,4, Yong-Jie Lu 2 and Claude Chelala 1,6,* 1 Bioinformatics Unit, Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK; [email protected] (J.M.); [email protected] (S.P.); [email protected] (J.W.); [email protected] (E.G.) 2 Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK; [email protected] (Y.Z.); [email protected] (X.M.); solenefl[email protected] (S.-F.K.-J.); [email protected] (E.S.); [email protected] (S.C.K.); [email protected] (D.M.B.); [email protected] (Y.-J.L.) 3 Centre for Cancer Prevention, Wolfson Institute of Preventive Medicine, Barts and the London School of Medicine, Queen Mary University of London, London EC1M 6BQ, UK; [email protected] (A.S.A.); [email protected] (B.V.N.) 4 Department of Pathology, Barts Health NHS, London E1 F1R, UK; [email protected] 5 Department of Pathology, The First Affiliated Hospital, Zhejiang University Medical College, Hangzhou 310058, China; [email protected] 6 Centre for Computational Biology, Life Sciences Initiative, Queen Mary University London, London EC1M 6BQ, UK * Correspondence: [email protected] (H.R.-A.); [email protected] (C.C.) † These authors contributed equally to this work.
    [Show full text]
  • Catalytic Activities of Tumor-Specific Human Cytochrome P450 CYP2W1 Toward Endogenous Substrates S
    Supplemental material to this article can be found at: http://dmd.aspetjournals.org/content/suppl/2016/03/02/dmd.116.069633.DC1 1521-009X/44/5/771–780$25.00 http://dx.doi.org/10.1124/dmd.116.069633 DRUG METABOLISM AND DISPOSITION Drug Metab Dispos 44:771–780, May 2016 Copyright ª 2016 by The American Society for Pharmacology and Experimental Therapeutics Catalytic Activities of Tumor-Specific Human Cytochrome P450 CYP2W1 Toward Endogenous Substrates s Yan Zhao, Debin Wan, Jun Yang, Bruce D. Hammock, and Paul R. Ortiz de Montellano Department of Pharmaceutical Chemistry, University of California, San Francisco (Y.Z., P.R.O.M.) and Department of Entomology and Cancer Center, University of California, Davis, CA (D.W., J.Y., B.D.H.) Received January 25, 2015; accepted February 29, 2016 ABSTRACT CYP2W1 is a recently discovered human cytochrome P450 enzyme 4-OH all-trans retinol, and it also oxidizes retinal. The enzyme much with a distinctive tumor-specific expression pattern. We show here less efficiently oxidizes 17b-estradiol to 2-hydroxy-(17b)-estradiol and that CYP2W1 exhibits tight binding affinities for retinoids, which have farnesol to a monohydroxylated product; arachidonic acid is, at best, Downloaded from low nanomolar binding constants, and much poorer binding constants a negligible substrate. These findings indicate that CYP2W1 probably in the micromolar range for four other ligands. CYP2W1 converts all- plays an important role in localized retinoid metabolism that may be trans retinoic acid (atRA) to 4-hydroxy atRA and all-trans retinol to intimately linked to its involvement in tumor development.
    [Show full text]
  • Simulation of Physicochemical and Pharmacokinetic Properties of Vitamin D3 and Its Natural Derivatives
    pharmaceuticals Article Simulation of Physicochemical and Pharmacokinetic Properties of Vitamin D3 and Its Natural Derivatives Subrata Deb * , Anthony Allen Reeves and Suki Lafortune Department of Pharmaceutical Sciences, College of Pharmacy, Larkin University, Miami, FL 33169, USA; [email protected] (A.A.R.); [email protected] (S.L.) * Correspondence: [email protected] or [email protected]; Tel.: +1-224-310-7870 or +1-305-760-7479 Received: 9 June 2020; Accepted: 20 July 2020; Published: 23 July 2020 Abstract: Vitamin D3 is an endogenous fat-soluble secosteroid, either biosynthesized in human skin or absorbed from diet and health supplements. Multiple hydroxylation reactions in several tissues including liver and small intestine produce different forms of vitamin D3. Low serum vitamin D levels is a global problem which may origin from differential absorption following supplementation. The objective of the present study was to estimate the physicochemical properties, metabolism, transport and pharmacokinetic behavior of vitamin D3 derivatives following oral ingestion. GastroPlus software, which is an in silico mechanistically-constructed simulation tool, was used to simulate the physicochemical and pharmacokinetic behavior for twelve vitamin D3 derivatives. The Absorption, Distribution, Metabolism, Excretion and Toxicity (ADMET) Predictor and PKPlus modules were employed to derive the relevant parameters from the structural features of the compounds. The majority of the vitamin D3 derivatives are lipophilic (log P values > 5) with poor water solubility which are reflected in the poor predicted bioavailability. The fraction absorbed values for the vitamin D3 derivatives were low except for calcitroic acid, 1,23S,25-trihydroxy-24-oxo-vitamin D3, and (23S,25R)-1,25-dihydroxyvitamin D3-26,23-lactone each being greater than 90% fraction absorbed.
    [Show full text]
  • A Prognostic Marker in Colon Cancer
    ANTICANCER RESEARCH 32: 3869-3874 (2012) The Expression of CYP2W1: A Prognostic Marker in Colon Cancer KRISTINA STENSTEDT1,4, MARIA HALLSTROM3, INGER JOHANSSON2, MAGNUS INGELMAN-SUNDBERG2, PETER RAGNHAMMAR3 and DAVID EDLER1,4 Departments of 1Molecular Medicine and Surgery, 2Physiology and Pharmacology, and 3Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden; 4Centre for Surgical Gastroenterology, Karolinska University Hospital, Stockholm, Sweden Abstract. Aim: The enzyme Cytochrome P450 2W1 has been shown to catalytically activate compounds to (CYP2W1) is found in fetal colon tissue and is also detected cytotoxic products, the enzyme might be used as a novel drug in colorectal cancer but not in non-transformed tissue. In a target for the treatment of colon cancer. pilot study, we reported that the immunohistochemically- detected expression of CYP2W1 might be of prognostic value P450 cytochromes (CYPs) belong to a superfamily of heme- since high expression of CYP2W1 was indicative of a worse containing enzymes which play important roles in prognosis. The aim of this study was to validate the pilot biosynthesis and metabolism of endogenous compounds, as study’s results using a larger, independent group of patients well as in the metabolism and detoxification of various with colon cancer. Materials and Methods: exogenous compounds, such as drugs, carcinogens and toxic Immunohistochemical detection of CYP2W1 in 235 environmental agents. Pro-carcinogens can also be activated malignant colon tumors of stage II and III, was carried out to carcinogens by CYPs. using a polyclonal antibody. Grading of staining was carried There are 57 CYP isoenzymes found in humans and they out by two independent readers. The highest grade that are arranged into subgroups based on their similarities in involved more than 5% of the tumor area on each slide was amino acid sequences.
    [Show full text]
  • MOL #76356 1 an Inducible Cytochrome P450 3A4-Dependent
    Molecular Pharmacology Fast Forward. Published on December 28, 2011 as DOI: 10.1124/mol.111.076356 Molecular PharmacologyThis article Fast has not Forward. been copyedited Published and formatted. on TheDecember final version 28, may 2011 differ asfrom doi:10.1124/mol.111.076356 this version. MOL #76356 An Inducible Cytochrome P450 3A4-dependent Vitamin D Catabolic Pathway Zhican Wang, Yvonne S. Lin, Xi Emily Zheng, Tauri Senn, Takanori Hashizume, Michele Scian, Leslie J. Dickmann, Sidney D. Nelson, Thomas A. Baillie, Mary F. Hebert, David Blough, Downloaded from Connie L. Davis, Kenneth E. Thummel molpharm.aspetjournals.org Departments of Pharmaceutics (Z.W, Y.S.L., X.E.Z., T.S., K.E.T.), Medicinal Chemistry (M.S., at ASPET Journals on September 24, 2021 S.D.N, T.A.B.), Pharmacy (M.F.H., D.B.), and Division of Nephrology (C.L.D.), University of Washington, Seattle, WA, USA; Pharmacokinetics Research Laboratories, Dainippon Sumitomo Pharma Co., Ltd, Japan (T.H.); Biochemistry and Biophysics Group, Department of Pharmacokinetics and Drug Metabolism, Amgen, Seattle, WA, USA (L.J.D). 1 Copyright 2011 by the American Society for Pharmacology and Experimental Therapeutics. Molecular Pharmacology Fast Forward. Published on December 28, 2011 as DOI: 10.1124/mol.111.076356 This article has not been copyedited and formatted. The final version may differ from this version. MOL #76356 Running Title Page Running title: Metabolism of 25-hydroxyvitamin D3 by CYP3A4 Corresponding author: Kenneth Thummel, Ph.D. Department of Pharmaceutics, Box 357610
    [Show full text]
  • Novel Copy-Number Variations in Pharmacogenes Contribute to Interindividual Differences in Drug Pharmacokinetics
    ORIGINAL RESEARCH ARTICLE © American College of Medical Genetics and Genomics Novel copy-number variations in pharmacogenes contribute to interindividual differences in drug pharmacokinetics María Santos, MSc1, Mikko Niemi, PhD2, Masahiro Hiratsuka, PhD3, Masaki Kumondai, BSc3, Magnus Ingelman-Sundberg, PhD4, Volker M. Lauschke, PhD4 and Cristina Rodríguez-Antona, PhD1,5 Purpose: Variability in pharmacokinetics and drug response is of the genes studied. We experimentally confirmed novel deletions shaped by single-nucleotide variants (SNVs) as well as copy- in CYP2C19, CYP4F2, and SLCO1B3 by Sanger sequencing and number variants (CNVs) in genes with importance for drug validated their allelic frequencies in selected populations. absorption, distribution, metabolism, and excretion (ADME). Conclusion: CNVs are an additional source of pharmacogenetic While SNVs have been extensively studied, a systematic assessment variability with important implications for drug response and of the CNV landscape in ADME genes is lacking. personalized therapy. This, together with the important contribu- Methods: We integrated data from 2,504 whole genomes from the tion of rare alleles to the variability of pharmacogenes, emphasizes 1000 Genomes Project and 59,898 exomes from the Exome the necessity of comprehensive next-generation sequencing–based Aggregation Consortium to identify CNVs in 208 relevant genotype identification for an accurate prediction of the genetic pharmacogenes. variability of drug pharmacokinetics. Results: We describe novel exonic deletions
    [Show full text]