Group 8A: Noble Gases

Total Page:16

File Type:pdf, Size:1020Kb

Group 8A: Noble Gases Appendix_A.fm Page 36 Monday, June 21, 2004 6:59 AM Elements Handbook Group 8A: Noble Gases Physical and Chemical Properties • All Group 8A elements are Incandescent light monatomic gases at STP. bulbs are filled with • Noble gases are colorless, argon instead of air 2 Helium | discovered in 2 odorless, and tasteless. to extend the life of He 1868 by Pierre Janssen the filament. Helium • The first compound of a 4.0026 Dominic Episcopo/ImageState noble gas, XePtF6, was 2 Neon | discovered in 1898 10 8 made in 1962. There are • In 2000, chemists in Finland Ne by Sir William Ramsay & now more than 100 known made a compound of argon, Neon Morris Travers 20.179 compounds of fluorine and HArF, that exists only at xenon. temperatures below Ϫ246ºC. 2 18 8 Argon | discovered in Ar 8 1894 by Lord Rayleigh & Argon Sir William Ramsay Melting and Boiling Points Density 39.948 0 9.73 2 10.0 36 8 Krypton | discovered in –62 C) by Sir William ؇ –70 –108 1898 18 Kr 8 –71 7.5 Krypton Ramsay & Morris Travers –153 –112 83.80 –140 5.90 –186 –157 5.0 3.75 2 Xenon | discovered in 54 8 –210 –189 18 1898 by Sir William –246 18 bp Density (g/L) 2.5 1.78 Xe 8 –269 Xenon Ramsay & Morris Travers ( Temperature –249 mp 0.90 –280 –272 0.18 131.30 0 HeNe Ar Kr Xe Rn He Ne Ar Kr Xe Rn 2 Radon | discovered in 86 8 18 1900 by Friedrich E. Dorn 32 Rn 18 Radon 8 (222) First Ionization Energy Sources Atomic Properties 2400 2372 • Helium is separated from • Noble gases have an 2080 natural gas deposits. Neon, electron configuration that 1800 2 6 2 1520 argon, krypton, and xenon ends in ns np . Helium (1s ) 1351 1170 are separated from air by is an exception. 1200 1037 fractional distillation. • Noble gases rarely form 600 • Because of its low density, compounds. When they Energy (kJ/mol) 0 helium is used in weather do, the most common HeNe Ar Kr Xe Rn balloons and airships. oxidation number is ϩ2. • In addition to “neon” • Each noble gas emits a Noble gases have the highest ioniza- lights, noble gases are used characteristic color in a tion energies because their highest in fluorescent bulbs, strobe gas discharge tube. occupied energy levels are filled. lights, and headlights. Helium Neon Argon Krypton Xenon • Liquid helium cools the e Pictures/Getty Images magnets used for magnetic resonance imaging (MRI). enn/ Time Lif R36 Elements Handbook Al F Appendix_A.fm Page 37 Monday, June 21, 2004 6:59 AM Ne Neon Lights By 1855, scientists could produce light by passing an electric current through a gas under low pressure in a sealed glass tube. Souders/CORBIS With the discovery of the noble gases, a new aul A. technology emerged. In 1910, George Claude P displayed the first neon lamp in Paris, France. Xe Xenon-Ion Engines In 1923, a car dealer from Los Angeles bought two signs that spelled out “Packard” for $24,000 (about $250,000 in today’s The signals for a television dollars). When he displayed the signs in Los Angeles, people program may bounce off a described the light as “liquid fire.” By the 1930s, businesses were communication satellite. The using neon lights to draw the attention of customers. satellite is in orbit above the equator. The position of the Although all noble gases emit visible light when their atoms are satellite may be maintained by excited, neon and argon are the gases most often used in neon a xenon-ion propulsion lights. Orange-red lights contain only neon. Other colors are system. produced by adding a bit of mercury to the noble gas. The tube is coated with a material that glows when exposed to UV light When electrons strike xenon emitted by mercury vapor. ■ atoms in a xenon-ion engine, the atoms lose electrons and form positive ions. The ions are accelerated by a charged Ar Taken For a Ride By Argon grid and shot from the engine at about 105 km/h. This Whether riding on a paved city street or on an unpaved moun- action pushes, or thrusts, tain trail, a bicyclist is likely to find rough patches. When the satellite in the opposite faced with rough terrain, the cyclist may worry about the tires, direction. With multiple but probably not about the bicycle frame. The frame is made engines facing in different of steel or aluminum alloy tubes that are joined together. directions, a satellite can be The tubes are joined together by Gas Tungsten Arc Welding moved in any direction. (GTAW). An electric arc is struck between a tungsten electrode Although a xenon-ion engine and the parts to be welded. Heat from the arc melts the ends of produces a relatively small the tubes and fuses them together. Filler may be placed between amount of thrust, it can the ends of the tubes to increase the strength of the joint or to provide thrust for months or produce a smoother joint. years. This makes xenon-ion During welding in air, there is a danger that the metal engines a good choice for tubes or electrode will oxidize. To prevent lengthy space missions. In oxidation, the area around the arc is addition, an inert gas poses filled with an inert gas, most often no hazard for the satellite or argon. Welding with argon has an the people who handle the added benefit. Because argon is propellant tanks. ■ a poor conductor of heat, the arc that forms is narrow. This narrow arc produces Did You Know... a weld that is both neat ? in appearance and When liquid helium is cooled to below mechanically strong. ■ 2 K, its viscosity drops to zero. It will escape from an unsealed container by flowing up the sides of the container. Tim McGuire/CORBIS Group 8A: Noble Gases R37.
Recommended publications
  • Liquid Helium Variable Temperature Research Dewars
    CRYO Variable Temperature Liquid Helium Research Dewars CRYO Variable Temperature Liquid Helium Research Dewars Cryo Industries Variable Temperature Liquid Helium Research Dewars (CN Series) provide soluitions for an extensive variety of low temperature optical and non-optical requirements. There are numerous designs available, including Sample in Flowing Vapor, Sample in Vacuum and Sample in Exchange Gas. Our most popular models features Sample in Flowing Vapor (dynamic exchange gas), where the sample is cooled by insertion into flowing helium gas exiting from the vaporizer (also known as the diffuser or heat exchanger). The samples are top loading and can be quickly changed while operating. The temperature of the sample can be varied from typically less than 1.4 K to room temperature. Liquid helium flows from the reservoir through the adjustable flow valve down to the vaporizer located at the bottom of the sample tube. Applying heat, vaporizes the liquid and raises the gas temperature. This gas enters the sample zone to cool the sample to your selected temperature. Pumping on the sample zone will provide temperatures below 2 K with either sample in vapor or immersed in liquid. No inefficient liquid helium reservoir pumping is required. The system uses enthalpy (heat capacity) of the helium vapor which results in very high power handling, fast temperature change, ultra stable temperatures, ease of use an much more - Super Variable Temperature. Optical ‘cold’ windows are normally epoxy sealed, strain relief mounted into indium sealed mounts or direct indium mounted. Window seals are reliable and fully guaranteed. For experiments where flowing vapor may be undesirable (such as mossbauer or infrared detectors), static exchange gas cooling and sample in vacuum inserts are available.
    [Show full text]
  • Midterm Examination #3, December 11, 2015 1. (10 Point
    NAME: NITROMETHANE CHEMISTRY 443, Fall, 2015(15F) Section Number: 10 Midterm Examination #3, December 11, 2015 Answer each question in the space provided; use back of page if extra space is needed. Answer questions so the grader can READILY understand your work; only work on the exam sheet will be considered. Write answers, where appropriate, with reasonable numbers of significant figures. You may use only the "Student Handbook," a calculator, and a straight edge. 1. (10 points) Argon is a noble gas. For all practical purposes it can be considered an ideal gas. DO NOT WRITE Calculate the change in molar entropy of argon when it is subjected to a process in which the molar IN THIS SPACE volume is tripled and the temperature is simultaneously changed from 300 K to 400 K. 1,2 _______/25 This is a straightforward application of thermodynamics: 3,4 _______/25 = = + = + 2 2 2 2 5 _______/20 Identifying ∆the derivative� and� doing1 � the� integrals � 1give� � �1 � � �1 3 3 400 6,7 _______/20 = + = 8.3144349 + 8.3144349 2 2 1 2 300 8 _______/10 where the∆ heat capacity � 1� at constant � 1volume� of a monatomic �ideal� gas is� . � � � 3 ============= = 9.13434 + 3.58786 = 12.722202 9 _______/5 ∆ (Extra credit) ============= TOTAL PTS 2. (15 points) Benzene ( • = 96.4 ) and toluene ( • = 28.9 ) form a nearly ideal solution over a wide range. For purposes of this question, you may assume that a solution of the two is ideal. (a) What is the total vapor pressure above a solution containing 5.00 moles of benzene and 3.25 moles of toluene? 5.00 3.25 = • + • = (96.4 ) + (28.9 ) 5.00 + 3.25 5.00 + 3.25 = 58.4 + 11.4 = 69.8 (b) What is mole fraction of benzene in the vapor above this solution? .
    [Show full text]
  • The Oganesson Odyssey Kit Chapman Explores the Voyage to the Discovery of Element 118, the Pioneer Chemist It Is Named After, and False Claims Made Along the Way
    in your element The oganesson odyssey Kit Chapman explores the voyage to the discovery of element 118, the pioneer chemist it is named after, and false claims made along the way. aving an element named after you Ninov had been dismissed from Berkeley for is incredibly rare. In fact, to be scientific misconduct in May5, and had filed Hhonoured in this manner during a grievance procedure6. your lifetime has only happened to Today, the discovery of the last element two scientists — Glenn Seaborg and of the periodic table as we know it is Yuri Oganessian. Yet, on meeting Oganessian undisputed, but its structure and properties it seems fitting. A colleague of his once remain a mystery. No chemistry has been told me that when he first arrived in the performed on this radioactive giant: 294Og halls of Oganessian’s programme at the has a half-life of less than a millisecond Joint Institute for Nuclear Research (JINR) before it succumbs to α -decay. in Dubna, Russia, it was unlike anything Theoretical models however suggest it he’d ever experienced. Forget the 2,000 ton may not conform to the periodic trends. As magnets, the beam lines and the brand new a noble gas, you would expect oganesson cyclotron being installed designed to hunt to have closed valence shells, ending with for elements 119 and 120, the difference a filled 7s27p6 configuration. But in 2017, a was Oganessian: “When you come to work US–New Zealand collaboration predicted for Yuri, it’s not like a lab,” he explained. that isn’t the case7.
    [Show full text]
  • Liquid Helium
    Safetygram 22 Liquid helium Liquid helium is inert, colorless, odorless, noncorrosive, extremely cold, and nonflammable. Helium will not react with other elements or compounds under ordinary conditions. Since helium is noncorrosive, special materials of construction are not required. However, materials must be suitable for use at the extremely low temperatures of liquid helium. Vessels and piping must be selected and designed to withstand the pressure and temperatures involved and comply with applicable codes for transport and use. Manufacture Most of commercial helium is recovered from natural gas through a cryogenic separation process. Normally, helium is present in less than 1% by volume in natural gas. Helium is recovered, refined, and liquefied. Liquid helium is typically shipped from production sources to storage and transfill facilities. Tankers, ranging in size from 5,000 to 11,000 gallons, contain an annular space insulated with vacuum, nitrogen shielding, and multilayer insulation. This de- sign reduces heat leak and vaporization of liquid helium during transportation. Uses The extremely low temperature of liquid helium is utilized to maintain the superconducting properties of magnets in applications such as MRI, NMR spectroscopy, and particle physics research. The main application for gas- eous helium is for inert shielding gas in metal arc and laser welding. Helium provides a protective atmosphere in the production of reactive metals, such as titanium and zirconium. Gaseous helium is used as a coolant during the draw- ing of optical fibers, as a carrier gas for chromatography, and as a leak detection gas in a variety of industries. Being both lighter than air and nonflammable, helium is used to inflate balloons and airships.
    [Show full text]
  • Helium, Refrigerated Liquid
    Helium, Refrigerated Liquid Safety Data Sheet P-4600 This SDS conforms to U.S. Code of Federal Regulations 29 CFR 1910.1200, Hazard Communication. Issue date: 01/01/1979 Revision date: 01/31/2021 Supersedes: 09/08/2020 Version: 2.0 SECTION: 1. Product and company identification 1.1. Product identifier Product form : Substance Trade name : Liquid Helium CAS-No. : 7440-59-7 Formula : He Other means of identification : Helium, Refrigerated Liquid; Helium-4; Refrigerant Gas R-704 1.2. Relevant identified uses of the substance or mixture and uses advised against Use of the substance/mixture : Industrial use; Use as directed. Diving Gas (Underwater Breathing) 1.3. Details of the supplier of the safety data sheet Linde Inc. 10 Riverview Drive Danbury, CT 06810-6268 - USA 1.4. Emergency telephone number Emergency number : Onsite Emergency: 1-800-645-4633 CHEMTREC, 24hr/day 7days/week — Within USA: 1-800-424-9300, Outside USA: 001-703-527-3887 (collect calls accepted, Contract 17729) SECTION 2: Hazard identification 2.1. Classification of the substance or mixture GHS US classification Simple asphyxiant SIAS Press. Gas (Ref. Liq.) H281 2.2. Label elements GHS US labeling Hazard pictograms (GHS US) : GHS04 Signal word (GHS US) : Warning Hazard statements (GHS US) : H281 - CONTAINS REFRIGERATED GAS; MAY CAUSE CRYOGENIC BURNS OR INJURY OSHA-H01 - MAY DISPLACE OXYGEN AND CAUSE RAPID SUFFOCATION. Precautionary statements (GHS US) : P202 - Do not handle until all safety precautions have been read and understood. P271+P403 - Use and store only outdoors or in a well-ventilated place. P282 - Wear cold insulating gloves/face shield/eye protection.
    [Show full text]
  • Visualization of Two-Fluid Flows of Superfluid Helium-4 SPECIAL FEATURE
    Visualization of two-fluid flows of superfluid helium-4 SPECIAL FEATURE Wei Guoa,b, Marco La Mantiac, Daniel P. Lathropd, and Steven W. Van Scivera,b,1 aMechanical Engineering Department, Florida State University, Tallahassee, FL 32303; bNational High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32310; cDepartment of Low Temperature Physics, Faculty of Mathematics and Physics, Charles University, 180 00 Prague, Czech Republic; and dDepartments of Physics and Geology, Institute for Research in Electronics and Applied Physics, and Institute for Physics Science and Technology, University of Maryland, College Park, MD 20742 Edited by Katepalli R. Sreenivasan, New York University, New York, NY, and approved December 13, 2013 (received for review July 17, 2013) Cryogenic flow visualization techniques have been proved in not kept pace, in part due to the extremely low temperature and recent years to be a very powerful experimental method to study low density of the fluid. A number of early efforts were devoted superfluid turbulence. Micron-sized solid particles and metastable to producing macroscopic particles for qualitative investigations helium molecules are specifically being used to investigate in (10–12) and the challenge of producing neutrally buoyant par- detail the dynamics of quantum flows. These studies belong to ticles that faithfully follow the complex flow fields has been the a well-established, interdisciplinary line of inquiry that focuses on main impediment to quantitative advancement. In addition, sev- the deeper understanding of turbulence, one of the open problem eral attempts have been made to visualize fluid dynamics in su- of modern physics, relevant to many research fields, ranging from perfluid helium with microscopic tracers, which include neutron fluid mechanics to cosmology.
    [Show full text]
  • The Noble Gases
    The Noble Gases The Noble Gases (inert gases, Group 0, Group 18 or the helium group) are notoriously unreactive elements (‘noble’ means unreactive in chemistry) and in their elemental state they exist as monoatomic gases – gases whose ‘molecules’ are single atoms of the element, since the atoms are reluctant to react with anything, including one-another. This inertness is due to the fact that they have stable outer electron shells, with stable octets of electrons (full s and p subshells) except helium, which has a stable full inner shell. The electronic configurations are: Helium (He): 1s2 Neon (Ne): 1s2 2s2 2p6 Argon (Ar): [Ne] 3s2 3p6 Krypton (Kr): [Ar] 3d10 4s2 4p6 Xenon (Xe): [Kr] 4d10 5s2 5p6 Radon (Rn): [Xe] 5d10 6s2 6p6 Nevertheless, this group does have some interesting chemistry and also exhibit interesting physical properties. Reactivity increases down the group. Often helium is included as the first member of the group. Helium (He) Helium is chemically a highly unreactive element. It only forms transient species when electric discharges are passed through a mixture of helium gas and another gaseous element. for example, passing an electric discharge through a mixture of helium and hydrogen forms the transient molecule HHe, which has a very short half-life. HHeF is metastable. Neon (Ne) Neon is chemically the most unreactive element. It forms no true compounds, and no neutral molecules. Ionic molecules are known, e.g. (NeAr)+, (NeH)+, (HeNe)+ and Ne+. Argon (Ar) The unstable argon fluorohydride, HArF, is known. Ar also forms clathrates (see krypton) with water and highly unstable ArH+ and ArF are known.
    [Show full text]
  • The Noble Gases
    INTERCHAPTER K The Noble Gases When an electric discharge is passed through a noble gas, light is emitted as electronically excited noble-gas atoms decay to lower energy levels. The tubes contain helium, neon, argon, krypton, and xenon. University Science Books, ©2011. All rights reserved. www.uscibooks.com Title General Chemistry - 4th ed Author McQuarrie/Gallogy Artist George Kelvin Figure # fig. K2 (965) Date 09/02/09 Check if revision Approved K. THE NOBLE GASES K1 2 0 Nitrogen and He Air P Mg(ClO ) NaOH 4 4 2 noble gases 4.002602 1s2 O removal H O removal CO removal 10 0 2 2 2 Ne Figure K.1 A schematic illustration of the removal of O2(g), H2O(g), and CO2(g) from air. First the oxygen is removed by allowing the air to pass over phosphorus, P (s) + 5 O (g) → P O (s). 20.1797 4 2 4 10 2s22p6 The residual air is passed through anhydrous magnesium perchlorate to remove the water vapor, Mg(ClO ) (s) + 6 H O(g) → Mg(ClO ) ∙6 H O(s), and then through sodium hydroxide to remove 18 0 4 2 2 4 2 2 the carbon dioxide, NaOH(s) + CO2(g) → NaHCO3(s). The gas that remains is primarily nitrogen Ar with about 1% noble gases. 39.948 3s23p6 36 0 The Group 18 elements—helium, K-1. The Noble Gases Were Kr neon, argon, krypton, xenon, and Not Discovered until 1893 83.798 radon—are called the noble gases 2 6 4s 4p and are noteworthy for their rela- In 1893, the English physicist Lord Rayleigh noticed 54 0 tive lack of chemical reactivity.
    [Show full text]
  • Noble Gases in the Earth and Its Atmosphere
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Missouri University of Science and Technology (Missouri S&T): Scholars' Mine Scholars' Mine Masters Theses Student Theses and Dissertations 1967 Noble gases in the earth and its atmosphere Robert Anthony Canalas Follow this and additional works at: https://scholarsmine.mst.edu/masters_theses Part of the Chemistry Commons Department: Recommended Citation Canalas, Robert Anthony, "Noble gases in the earth and its atmosphere" (1967). Masters Theses. 6875. https://scholarsmine.mst.edu/masters_theses/6875 This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the permission of the copyright holder. For more information, please contact [email protected]. NOBLE GASES IN THE EARTH AND ITS ATMOSPHERE BY ROBERT ANTHONY CANAIAS _ ,qtj6 - A 129523 THESIS submitted to the faculty of the UNIVERSITY OF MISSOURI AT ROLLA in partial fulfillment of the work required for the Degree of MASTER OF SCIENCE IN CHEMISTRY Rolla, Missouri Approved by ii ABSTRACT Abundances of noble gases extracted from Fig Tree Shale exhibit a marked deviation from the gas content of eclogitic rocks purported to be mantle material. The abundances of the heavy noble gases in shale were found to exceed the highest known meteoritic values. The abundances of the lighter noble gases were found to be comparable to the abundances of these gases in typical chondrites. Temperature gradient analyses show that excess heavy gases are released at low temperatures.
    [Show full text]
  • Argon: Systematic Review on Neuro- and Organoprotective Properties of an “Inert” Gas
    Int. J. Mol. Sci. 2014, 15, 18175-18196; doi:10.3390/ijms151018175 OPEN ACCESS International Journal of Molecular Sciences ISSN 1422-0067 www.mdpi.com/journal/ijms Review Argon: Systematic Review on Neuro- and Organoprotective Properties of an “Inert” Gas Anke Höllig 1,2, Anita Schug 1, Astrid V. Fahlenkamp 2, Rolf Rossaint 2, Mark Coburn 2,* and Argon Organo-Protective Network (AON) † 1 Department of Neurosurgery, University RWTH Aachen, 52074 Aachen, Germany; E-Mails: [email protected] (A.H.); [email protected] (A.S.) 2 Department of Anesthesiology, University RWTH Aachen, 52074 Aachen, Germany; E-Mails: [email protected] (A.V.F.); [email protected] (R.R.) † Members are listed in Appendix. * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +49-241-80-88179; Fax: +49-241-80-82406. External Editor: Katalin Prokai-Tatrai Received: 14 August 2014; in revised form: 12 September 2014 / Accepted: 23 September 2014 / Published: 10 October 2014 Abstract: Argon belongs to the group of noble gases, which are regarded as chemically inert. Astonishingly some of these gases exert biological properties and during the last decades more and more reports demonstrated neuroprotective and organoprotective effects. Recent studies predominately use in vivo or in vitro models for ischemic pathologies to investigate the effect of argon treatment. Promising data has been published concerning pathologies like cerebral ischemia, traumatic brain injury and hypoxic ischemic encephalopathy. However, models applied and administration of the therapeutic gas vary. Here we provide a systematic review to summarize the available data on argon’s neuro- and organoprotective effects and discuss its possible mechanism of action.
    [Show full text]
  • How to Fill with Liquid Helium
    How to Fill with Liquid Helium These instructions are an introduction (or a reminder) of how to transfer liquid helium from a dewar to an instrument such as a magnet or a cryostat. In many cases you will want to pre-cool with liquid nitrogen, which is much more efficient that helium for cooling from room temperature to 80 K. Specific details about the instrument are available in the appropriate instruction manuals. 1. Make sure to always wear safety glasses and gloves whenever transferring liquid helium or liquid nitrogen. Also make sure that anyone you are working with or who is in the area is wearing safety glasses and is aware of what you are doing. 2. On the dewar, open the top valve and close the pressure relief valve. 3. Slowly put the transfer tube into the dewar. Make sure the pressure gauge is firmly seated and slide the tube all the way to the bottom. 4. On the instrument, open the helium fill port and the helium exhaust port. 5. If the cryostat is warm (does not have any helium in it), you can put the transfer tube into the helium fill port at once. If you are refilling an instrument, do not put the transfer line in until liquid is coming out (otherwise you will blow out what liquid is in the instrument with high pressure gas from the dewer). Liquid is coming from the tube when you see a thick white plume of gas. 6. To force liquid through the transfer tube, you need to maintain a pressure of 3-5 psi on the dewar.
    [Show full text]
  • How Liquid Helium and Superconductivity Came to Us
    IEEE/CSC & ESAS EUROPEAN SUPERCONDUCTIVITY NEWS FORUM (ESNF), No. 16, April 2011 Heike Kamerlingh Onnes and the Road to Liquid Helium Dirk van Delft, Museum Boerhaave – Leiden University e-mail: [email protected] Abstract – I sketch here the scientific biography of Heike Kamerlingh Onnes, who in 1908 was the first to liquefy helium and in 1911 discovered superconductivity. A son of a factory owner, he grew familiar with industrial approaches, which he adopted and implemented in his scientific career. This, together with a great talent for physics, solid education in the modern sense (unifying experiment and theory) proved indispensable for his ultimate successes. Received April 11, 2011; accepted in final form April 19, 2011. Reference No. RN19, Category 11. Keywords – Heike Kamerligh Onnes, helium, liquefaction, scientific biography I. INTRODUCTION This paper is based on my talk about Heike Kamerlingh Onnes (HKO) and his cryogenic laboratory, which I gave in Leiden at the Symposium “Hundred Years of Superconductivity”, held on April 8th, 2011, the centennial anniversary of the discovery. Figure 1 is a painting of HKO from 1905, by his brother Menso, while Figure 2 shows his historically first helium liquefier, now on display in Museum Boerhaave of Leiden University. Fig. 1. Heike Kamerling Onnes (HKO), 1905 painting by his brother Menso. 1 IEEE/CSC & ESAS EUROPEAN SUPERCONDUCTIVITY NEWS FORUM (ESNF), No. 16, April 2011 Fig. 2. HKO’s historical helium liquefier (last stage), now in Museum Boerhaave, Leiden. I will address HKO’s formative years, his scientific mission, the buiding up of a cryogenic laboratory as a direct consequence of this mission, add some words about the famous Leiden school of instrument makers, the role of the Leiden physics laboratory as an international centre of low temperature research, to end with a conclusion.
    [Show full text]