HOMEWORK PROBLEMS ABOUT the CATENOID a Catenoid Is A

Total Page:16

File Type:pdf, Size:1020Kb

HOMEWORK PROBLEMS ABOUT the CATENOID a Catenoid Is A HOMEWORK PROBLEMS ABOUT THE CATENOID A catenoid is a surface of revolution obtained by rotating a catenary about the Z-axis: p Z X2 + Y 2 = a cosh a We must have a > 0. This surface can be parametrized by 2 a cosh(Z=a) cos θ 3 u = 4 a cosh(Z=a) sin θ 5 Z The catenoid has a \hole" through which the Z-axis passes. The narrowest part is called the \mouth" of the catenoid. It occurs when Z = 0 and the radius of the mouth is a. Consider two circles of the same radius R, one in the plane Z = h and one in the plane Z = −h, with centers on the Z-axis. Rescaling, we might as well assume R = 1. Think of the two circles as made of wire. Dip them in soap film. If the circles are dipped with the Z-axis horizontal, you will get two disks. But if the surfaces are dipped with the Z-axis vertical, you may, under certain conditions, get a portion of a catenoid bounded by those two circles. Here are the homework problems. 1. Calculate the first and second fundamental forms gij and bij of a catenoid. 2. Calculate directly that the mean curvature of a catenoid is zero (it is a minimal surface). 3. If you have two wire circles bounding part of a catenoid, and you pull the circles apart (i.e. increase h), eventually the soap film \pops" and you get two disks (or some soap film on the floor). Explain this by showing that there is a maximum h = hmax for which a catenoid can be bounded by those two circles. Does the mouth reach zero diameter when the film pops, or does it pop while the mouth still has a positive diameter? Can you find the numerical value of the hmax? Hint: We have a cosh(h=a) = 1. Solve this equation for h in terms of a. 4. For h smaller than hmax, show that there are TWO catenoids bounded by the two circles. The one with smaller a is called the \inner" catenoid and the other is the \outer" catenoid. 5. Calculate the Gauss curvature of a catenoid. This can be used to reason about the stability of these catenoids, but this homework assignment is long enough already, so we will stop with the computation of the curvature. 1.
Recommended publications
  • Brief Information on the Surfaces Not Included in the Basic Content of the Encyclopedia
    Brief Information on the Surfaces Not Included in the Basic Content of the Encyclopedia Brief information on some classes of the surfaces which cylinders, cones and ortoid ruled surfaces with a constant were not picked out into the special section in the encyclo- distribution parameter possess this property. Other properties pedia is presented at the part “Surfaces”, where rather known of these surfaces are considered as well. groups of the surfaces are given. It is known, that the Plücker conoid carries two-para- At this section, the less known surfaces are noted. For metrical family of ellipses. The straight lines, perpendicular some reason or other, the authors could not look through to the planes of these ellipses and passing through their some primary sources and that is why these surfaces were centers, form the right congruence which is an algebraic not included in the basic contents of the encyclopedia. In the congruence of the4th order of the 2nd class. This congru- basis contents of the book, the authors did not include the ence attracted attention of D. Palman [8] who studied its surfaces that are very interesting with mathematical point of properties. Taking into account, that on the Plücker conoid, view but having pure cognitive interest and imagined with ∞2 of conic cross-sections are disposed, O. Bottema [9] difficultly in real engineering and architectural structures. examined the congruence of the normals to the planes of Non-orientable surfaces may be represented as kinematics these conic cross-sections passed through their centers and surfaces with ruled or curvilinear generatrixes and may be prescribed a number of the properties of a congruence of given on a picture.
    [Show full text]
  • DISCRETE DIFFERENTIAL GEOMETRY: an APPLIED INTRODUCTION Keenan Crane • CMU 15-458/858 LECTURE 15: CURVATURE
    DISCRETE DIFFERENTIAL GEOMETRY: AN APPLIED INTRODUCTION Keenan Crane • CMU 15-458/858 LECTURE 15: CURVATURE DISCRETE DIFFERENTIAL GEOMETRY: AN APPLIED INTRODUCTION Keenan Crane • CMU 15-458/858 Curvature—Overview • Intuitively, describes “how much a shape bends” – Extrinsic: how quickly does the tangent plane/normal change? – Intrinsic: how much do quantities differ from flat case? N T B Curvature—Overview • Driving force behind wide variety of physical phenomena – Objects want to reduce—or restore—their curvature – Even space and time are driven by curvature… Curvature—Overview • Gives a coordinate-invariant description of shape – fundamental theorems of plane curves, space curves, surfaces, … • Amazing fact: curvature gives you information about global topology! – “local-global theorems”: turning number, Gauss-Bonnet, … Curvature—Overview • Geometric algorithms: shape analysis, local descriptors, smoothing, … • Numerical simulation: elastic rods/shells, surface tension, … • Image processing algorithms: denoising, feature/contour detection, … Thürey et al 2010 Gaser et al Kass et al 1987 Grinspun et al 2003 Curvature of Curves Review: Curvature of a Plane Curve • Informally, curvature describes “how much a curve bends” • More formally, the curvature of an arc-length parameterized plane curve can be expressed as the rate of change in the tangent Equivalently: Here the angle brackets denote the usual dot product, i.e., . Review: Curvature and Torsion of a Space Curve •For a plane curve, curvature captured the notion of “bending” •For a space curve we also have torsion, which captures “twisting” Intuition: torsion is “out of plane bending” increasing torsion Review: Fundamental Theorem of Space Curves •The fundamental theorem of space curves tells that given the curvature κ and torsion τ of an arc-length parameterized space curve, we can recover the curve (up to rigid motion) •Formally: integrate the Frenet-Serret equations; intuitively: start drawing a curve, bend & twist at prescribed rate.
    [Show full text]
  • Curvatures of Smooth and Discrete Surfaces
    Curvatures of Smooth and Discrete Surfaces John M. Sullivan The curvatures of a smooth curve or surface are local measures of its shape. Here we consider analogous quantities for discrete curves and surfaces, meaning polygonal curves and triangulated polyhedral surfaces. We find that the most useful analogs are those which preserve integral relations for curvature, like the Gauß/Bonnet theorem. For simplicity, we usually restrict our attention to curves and surfaces in euclidean three space E3, although many of the results would easily generalize to other ambient manifolds of arbitrary dimension. Most of the material here is not new; some is even quite old. Although some refer- ences are given, no attempt has been made to give a comprehensive bibliography or an accurate picture of the history of the ideas. 1. Smooth curves, Framings and Integral Curvature Relations A companion article [Sul06] investigated the class of FTC (finite total curvature) curves, which includes both smooth and polygonal curves, as a way of unifying the treatment of curvature. Here we briefly review the theory of smooth curves from the point of view we will later adopt for surfaces. The curvatures of a smooth curve γ (which we usually assume is parametrized by its arclength s) are the local properties of its shape invariant under Euclidean motions. The only first-order information is the tangent line; since all lines in space are equivalent, there are no first-order invariants. Second-order information is given by the osculating circle, and the invariant is its curvature κ = 1/r. For a plane curve given as a graph y = f(x) let us contrast the notions of curvature and second derivative.
    [Show full text]
  • Differential Geometry: Curvature and Holonomy Austin Christian
    University of Texas at Tyler Scholar Works at UT Tyler Math Theses Math Spring 5-5-2015 Differential Geometry: Curvature and Holonomy Austin Christian Follow this and additional works at: https://scholarworks.uttyler.edu/math_grad Part of the Mathematics Commons Recommended Citation Christian, Austin, "Differential Geometry: Curvature and Holonomy" (2015). Math Theses. Paper 5. http://hdl.handle.net/10950/266 This Thesis is brought to you for free and open access by the Math at Scholar Works at UT Tyler. It has been accepted for inclusion in Math Theses by an authorized administrator of Scholar Works at UT Tyler. For more information, please contact [email protected]. DIFFERENTIAL GEOMETRY: CURVATURE AND HOLONOMY by AUSTIN CHRISTIAN A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science Department of Mathematics David Milan, Ph.D., Committee Chair College of Arts and Sciences The University of Texas at Tyler May 2015 c Copyright by Austin Christian 2015 All rights reserved Acknowledgments There are a number of people that have contributed to this project, whether or not they were aware of their contribution. For taking me on as a student and learning differential geometry with me, I am deeply indebted to my advisor, David Milan. Without himself being a geometer, he has helped me to develop an invaluable intuition for the field, and the freedom he has afforded me to study things that I find interesting has given me ample room to grow. For introducing me to differential geometry in the first place, I owe a great deal of thanks to my undergraduate advisor, Robert Huff; our many fruitful conversations, mathematical and otherwise, con- tinue to affect my approach to mathematics.
    [Show full text]
  • Minimal Surfaces Saint Michael’S College
    MINIMAL SURFACES SAINT MICHAEL’S COLLEGE Maria Leuci Eric Parziale Mike Thompson Overview What is a minimal surface? Surface Area & Curvature History Mathematics Examples & Applications http://www.bugman123.com/MinimalSurfaces/Chen-Gackstatter-large.jpg What is a Minimal Surface? A surface with mean curvature of zero at all points Bounded VS Infinite A plane is the most trivial minimal http://commons.wikimedia.org/wiki/File:Costa's_Minimal_Surface.png surface Minimal Surface Area Cube side length 2 Volume enclosed= 8 Surface Area = 24 Sphere Volume enclosed = 8 r=1.24 Surface Area = 19.32 http://1.bp.blogspot.com/- fHajrxa3gE4/TdFRVtNB5XI/AAAAAAAAAAo/AAdIrxWhG7Y/s160 0/sphere+copy.jpg Curvature ~ rate of change More Curvature dT κ = ds Less Curvature History Joseph-Louis Lagrange first brought forward the idea in 1768 Monge (1776) discovered mean curvature must equal zero Leonhard Euler in 1774 and Jean Baptiste Meusiner in 1776 used Lagrange’s equation to find the first non- trivial minimal surface, the catenoid Jean Baptiste Meusiner in 1776 discovered the helicoid Later surfaces were discovered by mathematicians in the mid nineteenth century Soap Bubbles and Minimal Surfaces Principle of Least Energy A minimal surface is formed between the two boundaries. The sphere is not a minimal surface. http://arxiv.org/pdf/0711.3256.pdf Principal Curvatures Measures the amount that surfaces bend at a certain point Principal curvatures give the direction of the plane with the maximal and minimal curvatures http://upload.wikimedia.org/wi
    [Show full text]
  • Simulation of a Soap Film Catenoid
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Kanazawa University Repository for Academic Resources Simulation of A Soap Film Catenoid ! ! Pornchanit! Subvilaia,b aGraduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa 920-1192 Japan bDepartment of Mathematics, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok 10330 Thailand E-mail: [email protected] ! ! ! Abstract. There are many interesting phenomena concerning soap film. One of them is the soap film catenoid. The catenoid is the equilibrium shape of the soap film that is stretched between two circular rings. When the two rings move farther apart, the radius of the neck of the soap film will decrease until it reaches zero and the soap film is split. In our simulation, we show the evolution of the soap film when the rings move apart before the !film splits. We use the BMO algorithm for the evolution of a surface accelerated by the mean curvature. !Keywords: soap film catenoid, minimal surface, hyperbolic mean curvature flow, BMO algorithm !1. Introduction The phenomena that concern soap bubble and soap films are very interesting. For example when soap bubbles are blown with any shape of bubble blowers, the soap bubbles will be round to be a minimal surface that is the minimized surface area. One of them that we are interested in is a soap film catenoid. The catenoid is the minimal surface and the equilibrium shape of the soap film stretched between two circular rings. In the observation of the behaviour of the soap bubble catenoid [3], if two rings move farther apart, the radius of the neck of the soap film will decrease until it reaches zero.
    [Show full text]
  • Mean Curvature in Manifolds with Ricci Curvature Bounded from Below
    Comment. Math. Helv. 93 (2018), 55–69 Commentarii Mathematici Helvetici DOI 10.4171/CMH/429 © Swiss Mathematical Society Mean curvature in manifolds with Ricci curvature bounded from below Jaigyoung Choe and Ailana Fraser Abstract. Let M be a compact Riemannian manifold of nonnegative Ricci curvature and † a compact embedded 2-sided minimal hypersurface in M . It is proved that there is a dichotomy: If † does not separate M then † is totally geodesic and M † is isometric to the Riemannian n product † .a; b/, and if † separates M then the map i 1.†/ 1.M / induced by W ! inclusion is surjective. This surjectivity is also proved for a compact 2-sided hypersurface with mean curvature H .n 1/pk in a manifold of Ricci curvature RicM .n 1/k, k > 0, and for a free boundary minimal hypersurface in an n-dimensional manifold of nonnegative Ricci curvature with nonempty strictly convex boundary. As an application it is shown that a compact .n 1/-dimensional manifold N with the number of generators of 1.N / < n 1 n cannot be minimally embedded in the flat torus T . Mathematics Subject Classification (2010). 53C20, 53C42. Keywords. Ricci curvature, minimal surface, fundamental group. 1. Introduction Euclid’s fifth postulate implies that there exist two nonintersecting lines on a plane. But the same is not true on a sphere, a non-Euclidean plane. Hadamard [11] generalized this to prove that every geodesic must meet every closed geodesic on a surface of positive curvature. Note that a k-dimensional minimal submanifold of a Riemannian manifold M is a critical point of the k-dimensional area functional.
    [Show full text]
  • Bour's Theorem in 4-Dimensional Euclidean
    Bull. Korean Math. Soc. 54 (2017), No. 6, pp. 2081{2089 https://doi.org/10.4134/BKMS.b160766 pISSN: 1015-8634 / eISSN: 2234-3016 BOUR'S THEOREM IN 4-DIMENSIONAL EUCLIDEAN SPACE Doan The Hieu and Nguyen Ngoc Thang Abstract. In this paper we generalize 3-dimensional Bour's Theorem 4 to the case of 4-dimension. We proved that a helicoidal surface in R 4 is isometric to a family of surfaces of revolution in R in such a way that helices on the helicoidal surface correspond to parallel circles on the surfaces of revolution. Moreover, if the surfaces are required further to have the same Gauss map, then they are hyperplanar and minimal. Parametrizations for such minimal surfaces are given explicitly. 1. Introduction Consider the deformation determined by a family of parametric surfaces given by Xθ(u; v) = (xθ(u; v); yθ(u; v); zθ(u; v)); xθ(u; v) = cos θ sinh v sin u + sin θ cosh v cos u; yθ(u; v) = − cos θ sinh v cos u + sin θ cosh v sin u; zθ(u; v) = u cos θ + v sin θ; where −π < u ≤ π; −∞ < v < 1 and the deformation parameter −π < θ ≤ π: A direct computation shows that all surfaces Xθ are minimal, have the same first fundamental form and normal vector field. We can see that X0 is the helicoid and Xπ=2 is the catenoid. Thus, locally the helicoid and catenoid are isometric and have the same Gauss map. Moreover, helices on the helicoid correspond to parallel circles on the catenoid.
    [Show full text]
  • Examples of Constant Mean Curvature Immersions of the 3-Sphere Into
    Proc. NatL Acad. Sci. USA Vol. 79, pp. 3931-3932, June 1982 Mathematics Examples of constant mean curvature immersions of the 3-sphere into euclidean 4-space (global differential geometry of submanifolds) Wu-yi HSIANG*, ZHEN-HUAN TENG*t, AND WEN-CI YU*t *Department of Mathematics, University of California, Berkeley, California 94720; tPeking University, Peking, China; and tFudan University, China Communicated by S. S. Chern, December 14, 1981 ABSTRACT Mean curvature is one of the simplest and most is probably the only possible shape of closed constant-mean- basic of local differential geometric invariants. Therefore, closed curvature hypersurface in euclidean spaces ofarbitrary dimen- hypersurfaces of constant mean curvature in euclidean spaces of sion or, at least, that Hopf's theorem should be generalizable high dimension are basic objects of fundamental importance in to higher dimensions. global differential geometry. Before the examples of this paper, We announce here the construction of the following family the only known example was the obvious one ofthe round sphere. of examples of constant mean curvature immersions of the 3- Indeed, the theorems ofH. Hopf(for immersion ofS2 into E3) and sphere into euclidean 4-space. A. D. Alexandrov (for imbedded hypersurfaces of E") have gone MAIN THEOREM: There exist infinitely many distinct differ- a long way toward characterizing the round sphere as the only entiable immersions ofthe 3-sphere into euclidean 4-space hav- example ofa closed hypersurface ofconstant mean curvature with ing a given positive constant mean curvature. The total surface some added assumptions. Examples ofthis paper seem surprising area ofsuch examples can be as large as one wants.
    [Show full text]
  • Minimal Surfaces, a Study
    Alma Mater Studiorum · Università di Bologna SCUOLA DI SCIENZE Corso di Laurea in Matematica MINIMAL SURFACES, A STUDY Tesi di Laurea in Geometria Differenziale Relatore: Presentata da: Dott.ssa CLAUDIA MAGNAPERA ALESSIA CATTABRIGA VI Sessione Anno Accademico 2016/17 Abstract Minimal surfaces are of great interest in various fields of mathematics, and yet have lots of application in architecture and biology, for instance. It is possible to list different equivalent definitions for such surfaces, which correspond to different approaches. In the following thesis we will go through some of them, concerning: having mean cur- vature zero, being the solution of Lagrange’s partial differential equation, having the harmonicity property, being the critical points of the area functional, being locally the least-area surface with a given boundary and proving the existence of a solution of the Plateau’s problem. Le superfici minime, sono di grande interesse in vari campi della matematica, e parec- chie sono le applicazioni in architettura e in biologia, ad esempio. È possibile elencare diverse definizioni equivalenti per tali superfici, che corrispondono ad altrettanti approcci. Nella seguente tesi ne affronteremo alcuni, riguardanti: la curvatura media, l’equazione differenziale parziale di Lagrange, la proprietà di una funzione di essere armonica, i punti critici del funzionale di area, le superfici di area minima con bordo fissato e la soluzione del problema di Plateau. 2 Introduction The aim of this thesis is to go through the classical minimal surface theory, in this specific case to state six equivalent definitions of minimal surface and to prove the equiv- alence between them.
    [Show full text]
  • Basics of the Differential Geometry of Surfaces
    Chapter 20 Basics of the Differential Geometry of Surfaces 20.1 Introduction The purpose of this chapter is to introduce the reader to some elementary concepts of the differential geometry of surfaces. Our goal is rather modest: We simply want to introduce the concepts needed to understand the notion of Gaussian curvature, mean curvature, principal curvatures, and geodesic lines. Almost all of the material presented in this chapter is based on lectures given by Eugenio Calabi in an upper undergraduate differential geometry course offered in the fall of 1994. Most of the topics covered in this course have been included, except a presentation of the global Gauss–Bonnet–Hopf theorem, some material on special coordinate systems, and Hilbert’s theorem on surfaces of constant negative curvature. What is a surface? A precise answer cannot really be given without introducing the concept of a manifold. An informal answer is to say that a surface is a set of points in R3 such that for every point p on the surface there is a small (perhaps very small) neighborhood U of p that is continuously deformable into a little flat open disk. Thus, a surface should really have some topology. Also,locally,unlessthe point p is “singular,” the surface looks like a plane. Properties of surfaces can be classified into local properties and global prop- erties.Intheolderliterature,thestudyoflocalpropertieswascalled geometry in the small,andthestudyofglobalpropertieswascalledgeometry in the large.Lo- cal properties are the properties that hold in a small neighborhood of a point on a surface. Curvature is a local property. Local properties canbestudiedmoreconve- niently by assuming that the surface is parametrized locally.
    [Show full text]
  • Deformations of the Gyroid and Lidinoid Minimal Surfaces
    DEFORMATIONS OF THE GYROID AND LIDINOID MINIMAL SURFACES ADAM G. WEYHAUPT Abstract. The gyroid and Lidinoid are triply periodic minimal surfaces of genus 3 embed- ded in R3 that contain no straight lines or planar symmetry curves. They are the unique embedded members of the associate families of the Schwarz P and H surfaces. In this paper, we prove the existence of two 1-parameter families of embedded triply periodic minimal surfaces of genus 3 that contain the gyroid and a single 1-parameter family that contains the Lidinoid. We accomplish this by using the flat structures induced by the holomorphic 1 1-forms Gdh, G dh, and dh. An explicit parametrization of the gyroid using theta functions enables us to find a curve of solutions in a two-dimensional moduli space of flat structures by means of an intermediate value argument. Contents 1. Introduction 2 2. Preliminaries 3 2.1. Parametrizing minimal surfaces 3 2.2. Cone metrics 5 2.3. Conformal quotients of triply periodic minimal surfaces 5 3. Parametrization of the gyroid and description of the periods 7 3.1. The P Surface and tP deformation 7 3.2. The period problem for the P surface 11 3.3. The gyroid 14 4. Proof of main theorem 16 4.1. Sketch of the proof 16 4.2. Horizontal and vertical moduli spaces for the tG family 17 4.3. Proof of the tG family 20 5. The rG and rL families 25 5.1. Description of the Lidinoid 25 5.2. Moduli spaces for the rL family 29 5.3.
    [Show full text]