IFSA-EUSFLAT-2015 B.Wanders

Total Page:16

File Type:pdf, Size:1020Kb

IFSA-EUSFLAT-2015 B.Wanders 16th World Congress of the International Fuzzy Systems Association (IFSA) 9th Conference of the European Society for Fuzzy Logic and Technology (EUSFLAT) Revisiting the formal foundation of Probabilistic Databases Brend Wanders1 Maurice van Keulen1 1 Faculty of EEMCS, University of Twente, Enschede, The Netherlands. {b.wanders,m.vankeulen}@utwente.nl Abstract Insufficient understanding of core concepts Un- certainty in data has been the subject of research One of the core problems in soft computing is deal- in several research communities for decades. Nev- ing with uncertainty in data. In this paper, we ertheless, we believe our understanding of certain revisit the formal foundation of a class of proba- concepts is not deep enough. For example, truth bilistic databases with the purpose to (1) obtain of facts that are uncertain. Or, what are possible data model independence, (2) separate metadata worlds really? Also, many models support possible on uncertainty and probabilities from the raw data, alternatives in some way often associated with a (3) better understand aggregation, and (4) create probability. Are these probabilities truly add-ons or more opportunities for optimization. The paper are they tightly connected to the alternatives? presents the formal framework and validates data model independence by showing how to a obtain Aggregates In many data processing tasks, being probabilistic Datalog as well as a probabilistic rela- able to aggregate data in multiple ways is essential. tional algebra by applying the framework to their Computing aggregates over uncertain data is, how- non-probabilistic counterparts. We conclude with a ever, inherently exponential. There is much work on discussion on the latter three goals. approximating aggregates, often with error bounds, but this does not seem to suffice in all cases. Fur- thermore, systems offer operations on uncertain data Keywords: probabilistic databases, probabilistic as aggregates, such as EXP (expected value) in Trio Datalog, probabilistic relational algebra, formal foun- [7]; they seem different from traditional aggregates dation such as SUM, or is there a more generic concept of aggregation that encompasses all? 1. Introduction Optimization opportunities There has been some One of the core problems in soft computing is dealing work on optimization for probabilistic databases, with uncertainty in data. For example, many data for example, in the context of MayBMS/SPROUT activities such as data cleaning, coupling, fusion, [8, 9], but as we experienced in [6], where we apply mapping, transformation, information extraction, MayBMS to a bio-informatics homology use case, etc. are about dealing with the problem of semantic the research prototypes do not scale well enough uncertainty [1, 2]. In the last decade, there has been to thousands of random variables. By generaliz- much attention in the database community to scal- ing certain concepts in our formal foundation, we able manipulation of uncertain data. Probabilistic hope to create better understanding of optimization database research produced numerous uncertainty opportunities. models and research prototypes, mostly relational; see [3, Chp.3] for an extensive survey. Contributions We address the above with a new In our research we actively apply this technology formalisation of a probabilistic database and associ- for soft computing data processing tasks such as ated notions as a result of revisiting its fundaments. indeterministic deduplication [4], probabilistic XML The formalization has the following properties: data integration [5], and probabilistic integration of data about groupings [6]. Based on these experi- • Data model independent ences, we find that there are still important open • Meta-data about uncertain data loosely coupled problems in dealing with uncertain data and that the to raw data available systems are inadequate on certain aspects. • Loosely coupled probabilities We address the following four aspects. • Unified view on aggregates and probabilistic database-specific functions Data model dependence Depending on the require- We demonstrate the usefulness of the formalization ments and domain, we use different data models for creating more insight by discussing questions like such as relational, XML, and RDF. The available “What are possible worlds?”, “What is truth in an models for uncertain data are tightly connected to uncertain context?”, “What are aggregates?”, and a particular data model resulting in a non-uniform “What optimization opportunities come to light?”. dealing with uncertain data as well as replication of Furthermore, we validate the data model indepen- functionality in the various prototype systems. dence by illustrating how a probabilistic Datalog © 2015. The authors - Published by Atlantis Press 289 “Paris Hilton stayed in the Paris Hilton” 2. Formal framework phrase pos refers to 1 Paris Hilton 1,2 the person 2 Paris Hilton 1,2 the hotel The basis of this formalism is the possible world. We 3 Paris 1 the capital of France use the term possible world in the following sense: as 4 Paris 1 Paris, Ontario, Canada long as the winning number has not been drawn yet 5 Hilton 2 the hotel chain in a lottery, you do not known the winner, but you 6 Paris Hilton 6,7 the person 7 Paris Hilton 6,7 the hotel can envision a possible world for each outcome. Anal- 8 Paris 6 the capital of France ogously, one can envision multiple possible database 9 Paris 6 Paris, Ontario, Canada states depending on whether certain facts are true 10 Hilton 7 the hotel chain or not. For example in Figure 1, a possible world . (the true one) could contain annotations 1, 7, 8, and 10, but to a computer a world with annotations 2, 4, Figure 1: Example natural language sentence with 5, and 6 could very well be possible too. Note that a few candidate annotations [10]. this differs from the use of the term ‘possible world’ in logics where it means possible interpretations [12, Chp.6] or as in modal logics [13]. as well as a probabilistic relational database can be The core of this formalization is the idea that we defined using our framework. need to be able to identify the different possible worlds so we can reason about them. We do this by crafting a way to incrementally and constructively Running example We use natural language process- describe the name of a possible world. ing as a running example, the sub-task of Named Entity Extraction and Disambiguation (NEED) in 2.1. Representation particular. NEED attempts to detect named en- tities, i.e., phrases that refer to real-world ob- Our formalization begins with the notion of a jects. Natural language is ambiguous, hence the database as a possible world. A database DB ∈ P A NEED process is inherently uncertain. The ex- consists of assertions {a0, a1,..., an} with ai taken ample sentence of Figure 1 illustrates this: “Paris from A, the universe of assertions. For the pur- Hilton” may refer to a person (the American so- pose of data model independence, we abstract from cialite, television personality, model, actress, and what an assertion is: it may be a tuple in a rela- singer) or to the hotel in France. In the latter tional database, a node in an XML database, and case, the sub-phrase “Paris” refers to the capital so on. Since databases represent possible worlds, of France although there are many more places we use the symbols DB and w interchangeably. A and other entities with the name “Paris” (e.g., see probabilistic database PDB is a set of databases http://en.wikipedia.org/wiki/Paris_(disambiguation) or {DB0, DB1,..., DBn}, i.e., PDB ∈ PP A. Each dif- a gazetteer like GeoNames1). ferent database represents a possible world in the A human immediately understands all this, but probabilistic database. In other words, if an uncer- to a computer this is quite elusive. One typically tainty is not distinguishable in the database state, distinguishes different kinds of ambiguity such as i.e., if two databases are the same, then we regard [11]: (a) semantic ambiguity (to what class does this as one possible world. When we talk about an entity phrase belong, e.g., does “Paris” refer to possible worlds, we intend this to mean ‘all possi- a name or a location?), (b) structural ambiguity ble worlds contained in the probabilistic database’ (does a word belong to the entity or not, e.g., “Lake denoted with WPDB. Garda” vs. “Garda”?), and (c) reference ambiguity (to which real world entity does a phrase refer, e.g., Implicit possible worlds Viewing it the other way does “Paris” refer to the capital of France or one of around, an assertion holds in a subset of all possible the other 158 Paris instances found in GeoNames?). worlds. To describe this relationship, we need an We represent detected entities and the uncertainty identification mechanism to refer to a subset of the surrounding them as annotation candidates. Figure 1 possible worlds. For this purpose, we introduce the contains a table with a few for the example sentence. method of partitioning. A partitioning ωn splits a NEED typically is a multi-stage process where vo- database into n disjunctive parts each denoted with luminous intermediary results need to be stored and a label l of the form ω=v with v ∈ 1..n. If a world manipulated. Furthermore, the dependencies be- w is labelled with label l, we say that ‘l holds for tween the candidates should be carefully maintained. w.’ Every introduced partitioning ωn is a member of For example, “Paris Hilton” can be a person or hotel, Ω, the set of introduced partitionings. Wl denotes but not both (mutual exclusion), and “Paris” can the set of possible worlds in PDB labelled with l. only refer to a place if “Paris Hilton” is interpreted L(ωn) = {ω=v | v ∈ 1..n} is the set of labels for as hotel. We believe that a probabilistic database is partitioning ωn.
Recommended publications
  • Probabilistic Databases
    Series ISSN: 2153-5418 SUCIU • OLTEANU •RÉ •KOCH M SYNTHESIS LECTURES ON DATA MANAGEMENT &C Morgan & Claypool Publishers Series Editor: M. Tamer Özsu, University of Waterloo Probabilistic Databases Probabilistic Databases Dan Suciu, University of Washington, Dan Olteanu, University of Oxford Christopher Ré,University of Wisconsin-Madison and Christoph Koch, EPFL Probabilistic databases are databases where the value of some attributes or the presence of some records are uncertain and known only with some probability. Applications in many areas such as information extraction, RFID and scientific data management, data cleaning, data integration, and financial risk DATABASES PROBABILISTIC assessment produce large volumes of uncertain data, which are best modeled and processed by a probabilistic database. This book presents the state of the art in representation formalisms and query processing techniques for probabilistic data. It starts by discussing the basic principles for representing large probabilistic databases, by decomposing them into tuple-independent tables, block-independent-disjoint tables, or U-databases. Then it discusses two classes of techniques for query evaluation on probabilistic databases. In extensional query evaluation, the entire probabilistic inference can be pushed into the database engine and, therefore, processed as effectively as the evaluation of standard SQL queries. The relational queries that can be evaluated this way are called safe queries. In intensional query evaluation, the probabilistic Dan Suciu inference is performed over a propositional formula called lineage expression: every relational query can be evaluated this way, but the data complexity dramatically depends on the query being evaluated, and Dan Olteanu can be #P-hard. The book also discusses some advanced topics in probabilistic data management such as top-kquery processing, sequential probabilistic databases, indexing and materialized views, and Monte Carlo databases.
    [Show full text]
  • Adaptive Schema Databases ∗
    Adaptive Schema Databases ∗ William Spothb, Bahareh Sadat Arabi, Eric S. Chano, Dieter Gawlicko, Adel Ghoneimyo, Boris Glavici, Beda Hammerschmidto, Oliver Kennedyb, Seokki Leei, Zhen Hua Liuo, Xing Niui, Ying Yangb b: University at Buffalo i: Illinois Inst. Tech. o: Oracle {wmspoth|okennedy|yyang25}@buffalo.edu {barab|slee195|xniu7}@hawk.iit.edu [email protected] {eric.s.chan|dieter.gawlick|adel.ghoneimy|beda.hammerschmidt|zhen.liu}@oracle.com ABSTRACT in unstructured or semi-structured form, then an ETL (i.e., The rigid schemas of classical relational databases help users Extract, Transform, and Load) process needs to be designed in specifying queries and inform the storage organization of to translate the input data into relational form. Thus, clas- data. However, the advantages of schemas come at a high sical relational systems require a lot of upfront investment. upfront cost through schema and ETL process design. In This makes them unattractive when upfront costs cannot this work, we propose a new paradigm where the database be amortized, such as in workloads with rapidly evolving system takes a more active role in schema development and data or where individual elements of a schema are queried data integration. We refer to this approach as adaptive infrequently. Furthermore, in settings like data exploration, schema databases (ASDs). An ASD ingests semi-structured schema design simply takes too long to be practical. or unstructured data directly using a pluggable combina- Schema-on-query is an alternative approach popularized tion of extraction and data integration techniques. Over by NoSQL and Big Data systems that avoids the upfront time it discovers and adapts schemas for the ingested data investment in schema design by performing data extraction using information provided by data integration and infor- and integration at query-time.
    [Show full text]
  • Finding Interesting Itemsets Using a Probabilistic Model for Binary Databases
    Finding interesting itemsets using a probabilistic model for binary databases Tijl De Bie University of Bristol, Department of Engineering Mathematics Queen’s Building, University Walk, Bristol, BS8 1TR, UK [email protected] ABSTRACT elegance and e±ciency of the algorithms to search for fre- A good formalization of interestingness of a pattern should quent patterns. Unfortunately, the frequency of a pattern satisfy two criteria: it should conform well to intuition, and is only loosely related to interestingness. The output of fre- it should be computationally tractable to use. The focus quent pattern mining methods is usually an immense bag has long been on the latter, with the development of frequent of patterns that are not necessarily interesting, and often pattern mining methods. However, it is now recognized that highly redundant with each other. This has hampered the more appropriate measures than frequency are required. uptake of FPM and FIM in data mining practice. In this paper we report results in this direction for item- Recent research has shifted focus to the search for more set mining in binary databases. In particular, we introduce useful formalizations of interestingness that match practical a probabilistic model that can be ¯tted e±ciently to any needs more closely, while still being amenable to e±cient binary database, and that has a compact and explicit repre- algorithms. As FIM is arguably the simplest special case of sentation. We then show how this model enables the formal- frequent pattern mining, it is not surprising that most of the ization of an intuitive and tractable interestingness measure recent work has focussed on itemset patterns, see e.g.
    [Show full text]
  • Open-World Probabilistic Databases
    Open-World Probabilistic Databases Ismail˙ Ilkan˙ Ceylan and Adnan Darwiche and Guy Van den Broeck Computer Science Department University of California, Los Angeles [email protected],fdarwiche,[email protected] Abstract techniques, from part-of-speech tagging until relation ex- traction (Mintz et al. 2009). For knowledge-base comple- Large-scale probabilistic knowledge bases are becoming in- tion – the task of deriving new facts from existing knowl- creasingly important in academia and industry alike. They edge – statistical relational learning algorithms make use are constantly extended with new data, powered by modern information extraction tools that associate probabilities with of embeddings (Bordes et al. 2011; Socher et al. 2013) database tuples. In this paper, we revisit the semantics under- or probabilistic rules (Wang, Mazaitis, and Cohen 2013; lying such systems. In particular, the closed-world assump- De Raedt et al. 2015). In both settings, the output is a pre- tion of probabilistic databases, that facts not in the database dicted fact with its probability. It is therefore required to de- have probability zero, clearly conflicts with their everyday fine probabilistic semantics for knowledge bases. The classi- use. To address this discrepancy, we propose an open-world cal and most-basic model is that of tuple-independent prob- probabilistic database semantics, which relaxes the probabili- abilistic databases (PDBs) (Suciu et al. 2011), which in- ties of open facts to intervals. While still assuming a finite do- deed underlies many of these systems (Dong et al. 2014; main, this semantics can provide meaningful answers when Shin et al. 2015).
    [Show full text]
  • A Compositional Query Algebra for Second-Order Logic and Uncertain Databases
    A Compositional Query Algebra for Second-Order Logic and Uncertain Databases Christoph Koch Department of Computer Science Cornell University, Ithaca, NY, USA [email protected] ABSTRACT guages for querying possible worlds. Indeed, second-order World-set algebra is a variable-free query language for uncer- quantifiers are the essence of what-if reasoning in databases. tain databases. It constitutes the core of the query language World-set algebra seems to be a strong candidate for a core implemented in MayBMS, an uncertain database system. algebra for forming query plans and optimizing and execut- This paper shows that world-set algebra captures exactly ing them in uncertain database management systems. second-order logic over finite structures, or equivalently, the It was left open in previous work whether world-set alge- polynomial hierarchy. The proofs also imply that world- bra is closed under composition, or whether definitions are set algebra is closed under composition, a previously open adding to the expressive power of the language. Compo- problem. sitionality is a desirable and rather commonplace property of query algebras, but in the case of WSA it seems rather unlikely to hold. The reason for this is that the algebra con- 1. INTRODUCTION tains an uncertainty-introduction operation that on the level Developing suitable query languages for uncertain data- of possible worlds is nondeterministic. First materializing a bases is a substantial research challenge that is only cur- view and subsequently using it multiple times in the query is rently starting to get addressed. Conceptually, an uncertain semantically quite different from composing the query with database is a finite set of possible worlds, each one a re- the view and thus obtaining several copies of the view def- lational database.
    [Show full text]
  • Answering Queries from Statistics and Probabilistic Views∗
    Answering Queries from Statistics and Probabilistic Views∗ Nilesh Dalvi Dan Suciu University of Washington, Seattle, WA, USA 1 Introduction paper we will assume the Local As View (LAV) data integration paradigm [17, 16], which consists of defin- Systems integrating dozens of databases, in the scien- ing a global mediated schema R¯, then expressing each tific domain or in a large corporation, need to cope local source i as a view vi(R¯) over the global schema. with a wide variety of imprecisions, such as: different Users are allowed to ask queries over the global, me- representations of the same object in different sources; diated schema, q(R¯), however the data is given as in- imperfect and noisy schema alignments; contradictory stances J1; : : : ; Jm of the local data sources. In our information across sources; constraint violations; or in- model all instances are probabilistic, both the local sufficient evidence to answer a given query. If standard instances and the global instance. Statistics are given query semantics were applied to such data, all but the explicitly over the global schema R¯, and the probabil- most trivial queries will return an empty answer. ities are given explicitly over the local sources, hence We believe that probabilistic databases are the right over the views. We make the Open World Assumption paradigm to model all types of imprecisions in a uni- throughout the paper. form and principled way. A probabilistic database is a probability distribution on all instances [5, 4, 15, 1.1 Example: Using Statistics 12, 11, 8]. Their early motivation was to model im- precisions at the tuple level: tuples are not known Suppose we integrate two sources, one show- with certainty to belong to the database, or represent ing which employee works for what depart- noisy measurements, etc.
    [Show full text]
  • Uva-DARE (Digital Academic Repository)
    UvA-DARE (Digital Academic Repository) On entity resolution in probabilistic data Ayat, S.N. Publication date 2014 Document Version Final published version Link to publication Citation for published version (APA): Ayat, S. N. (2014). On entity resolution in probabilistic data. General rights It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons). Disclaimer/Complaints regulations If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible. UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl) Download date:01 Oct 2021 On Entity Resolution in Probabilistic Data Naser Ayat On Entity Resolution in Probabilistic Data Naser Ayat On Entity Resolution in Probabilistic Data Naser Ayat On Entity Resolution in Probabilistic Data Academisch Proefschrift ter verkrijging van de graad van doctor aan de Universiteit van Amsterdam op gezag van de Rector Magnificus prof.dr. D.C. van den Boom ten overstaan van een door het college voor promoties ingestelde commissie, in het openbaar te verdedigen in de Agnietenkapel op dinsdag 30 september 2014, te 12.00 uur door Seyed Naser Ayat geboren te Esfahan, Iran Promotors: prof.
    [Show full text]
  • BAYESSTORE: Managing Large, Uncertain Data Repositories with Probabilistic Graphical Models
    BAYESSTORE: Managing Large, Uncertain Data Repositories with Probabilistic Graphical Models Daisy Zhe Wang∗ , Eirinaios Michelakis∗ , Minos Garofalakisy∗ , and Joseph M. Hellerstein∗ ∗ Univ. of California, Berkeley EECS and y Yahoo! Research ABSTRACT Of course, the fundamental mathematical tools for managing un- certainty come from probability and statistics. In recent years, these Several real-world applications need to effectively manage and reason about tools have been aggressively imported into the computational do- large amounts of data that are inherently uncertain. For instance, perva- main under the rubric of Statistical Machine Learning (SML). Of sive computing applications must constantly reason about volumes of noisy special note here is the widespread use of Graphical Modeling tech- sensory readings for a variety of reasons, including motion prediction and niques, including the many variants of Bayesian Networks (BNs) human behavior modeling. Such probabilistic data analyses require so- and Markov Random Fields (MRFs) [13]. These techniques can phisticated machine-learning tools that can effectively model the complex provide robust statistical models that capture complex correlation spatio/temporal correlation patterns present in uncertain sensory data. Un- patterns among variables, while, at the same time, addressing some fortunately, to date, most existing approaches to probabilistic database sys- computational efficiency and scalability issues as well. Graphical tems have relied on somewhat simplistic models of uncertainty that can be models have been applied with great success in applications as di- easily mapped onto existing relational architectures: Probabilistic informa- verse as signal processing, information retrieval, sensornets and tion is typically associated with individual data tuples, with only limited pervasive computing, robotics, natural language processing, and or no support for effectively capturing and reasoning about complex data computer vision.
    [Show full text]
  • Brief Tutorial on Probabilistic Databases
    Brief Tutorial on Probabilistic Databases Dan Suciu University of Washington Simons 2016 1 About This Talk • Probabilistic databases – Tuple-independent – Query evaluation • Statistical relational models – Representation, learning, inference in FO – Reasoning/learning = lifted inference • Sources: – Book 2011 [S.,Olteanu,Re,Koch] – Upcoming F&T survey [van Den Broek,S] Simons 2016 2 Background: Relational databases Smoker Friend X Y X Z Database D = Alice 2009 Alice Bob Alice 2010 Alice Carol Bob 2009 Bob Carol Carol 2010 Carol Bob Query: Q(z) = ∃x (Smoker(x,’2009’)∧Friend(x,z)) Z Constraint: Q(D) = Bob Q = ∀x (Smoker(x,’2010’)⇒Friend(x,’Bob’)) Carol Q(D) = true Probabilistic Database Probabilistic database D: X y P a1 b1 p1 a1 b2 p2 a2 b2 p3 Possible worlds semantics: Σworld PD(world) = 1 X y P (Q) = Σ P (world) X Xy y D world |= Q D a1 b1 X y a1 a1b2 b1 X y a1 b2 a1 b1 X y p1p2p3 a2 a2b2 b2 a2 b2 X y a2 b2 a1 b2 a1 b1 X y (1-p1)p2p3 a1 b2 (1-p1)(1-p2)(1-p3) Outline • Model Counting • Small Dichotomy Theorem • Dichotomy Theorem • Query Compilation • Conclusions, Open Problems Simons 2016 5 Model Counting • Given propositional Boolean formula F, compute the number of models #F Example: X1 X2 X3 F F = (X1∨X2) ∧ (X2∨X3) ∧ (X3∨X1) 0 0 0 0 0 0 1 0 #F = 4 0 1 0 0 0 1 1 1 1 0 0 0 1 0 1 1 1 1 0 1 [Valiant’79] #P-hard, even for 2CNF 1 1 1 1 Probability of a Formula • Each variable X has a probability p(X); • P(F) = probability that F=true, when each X is set to true independently Example: X1 X2 X3 F F = (X1∨X2) ∧ (X2∨X3) ∧ (X3∨X1) 0 0 0 0 0 0 1 0 P(F) = (1-p1)*p2*p3 + 0 1 0 0 p1*(1-p2)*p3 + p1*p2*(1-p3) + 0 1 1 1 p1*p2*p3 1 0 0 0 1 0 1 1 n If p(X) = ½ for all X, then P(F) = #F / 2 1 1 0 1 1 1 1 1 Algorithms for Model Counting [Gomes, Sabharwal, Selman’2009] Based on full search DPLL: • Shannon expansion.
    [Show full text]
  • Efficient In-Database Analytics with Graphical Models
    Efficient In-Database Analytics with Graphical Models Daisy Zhe Wang, Yang Chen, Christan Grant and Kun Li fdaisyw,yang,cgrant,[email protected]fl.edu University of Florida, Department of Computer and Information Science and Engineering Abstract Due to recent application push, there is high demand in industry to extend database systems to perform efficient and scalable in-database analytics based on probabilistic graphical models (PGMs). We discuss issues in supporting in-database PGM methods and present techniques to achieve a deep integration of the PGM methods into the relational data model as well as the query processing and optimization engine. This is an active research area and the techniques discussed are being further developed and evaluated. 1 Introduction Graphical models, also known as probabilistic graphical models (PGMs), are a class of expressive and widely adopted machine learning models that compactly represent the joint probability distribution over a large number of interdependent random variables. They are used extensively in large-scale data analytics, including infor- mation extraction (IE), knowledge base population (KBP), speech recognition and computer vision. In the past decade, many of these applications have witnessed dramatic increase in data volume. As a result, PGM-based data analytics need to scale to terabytes of data or billions of data items. While new data-parallel and graph- parallel processing platforms such as Hadoop, Spark and GraphLab [1, 36, 3] are widely used to support scalable PGM methods, such solutions are not effective for applications with data residing in databases or with need to support online PGM-based data analytics queries. More specifically, large volumes of valuable data are likely to pour into database systems for many years to come due to the maturity of the commercial database systems with transaction support and ACID properties and due to the legal auditing and data privacy requirements in many organizations.
    [Show full text]
  • Indexing Correlated Probabilistic Databases
    Indexing Correlated Probabilistic Databases Bhargav Kanagal Amol Deshpande [email protected] [email protected] Dept. of Computer Science, University of Maryland, College Park MD 20742 ABSTRACT 1. INTRODUCTION With large amounts of correlated probabilistic data being Large amounts of correlated probabilistic data are be- generated in a wide range of application domains includ- ing generated in a variety of application domains includ- ing sensor networks, information extraction, event detection ing sensor networks [14, 21], information extraction [20, 17], etc., effectively managing and querying them has become data integration [1, 15], activity recognition [28], and RFID an important research direction. While there is an exhaus- stream analysis [29, 26]. The correlations exhibited by these tive body of literature on querying independent probabilistic data sources can range from simple mutual exclusion depen- data, supporting efficient queries over large-scale, correlated dencies, to complex dependencies typically captured using databases remains a challenge. In this paper, we develop Bayesian or Markov networks [30] or through constraints on efficient data structures and indexes for supporting infer- the possible values that the tuple attributes can take [19, 12]. ence and decision support queries over such databases. Our Although several approaches have been proposed for rep- proposed hierarchical data structure is suitable both for in- resenting complex correlations and for querying over corre- memory and disk-resident databases. We represent the cor- lated databases, the rapidly increasing scale of such databases relations in the probabilistic database using a junction tree has raised unique challenges that have not been addressed over the tuple-existence or attribute-value random variables, before.
    [Show full text]
  • Analyzing Uncertain Tabular Data
    Analyzing Uncertain Tabular Data Oliver Kennedy and Boris Glavic Abstract It is common practice to spend considerable time refining source data to address issues of data quality before beginning any data analysis. For ex- ample, an analyst might impute missing values or detect and fuse duplicate records representing the same real-world entity. However, there are many sit- uations where there are multiple possible candidate resolutions for a data quality issue, but there is not sufficient evidence for determining which of the resolutions is the most appropriate. In this case, the only way forward is to make assumptions to restrict the space of solutions and/or to heuristically choose a resolution based on characteristics that are deemed predictive of \good" resolutions. Although it is important for the analyst to understand the impact of these assumptions and heuristic choices on her results, evalu- ating this impact can be highly non-trivial and time consuming. For several decades now, the fields of probabilistic, incomplete, and fuzzy databases have developed strategies for analyzing the impact of uncertainty on the outcome of analyses. This general family of uncertainty-aware databases aims to model ambiguity in the results of analyses expressed in standard languages like SQL, SparQL, R, or Spark. An uncertainty-aware database uses descriptions of potential errors and ambiguities in source data to derive a correspond- ing description of potential errors or ambiguities in the result of an analysis accessing this source data. Depending on technique, these descriptions of uncertainty may be either quantitative (bounds, probabilities), or qualita- tive (certain outcomes, unknown values, explanations of uncertainty).
    [Show full text]