Helioseismology and Solar Abundances

Total Page:16

File Type:pdf, Size:1020Kb

Helioseismology and Solar Abundances Physics Reports 457 (2008) 217–283 www.elsevier.com/locate/physrep Helioseismology and solar abundances Sarbani Basua,∗, H.M. Antiab a Department of Astronomy, Yale University, P.O. Box 208121, New Haven, CT 06520-8101, USA b Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400 005, India Accepted 13 December 2007 Available online 23 December 2007 editor: M.P. Kamionkowski Abstract Helioseismology has allowed us to study the structure of the Sun in unprecedented detail. One of the triumphs of the theory of stellar evolution was that helioseismic studies had shown that the structure of solar models is very similar to that of the Sun. However, this agreement has been spoiled by recent revisions of the solar heavy-element abundances. Heavy-element abundances determine the opacity of the stellar material and hence, are an important input to stellar model calculations. The models with the new, low abundances do not satisfy helioseismic constraints. We review here how heavy-element abundances affect solar models, how these models are tested with helioseismology, and the impact of the new abundances on standard solar models. We also discuss the attempts made to improve the agreement of the low-abundance models with the Sun and discuss how helioseismology is being used to determine the solar heavy-element abundances. A review of current literature shows that attempts to improve agreement between solar models with low heavy-element abundances and seismic inference have been unsuccessful so far. The low-metallicity models that have the least disagreement with seismic data require changing all input physics to stellar models beyond their acceptable ranges. Seismic determinations of the solar heavy-element abundances yield results that are consistent with the older, higher values of the solar abundance, and hence, no major changes to the inputs to solar models are required to make higher-metallicity solar models consistent with the helioseismic data. c 2007 Elsevier B.V. All rights reserved. PACS: 96.60.Jw; 96.60.Ly; 96.60.Fs Keywords: Solar interior; Helioseismology; Abundances Contents 1. Introduction.......................................................................................................................................................218 2. Making solar models ..........................................................................................................................................221 2.1. Equations of stellar structure and evolution ................................................................................................221 2.2. Input microphysics..................................................................................................................................224 2.2.1. The equation of state .................................................................................................................224 ∗ Corresponding author. E-mail address: [email protected] (S. Basu). 0370-1573/$ - see front matter c 2007 Elsevier B.V. All rights reserved. doi:10.1016/j.physrep.2007.12.002 218 S. Basu, H.M. Antia / Physics Reports 457 (2008) 217–283 2.2.2. Opacity....................................................................................................................................224 2.2.3. Nuclear reaction rates................................................................................................................224 2.3. Constructing standard solar models...........................................................................................................225 2.4. Sources of uncertainty in standard solar models..........................................................................................226 3. Helioseismology ................................................................................................................................................228 3.1. The basic equations.................................................................................................................................228 3.2. Determining the solar structure from seismic data.......................................................................................231 3.3. Determining the solar helium abundance ...................................................................................................235 3.4. Determining the depth of the solar convection zone.....................................................................................236 3.5. Testing equations of state.........................................................................................................................237 4. Helioseismic results............................................................................................................................................237 4.1. Results about solar structure.....................................................................................................................237 4.2. Seismic tests of input physics ...................................................................................................................239 5. Solar abundances ...............................................................................................................................................243 6. Consequences of the new abundances ...................................................................................................................248 6.1. The base of the convection zone ...............................................................................................................250 6.2. The convection-zone helium abundance.....................................................................................................252 6.3. The radiative interior ...............................................................................................................................253 6.4. The ionization zones ...............................................................................................................................254 6.5. Some consequences for stellar models.......................................................................................................255 7. Attempts to reconcile low-Z solar models with the Sun ..........................................................................................257 7.1. Increasing input opacities.........................................................................................................................257 7.2. Increasing diffusion.................................................................................................................................259 7.3. Increasing the abundance of neon and other elements..................................................................................260 7.4. Other processes ......................................................................................................................................262 8. Seismic estimates of solar abundances ..................................................................................................................263 8.1. Results that depend on the Z-dependence of opacity ...................................................................................264 8.2. Results from the core...............................................................................................................................265 8.3. Results that depend on the Z-dependence of the equation of state .................................................................267 9. Possible causes for the mismatch between seismic and spectroscopic abundances ......................................................272 10. Concluding thoughts...........................................................................................................................................275 Acknowledgments..............................................................................................................................................276 Appendix. Supplementary data..........................................................................................................................276 References ........................................................................................................................................................276 1. Introduction Arthur Eddington began his book “The Internal Constitution of the Stars” saying that “At first sight it would seem that the deep interior of the sun and stars is less accessible to scientific investigation than any other region of the universe. Our telescopes may probe farther and farther into the depths of space; but how can we ever obtain certain knowledge of that which is hidden behind substantial barriers? What appliance can pierce through the outer layers of a star and test the conditions within?” (Eddington, 1926). Eddington went on to say that perhaps we should not aspire to directly “probe” the interiors of the Sun and stars, but instead use our knowledge of basic physics to determine what the structure of a star should be. This is still the predominant approach in studying stars today. However, we now also have the “appliance” that can pierce through the outer layers of the Sun and give us detailed knowledge of what the internal structure of the Sun is. This “appliance” is helioseismology, the study of the interior of the Sun using solar oscillations. While solar neutrinos can probe the solar core, helioseismology provides us a much more detailed and nuanced picture of the entire
Recommended publications
  • A Bayesian Estimation of the Helioseismic Solar Age (Research Note)
    A&A 580, A130 (2015) Astronomy DOI: 10.1051/0004-6361/201526419 & c ESO 2015 Astrophysics A Bayesian estimation of the helioseismic solar age (Research Note) A. Bonanno1 and H.-E. Fröhlich2 1 INAF, Osservatorio Astrofisico di Catania, via S. Sofia, 78, 95123 Catania, Italy e-mail: [email protected] 2 Leibniz Institute for Astrophysics Potsdam (AIP), An der Sternwarte 16, 14482 Potsdam, Germany Received 27 April 2015 / Accepted 9 July 2015 ABSTRACT Context. The helioseismic determination of the solar age has been a subject of several studies because it provides us with an indepen- dent estimation of the age of the solar system. Aims. We present the Bayesian estimates of the helioseismic age of the Sun, which are determined by means of calibrated solar models that employ different equations of state and nuclear reaction rates. Methods. We use 17 frequency separation ratios r02(n) = (νn,l = 0 −νn−1,l = 2)/(νn,l = 1 −νn−1,l = 1) from 8640 days of low- BiSON frequen- cies and consider three likelihood functions that depend on the handling of the errors of these r02(n) ratios. Moreover, we employ the 2010 CODATA recommended values for Newton’s constant, solar mass, and radius to calibrate a large grid of solar models spanning a conceivable range of solar ages. Results. It is shown that the most constrained posterior distribution of the solar age for models employing Irwin EOS with NACRE reaction rates leads to t = 4.587 ± 0.007 Gyr, while models employing the Irwin EOS and Adelberger, et al. (2011, Rev.
    [Show full text]
  • A Deep Learning Framework for Solar Phenomena Prediction
    FlareNet: A Deep Learning Framework for Solar Phenomena Prediction FDL 2017 Solar Storm Team: Sean McGregor1, Dattaraj Dhuri1,2, Anamaria Berea1,3, and Andrés Muñoz-Jaramillo1,4 1NASA’s 2017 Frontier Development Laboratory 2Tata Institute of Fundamental Research (TIFR), Mumbai, India 3Center for Complexity in Business, University of Maryland, College Park, MD, USA 4SouthWest Research Institute, Boulder, CO, USA Abstract Solar activity can interfere with the normal operation of GPS satellites, the power grid, and space operations, but inadequate predictive models mean we have little warning for the arrival of newly disruptive solar activity. Petabytes of data col- lected from satellite instruments aboard the Solar Dynamics Observatory (SDO) provide a high-cadence, high-resolution, and many-channeled dataset of solar phenomena. Several challenging deep learning problems may be derived from the data, including space weather forecasting (i.e., solar flares, solar energetic particles, and coronal mass ejections). This work introduces a software framework, FlareNet, for experimentation within these problems. FlareNet includes compo- nents for the downloading and management of SDO data, visualization, and rapid experimentation. The system architecture is built to enable collaboration between heliophysicists and machine learning researchers on the topics of image regres- sion, image classification, and image segmentation. We specifically highlight the problem of solar flare prediction and offer insights from preliminary experiments. 1 Introduction The violent release of solar magnetic energy – collectively referred to as “space weather" – is responsible for a variety of phenomena that can disrupt technological assets. In particular, solar flares (sudden brightenings of the solar corona) and coronal mass ejections (CMEs; the violent release of solar plasma) can disrupt long-distance communications, reduce Global Positioning System (GPS) accuracy, degrade satellites, and disrupt the power grid [5].
    [Show full text]
  • Solar and Space Physics: a Science for a Technological Society
    Solar and Space Physics: A Science for a Technological Society The 2013-2022 Decadal Survey in Solar and Space Physics Space Studies Board ∙ Division on Engineering & Physical Sciences ∙ August 2012 From the interior of the Sun, to the upper atmosphere and near-space environment of Earth, and outwards to a region far beyond Pluto where the Sun’s influence wanes, advances during the past decade in space physics and solar physics have yielded spectacular insights into the phenomena that affect our home in space. This report, the final product of a study requested by NASA and the National Science Foundation, presents a prioritized program of basic and applied research for 2013-2022 that will advance scientific understanding of the Sun, Sun- Earth connections and the origins of “space weather,” and the Sun’s interactions with other bodies in the solar system. The report includes recommendations directed for action by the study sponsors and by other federal agencies—especially NOAA, which is responsible for the day-to-day (“operational”) forecast of space weather. Recent Progress: Significant Advances significant progress in understanding the origin from the Past Decade and evolution of the solar wind; striking advances The disciplines of solar and space physics have made in understanding of both explosive solar flares remarkable advances over the last decade—many and the coronal mass ejections that drive space of which have come from the implementation weather; new imaging methods that permit direct of the program recommended in 2003 Solar observations of the space weather-driven changes and Space Physics Decadal Survey. For example, in the particles and magnetic fields surrounding enabled by advances in scientific understanding Earth; new understanding of the ways that space as well as fruitful interagency partnerships, the storms are fueled by oxygen originating from capabilities of models that predict space weather Earth’s own atmosphere; and the surprising impacts on Earth have made rapid gains over discovery that conditions in near-Earth space the past decade.
    [Show full text]
  • Exploring the Sun with ALMA
    Astronomical Science DOI: 10.18727/0722-6691/5065 Exploring the Sun with ALMA Timothy S. Bastian1 18 Space Vehicles Directorate, Air Force and to gain an understanding of how Miroslav Bárta2 Research Laboratory, Albuquerque, mechanical and radiative energy are Roman Brajša3 USA transferred through that atmospheric Bin Chen4 19 National Astronomical Observatories, layer. Bart De Pontieu5, 6 Chinese Academy of Sciences, Beijing, Dale E. Gary4 China Much of what is currently known about Gregory D. Fleishman4 the chromosphere has relied on spectro- Antonio S. Hales1, 7 scopic observations at optical and ultra- Kazumasa Iwai8 The Atacama Large Millimeter/submilli- violet wavelengths using both ground- Hugh Hudson9, 10 meter Array (ALMA) Observatory opens and space-based instrumentation. While Sujin Kim11, 12 a new window onto the Universe. The a lot of progress has been made, the Adam Kobelski13 ability to perform continuum imaging interpretation of such observations is Maria Loukitcheva4, 14, 15 and spectroscopy of astrophysical phe- complex because optical and ultraviolet Masumi Shimojo16, 17 nomena at millimetre and submillimetre lines in the chromosphere form under Ivica Skokić2, 3 wavelengths with unprecedented sen- conditions of non-local thermodynamic Sven Wedemeyer6 sitivity opens up new avenues for the equilibrium. In contrast, emission from Stephen M. White18 study of cosmology and the evolution the Sun’s chromosphere at millimetre Yihua Yan19 of galaxies, the formation of stars and and submillimetre wavelengths is more planets, and astrochemistry. ALMA also straightforward to interpret as the emis- allows fundamentally new observations sion forms under conditions of local 1 National Radio Astronomy Observatory, to be made of objects much closer to thermodynamic equilibrium and the Charlottesville, USA home, including the Sun.
    [Show full text]
  • Chapter 11 RADIO OBSERVATIONS of CORONAL MASS
    Chapter 11 RADIO OBSERVATIONS OF CORONAL MASS EJECTIONS Angelos Vourlidas Solar Physics Branch, Naval Research Laboratory, Washington, DC [email protected] Abstract In this chapter we review the status of CME observations in radio wavelengths with an emphasis on imaging. It is an area of renewed interest since 1996 due to the upgrade of the Nancay radioheliograph in conjunction with the continu- ous coverage of the solar corona from the EIT and LASCO instruments aboard SOHO. Also covered are analyses of Nobeyama Radioheliograph data and spec- tral data from a plethora of spectrographs around the world. We will point out the shortcomings of the current instrumentation and the ways that FASR could contribute. A summary of the current understanding of the physical processes that are involved in the radio emission from CMEs will be given. Keywords: Sun: Corona, Sun: Coronal Mass Ejections, Sun:Radio 1. Coronal Mass Ejections 1.1 A Brief CME Primer A Coronal Mass Ejection (CME) is, by definition, the expulsion of coronal plasma and magnetic field entrained therein into the heliosphere. The event is detected in white light by Thompson scattering of the photospheric light by the coronal electrons in the ejected mass. The first CME was discovered on December 14, 1971 by the OSO-7 orbiting coronagraph (Tousey 1973) which recorded only a small number of events (Howard et al. 1975). Skylab ob- servations quickly followed and allowed the first study of CME properties ( Gosling et al. 1974). Observations from many thousands of events have been collected since, from a series of space-borne coronagraphs: Solwind (Michels et al.
    [Show full text]
  • Solar Wind Properties and Geospace Impact of Coronal Mass Ejection-Driven Sheath Regions: Variation and Driver Dependence E
    Solar Wind Properties and Geospace Impact of Coronal Mass Ejection-Driven Sheath Regions: Variation and Driver Dependence E. K. J. Kilpua, D. Fontaine, C. Moissard, M. Ala-lahti, E. Palmerio, E. Yordanova, S. Good, M. M. H. Kalliokoski, E. Lumme, A. Osmane, et al. To cite this version: E. K. J. Kilpua, D. Fontaine, C. Moissard, M. Ala-lahti, E. Palmerio, et al.. Solar Wind Properties and Geospace Impact of Coronal Mass Ejection-Driven Sheath Regions: Variation and Driver Dependence. Space Weather: The International Journal of Research and Applications, American Geophysical Union (AGU), 2019, 17 (8), pp.1257-1280. 10.1029/2019SW002217. hal-03087107 HAL Id: hal-03087107 https://hal.archives-ouvertes.fr/hal-03087107 Submitted on 23 Dec 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. RESEARCH ARTICLE Solar Wind Properties and Geospace Impact of Coronal 10.1029/2019SW002217 Mass Ejection-Driven Sheath Regions: Variation and Key Points: Driver Dependence • Variation of interplanetary properties and geoeffectiveness of CME-driven sheaths and their dependence on the E. K. J. Kilpua1 , D. Fontaine2 , C. Moissard2 , M. Ala-Lahti1 , E. Palmerio1 , ejecta properties are determined E.
    [Show full text]
  • Helioseismology and Asteroseismology: Oscillations from Space
    Helioseismology and Asteroseismology: Oscillations from Space W. Dean Pesnell Project Scientist Solar Dynamics Observatory ¤ What are variable stars? ¤ How do we observe variable stars? ¤ Interpreting the observations ¤ Results from the Sun by MDI & HMI ¤ Other stars (Kepler, CoRoT, and MOST) What are Variable Stars? MASPG, College Park, MD, May 2014 Pulsating stars in the H-R diagram Variable stars cover the H-R diagram. Their periods tend to be short going to the lower left and long going toward the upper right. Many variable stars lie along a line where a resonant radiative instability called the κ-γ effect pumps the oscillation. κ-γ driving MASPG, College Park, MD, May 2014 Figures from J. Christensen-Dalsgaard Pulsating Star Classes Name log P ΔmV Comments (days) Cepheids 1.1 0.9 Radial, distance indicator RR Lyrae -0.3 0.9 Radial, distance indicator Type II Cepheids -1.0 0.6 Radial, confusers β Cephei -0.7 0.1 Multi-mode, opacity δ Scuti -1.1 <0.9 Nonradial DAV, ZZ Ceti -2.5 0.12 g modes, most common DBV, DOV -2.5 0.1 g modes 5 PNNV -2.5 0.05 g modes, very hot (Teff ~ 10 K) Sun -2.6 0.01% p modes See GCVS Variability Types at http://www.sai.msu.su/groups/cluster/gcvs/gcvs/iii/vartype.txt MASPG, College Park, MD, May 2014 What makes them oscillate? Many variants of the κ-γ effect, a resonant interaction of the oscillation with the luminosity of the star. The nuclear reactions in the convective core of massive stars may limit the maximum mass of a star.
    [Show full text]
  • Helioseismology, Solar Models and Solar Neutrinos
    Helioseismology, solar models and solar neutrinos G. Fiorentini Dipartimento di Fisica, Universit´adi Ferrara and INFN-Ferrara Via Paradiso 12, I-44100 Ferrara, Italy E-mail: fi[email protected] and B. Ricci Dipartimento di Fisica, Universit´adi Ferrara and INFN-Ferrara Via Paradiso 12, I-44100 Ferrara, Italy E-mail: [email protected] ABSTRACT We review recent advances concerning helioseismology, solar models and solar neutrinos. Particularly we shall address the following points: i) helioseismic tests of recent SSMs; ii)the accuracy of the helioseismic determination of the sound speed near the solar center; iii)predictions of neutrino fluxes based on helioseismology, (almost) independent of SSMs; iv)helioseismic tests of exotic solar models. 1. Introduction Without any doubt, in the last few years helioseismology has changed the per- spective of standard solar models (SSM). Before the advent of helioseismic data a solar model had essentially three free parameters (initial helium and metal abundances, Yin and Zin, and the mixing length coefficient α) and produced three numbers that could be directly measured: the present radius, luminosity and heavy element content of the photosphere. In itself this was not a big accomplishment and confidence in the SSMs actually relied on the success of the stellar evoulution theory in describing many and more complex evolutionary phases in good agreement with observational data. arXiv:astro-ph/9905341v1 26 May 1999 Helioseismology has added important data on the solar structure which provide se- vere constraint and tests of SSM calculations. For instance, helioseismology accurately determines the depth of the convective zone Rb, the sound speed at the transition radius between the convective and radiative transfer cb, as well as the photospheric helium abundance Yph.
    [Show full text]
  • Solar Modeling and Opacities
    Solar Modeling and Opacities Joyce Ann Guzik Los Alamos National Laboratory Tri-Lab Opacity Workshop August 27, 2020 LA-UR-20-26484 8/28/20 1 The solar abundance problem ® Until 2004, we thought we knew very well the interior structure of the Sun, and how it reached its present state. ® However, new analyses of the Sun’s spectral lines (Asplund et al. 2005) revise downward the mass fraction of elements heavier than H and He, particularly the abundances of O, C, and N. ® Models evolved with the new abundances give worse agreement with helioseismic constraints How can this discrepancy be resolved? Should we adopt the new abundances? 8/28/20 2 Which is the actual problem? ®The solar abundance problem ®The solar opacity problem ®The solar modelling problem 8/28/20 3 Outline for talk ® Standard solar model ® Constraints from helioseismology ® Some attempts to reconcile models and observations ® LLNL OPAL vs. LANL OPLIB opacities 8/28/20 4 Surface composition of the Sun by mass Breakdown for elements 1.8% Other Elements heavier than H and He 25% Helium All other OxygenOxygen elements 73.2% Hydrogen Carbon S Fe Ne Si Mg N 8/28/20 5 Asplund et al. (2005) abundances decreased from previous Grevesse & Sauval (1998) determination Oxygen 48% decrease 8.66±0.05 (cf GS98 8.83±0.06) Carbon 35% decrease 8.39 ± 0.05 (cf GS98 8.52±0.06) Nitrogen 27.5% decrease 7.78±0.06 (cf GS98 7.92±0.06) Neon 74% decrease 7.84 ± 0.06 (cf GS98 8.08 ± 0.06) Argon 66% decrease 6.18 ± 0.08 (cf GS98 6.40 ± 0.06) Na to Ca: lower by 0.05 to 0.1 dex (12 to 25%) Fe: 7.45 ± 0.05
    [Show full text]
  • Exploring the Sun-Heliosphere Connection Solar Orbiter
    SOLAR ORBITER Solar Orbiter Exploring the Sun-Heliosphere Connection Daniel Müller Solar Orbiter Project Scientist www.esa.int European Space Agency Solar Orbiter Exploring the Sun-Heliosphere Connection Solar Orbiter! • First medium-class mission of ESA’s Cosmic Vision 2015-2025 programme, implemented jointly with NASA! Ulysses • Dedicated payload of 10 remote-sensing and" in-situ instruments measuring from the photosphere into the solar wind Talk Outline! SOHO • Science Objectives! Solar Orbiter • Mission Overview! • Spacecraft & Payload! • Science Operations & Synergies Solar Orbiter Exploring the Sun-Heliosphere Connection High-latitude Observations Science Objectives How does the Sun create and control the Heliosphere – and why does solar Perihelion activity change with time ? Observations ! • What drives the solar wind and where does the coronal magnetic field originate? • How do solar transients drive heliospheric variability? • How do solar eruptions produce energetic particle radiation that fills the heliosphere? • How does the solar dynamo work and drive connections between the Sun and the heliosphere? Mission overview: Müller et al., Solar Physics 285 (2013) High-latitude Observations Solar Orbiter Exploring the Sun-Heliosphere Connection High-latitude Observations Mission Summary Launch: July 2017 (Backup: Oct 2018) Cruise Phase: 3 years Nominal Mission: 3.5 years Perihelion Observations Extended Mission: 2.5 years Orbit: 0.28–0.91 AU (P=150-180 days) Out-of-Ecliptic View: Multiple gravity assists with Venus to increase inclination
    [Show full text]
  • Local Helioseismology of Magnetic Activity
    Local Helioseismology of Magnetic Activity A thesis submitted for the degree of: Doctor of Philosophy by Hamed Moradi B. Sc. (Hons), B. Com Centre for Stellar and Planetary Astrophysics School of Mathematical Sciences Monash University Australia February 12, 2009 Contents 1 Introduction 1 1.1 Helioseismology............................... 2 1.2 Local Helioseismology Diagnostic Tools . .... 6 1.2.1 Time-distance Helioseismology . 6 1.2.2 Helioseismic Holography . 12 1.3 Helioseismology of Sunspots and Active Regions . ..... 14 1.3.1 Sunspots .............................. 14 1.3.2 SunspotSeismology . 17 1.3.3 ForwardModelling . 21 1.4 SolarFlareSeismology........................... 26 1.4.1 Solar Flare Observations . 27 1.4.2 Seismic Emission From Solar Flares . 33 1.5 BasisforthisResearch........................... 35 2 Modelling Magneto-Acoustic Ray Propagation In A Toy Sunspot 41 2.1 Introduction................................. 43 2.2 TheMHSSunspotModel ......................... 44 2.3 MHD Ray-Path Calculations . 48 2.4 The2DRay-PathSimulations. 51 2.4.1 TheComputationalMethod. 51 2.4.2 Travel-Time and Skip-Distance Perturbations . 53 2.4.3 Binned Travel-Time Perturbation Profiles . 58 2.4.4 Comparison With Observations . 59 2.4.5 Isolating the Thermal Component of Travel Time Perturbations 61 2.5 SummaryandDiscussion . .. .. .. .. .. .. .. 63 i CONTENTS 3 The Role of Strong Magnetic Fields on Helioseismic Wave Propaga- tion 67 3.1 Surface-FocusMeasurements . 70 3.1.1 Introduction ............................ 70 3.1.2 TheMHSSunspotModel . 71 3.1.3 MHD Wave-Field Simulations . 73 3.1.4 MHD Ray-Path Simulations . 75 3.1.5 Modelling Surface-Focus Travel-Time Inhomogeneities . 76 3.1.6 TheTravelTimeProfiles . 77 3.1.7 SummaryandDiscussion . 82 3.2 Deep-FocusMeasurements.
    [Show full text]
  • 1 Helioseismology: Observations and Space Missions
    1 Helioseismology: Observations and Space Missions P. L. Pall´e1;2, T. Appourchaux3, J. Christensen-Dalsgaard4 & R. A. Garc´ıa5 1Instituto de Astrof´ısicade Canarias, 38205 La Laguna, Tenerife, Spain 2Universidad de La Laguna, Dpto de Astrof´ısica,38206 Tenerife, Spain 3Univ. Paris-Sud, Institut d'Astrophysique Spatiale, UMR 8617, CNRS, B^atiment 121, 91405 Orsay Cedex, France 4Stellar Astrophysics Centre, Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C, Denmark 5Laboratoire AIM, CEA/DSM { CNRS - Univ. Paris Diderot { IRFU/SAp, Centre de Saclay, 91191 Gif-sur-Yvette Cedex, France 1.1 Introduction The great success of Helioseismology resides in the remarkable progress achieved in the understanding of the structure and dynamics of the solar interior. This success mainly relies on the ability to conceive, implement, and operate specific instrumen- tation with enough sensitivity to detect and measure small fluctuations (in velocity and/or intensity) on the solar surface that are well below one meter per second or a few parts per million. Furthermore the limitation of the ground observations imposing the day-night cycle (thus a periodic discontinuity in the observations) was overcome with the deployment of ground-based networks {properly placed at different longitudes all over the Earth{ allowing longer and continuous observations of the Sun and consequently increasing their duty cycles. In this chapter, we start by a short historical overview of helioseismology. Then we describe the different techniques used to do helioseismic analyses along with a description of the main instrumental concepts. We in particular focus on the arXiv:1802.00674v1 [astro-ph.SR] 2 Feb 2018 instruments that have been operating long enough to study the solar magnetic activity.
    [Show full text]