Contactless Payment Systems: Credit Cards and NFC Phones Addendum
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Fill Your Boots: Enhanced Embedded Bootloader Exploits Via Fault Injection and Binary Analysis
IACR Transactions on Cryptographic Hardware and Embedded Systems ISSN 2569-2925, Vol. 2021, No. 1, pp. 56–81. DOI:10.46586/tches.v2021.i1.56-81 Fill your Boots: Enhanced Embedded Bootloader Exploits via Fault Injection and Binary Analysis Jan Van den Herrewegen1, David Oswald1, Flavio D. Garcia1 and Qais Temeiza2 1 School of Computer Science, University of Birmingham, UK, {jxv572,d.f.oswald,f.garcia}@cs.bham.ac.uk 2 Independent Researcher, [email protected] Abstract. The bootloader of an embedded microcontroller is responsible for guarding the device’s internal (flash) memory, enforcing read/write protection mechanisms. Fault injection techniques such as voltage or clock glitching have been proven successful in bypassing such protection for specific microcontrollers, but this often requires expensive equipment and/or exhaustive search of the fault parameters. When multiple glitches are required (e.g., when countermeasures are in place) this search becomes of exponential complexity and thus infeasible. Another challenge which makes embedded bootloaders notoriously hard to analyse is their lack of debugging capabilities. This paper proposes a grey-box approach that leverages binary analysis and advanced software exploitation techniques combined with voltage glitching to develop a powerful attack methodology against embedded bootloaders. We showcase our techniques with three real-world microcontrollers as case studies: 1) we combine static and on-chip dynamic analysis to enable a Return-Oriented Programming exploit on the bootloader of the NXP LPC microcontrollers; 2) we leverage on-chip dynamic analysis on the bootloader of the popular STM8 microcontrollers to constrain the glitch parameter search, achieving the first fully-documented multi-glitch attack on a real-world target; 3) we apply symbolic execution to precisely aim voltage glitches at target instructions based on the execution path in the bootloader of the Renesas 78K0 automotive microcontroller. -
Smart Cards Contents
Smart cards Contents 1 Smart card 1 1.1 History ................................................ 1 1.1.1 Invention ........................................... 1 1.1.2 Carte Bleue .......................................... 2 1.1.3 EMV ............................................. 2 1.1.4 Development of contactless systems ............................. 2 1.2 Design ................................................ 2 1.2.1 Contact smart cards ..................................... 3 1.2.2 Contactless smart cards .................................... 3 1.2.3 Hybrids ............................................ 4 1.3 Applications .............................................. 4 1.3.1 Financial ........................................... 4 1.3.2 SIM .............................................. 4 1.3.3 Identification ......................................... 4 1.3.4 Public transit ......................................... 5 1.3.5 Computer security ...................................... 6 1.3.6 Schools ............................................ 6 1.3.7 Healthcare .......................................... 6 1.3.8 Other uses .......................................... 6 1.3.9 Multiple-use systems ..................................... 6 1.4 Security ................................................ 6 1.5 Benefits ................................................ 6 1.6 Problems ............................................... 7 1.7 See also ................................................ 7 1.8 Further reading ........................................... -
RFP for Selection of Financial Institution for Open Loop Smart Card Common City Payments System
RFP for Selection of Financial Institution for Open Loop Smart Card Common City Payments System Selection of Financial Institution for Providing Smart Card Based Eco System for Unified City Payments Including Mobility, Recreational and Amusement Areas of SMC, Municipal Bills, Utility Payments, Retail and Other Payments within Surat City PART 1 – INSTRUCTIONS TO BIDDERS SECTION AND DRAFT LICENSE AGREEMENT Invited by Surat Smart City Development Limited 115, Smart City Cell, Surat Municipal Corporation, Muglisara, Main Road, Surat – 395003, Gujarat RFP No.: SSCDL-CityPaymentCard-RFP-01-2016 Last date (deadline) for online Price Bid Submission: 15.12.2016 Last date (deadline) for Technical Bid Submission: 19.12.2016 DISCLAIMER This RFP is being issued by the Surat Smart City Development Limited (hereunder called “Authority”/“SSCDL”) for inviting tenders to shortlist Financial Institutions for providing smart card based eco system for unified city payments including mobility, recreational and amusement areas of SMC, municipal bills, utility payments, retail and other payments within Surat City. It is hereby clarified that this RFP is not an agreement and is not an offer or invitation by Authority to any party hereunder. The purpose of this RFP is to provide the Bidder(s) with information to assist in the formulation of their proposal submission. This RFP document does not purport to contain all the information Bidders may require. This RFP document may not be appropriate for all persons, and it is not possible for Authority to consider particular needs of each Bidder. Each Bidder should conduct its own investigation and analysis, and should check the accuracy, reliability and completeness of information in this RFP document and obtain independent advice from appropriate sources. -
Axis Bank in Association with BMTC Launches India's First Open Loop EMV Contactless Smart Card for Transit in Bengaluru
Axis Bank in association with BMTC launches India’s first open loop EMV contactless smart card for transit in Bengaluru India’s first Open loop – single wallet EMV Contactless Transit Card with the objective to create a Scalable, Interoperable ecosystem for convergence of Transit & Retail Payments. Prepaid Transit Card that allows cashless commuting and enhances shopping experience Bengaluru June 14, 2016: Axis Bank, India’s third largest private sector bank has associated with Bengaluru Metropolitan Transport Corporation (BMTC) to launch ‘Axis Bank BMTC Smart card’, India’s first ever open loop EMV contactless smart card that would make travel by bus, a convenient and hassle free experience for the daily commuters in Bengaluru. This initiative is in support Ministry of Urban Development’s vision to address the need of Common Mobility Card. Axis Bank BMTC Smart Card is India’s first prepaid transit card offering integrated single wallet that supports both EMV wallet and transit functions. The card offers integrated services to the commuters by offering them cashless bus travel; and also offers shopping experience at about 1.2 Mn merchant outlets across the country, and therefore, no hassle of carrying multiple cards. Axis Bank has partnered with National Payments Corporation of India (NPCI) for this project for developing the transit EMV contactless specification on interoperable open standards. These specifications can be used by any other transit operator (Metro/Cabs/Auto) by incorporating these standards with their existing fare collection systems. This will make it more convenient for the commuters, as it would allow them to use the same card for purchasing tickets/passes & for all other daily purchase transactions The Smart Card will be issued and loaded at BMTC issuance counters such as pass counters, and Traffic and Transit Management Centres (TTMC) and various other touch points across Bengaluru For balances below Rs 10,000/-, cards would be issued by capturing the minimum mandatory requirements of the customer in the system. -
Anti-Forensic Implications of Software Bugs in Digital Forensic Tools
Anti-Forensic Implications of Software Bugs in Digital Forensic Tools ALAIN HOMEWOOD Bachelor of Computer and Information Sciences (AUT, NZ) Diploma in Information Technology (AUT, NZ) A thesis submitted to the graduate faculty of design and creative technologies AUT University in partial fulfilment of the requirements for the degree of Master of Forensic Information Technology School of Computing and Mathematical Sciences Auckland, New Zealand 2012 ii Declaration I hereby declare that this submission is my own work and that, to the best of my knowledge and belief, it contains no material previously published or written by another person nor material which to a substantial extent has been accepted for the qualification of any other degree or diploma of a University or other institution of higher learning, except where due acknowledgement is made in the acknowledgements. ........................... Signature iii Acknowledgements I would like to thank everyone that has supported me in writing this thesis. Without their support this thesis may not have been completed. I have received guidance, support and insight from many people during the course of conducting this research. Firstly I would like to express my gratitude to my thesis supervisor, Dr Brian Cusack. Dr Cusack has provided continual support and guidance which has greatly influenced the direction of this research as well as the quality of the thesis. Dr Cusack is the latest of many faculty members of the School of Computing and Mathematical Sciences who have helped me reach my goals throughout my tertiary education. I also thank Campbell McKenzie for his continued support throughout writing my thesis. -
Maturity of Smart Card Chip Technology and Its Application to Web Security Cathy Medich, Sree Swaminathan, Kelly Urban, Siva Narendra Smart Card Alliance 1
Maturity of Smart Card Chip Technology and Its Application to Web Security Cathy Medich, Sree Swaminathan, Kelly Urban, Siva Narendra Smart Card Alliance 1. Abstract This position paper provides an overview of smart card secure element chip technology, the markets and applications that use smart card chip technology, the security provided by smart card technology, and the standards that are used to support smart card applications. Contrary to some beliefs, smart card silicon is a highly standardized piece of security hardware that is widely available in the market, and is already in use globally in payments, identity (e.g., e-passports, government employee ID) and access control applications. The scale and standardization of secure smart card technology bring the most obvious core security component that should be integrated into the next generation of unified web security standards. 2. Smart Card Chip Technology Overview A smart card chip is an integrated circuit that includes an embedded secure microcontroller and supports the ISO/IEC 7816 standard for direct physical contact and/or the ISO/IEC 14443 standard for a remote contactless radio frequency interface. With a secure microcontroller, smart cards have the unique ability to store large amounts of data, carry out their own on-card functions (e.g., encryption and mutual authentication) and interact intelligently with computers, mobile phones, and other readers. Smart card technology conforms to international standards and industry specifications also govern the use of smart card technology for various applications. The term, "smart card," is something of misnomer. While the plastic card was the initial smart card form factor, smart card technology is now available in a wide variety of form factors, including plastic cards, key fobs, subscriber identification modules (SIMs) used in mobile phones, watches, electronic passports and USB-based tokens. -
Crystal Eye Technology Report (Updated) – 2020
Technology Report Red Piranha’s Crystal Eye Platform Peter Hannay & Clinton Carpene [email protected], [email protected] 16th October 2017 Updated Review Red Piranha’s Crystal Eye XDR Platform v4.0 Kenneth Tan – [email protected] Meidi van der Lee – [email protected] Rossa Risdiana – [email protected] 4th September 2020 The statements made and opinions expressed in this report are believed to be correct by the authors, however the authors assume no responsibility or liability for any errors or omissions in the content of this report. The information contained in this report is provided on an as-is basis with no guarantees of completeness, accuracy, usefulness or timeliness. Any discussion of projections or future performance are subject to interpretation and it must be noted that past performance is not a reliable indicator of future results, as such no responsibility can be accepted for decisions made based on this report. 1 Executive Summary Red Piranha Limited is a public unlisted company registered in Australia and currently based out of Perth and Sydney, developing information security products called the Crystal Eye Extended Detection and Response (CE XDR) platform with the immediate target market being small and medium businesses in Australia and exporting to global markets. The Crystal Eye platform integrates a collection of security technologies to provide multiple layers of cybersecurity protection, giving the benefit of defence-in-depth with comprehensive features even without optional functions installed. Clients can add more functionalities from the Marketplace as required according to each business’ inherent risks and requirements. Additional functionality can be included mostly at no additional cost. -
Crystal Eye Technology Report
Independent Technology Report Red Piranha’s Crystal Eye Next Generation Firewall Operating System Peter Hannay & Clinton Carpene [email protected], [email protected] 6th August 2017 The statements made and opinions expressed in this report are believed to be correct by the authors, however the authors assume no responsibility or liability for any errors or omissions in the content of this report. The information contained in this report is provided on an "as is" basis with no guarantees of completeness, accuracy, usefulness or timeliness. Any discussion of projections or future performance are subject to interpretation and it must be noted that past performance is not a reliable indicator of future results, as such no responsibility can be accepted for decisions made based on this report. 1 Executive Summary Red Piranha Limited is a public, unlisted company registered in Australia. Red Piranha Limited (“Red Piranha”, the “Company”) is currently based out of Perth and Sydney, developing information security technologies and products. Red Piranha is a fully integrated supplier of cyber security services for small to medium enterprises in Australia with export capabilities for global markets. Red Piranha’s advanced intrusion and detection systems, backed by the Company’s threat intelligence, updates systems multiple times a day giving greater protection against zero day attacks and advanced persistent threats. The Company is currently working with its business associates and partners to produce a bundled insurance product. The product provides a complete cyber security service through acombinationoftechnologyandinsurancepackagestoprovideremediationshouldsomedamageor loss eventuate. In 2015, Red Piranha purchased the DNS.Insure platform and began development on the Crystal Eye Unified Threat Management systems (UTMs; the "Technology"). -
Unlocking the Smart Card
Episode Four: Unlocking the Smart Card This is an excerpt from Unlocked — an ASSA ABLOY podcast series on campus security. Unlocked explores the security issues and challenges that colleges and universities face as they strive to create a safe and secure learning environment. Visit intelligentopenings.com/unlocked to hear more. How We Got Smart Before diving into the current broken cards and physical wear on the credential technologies, it helps to readers. Prox solved these problems. understand where we came from. Lower maintenance costs, increased In 1960, a young engineer from IBM user convenience, and new options named Forrest Parry invented the for form factors like fobs made the magnetic stripe card. Once prox card a winner. But the low- ubiquitous on campus doors, more frequency proximity technology is reliable and secure technologies not without its limitations. are quickly eclipsing the mag stripe. Mag stripe cards are simple. A card gets swiped in a reader. That reader then reads a sequence of numbers Outside of higher stored on the stripe of that card. education and If the number matches what’s stored in the access system’s older hotels, hardly Whether installing a new door access database, the door unlocks. system for your campus or upgrading from a legacy system you have a lot of Many campuses still use the mag anyone still uses decisions to make. stripe card for their door access. This is mainly because the cards are mag stripe cards You first must choose the right access inexpensive, the cost to replace the software and locking hardware. -
1UP A5 40PP BROCHURE Cut Marks
2017 Contents 3 Introduction 5 Keynote 8 Talks (alphabetically by talk / workshop title) 29 Workshops (alphabetically by talk / workshop title) 39 Thanks 2 Introduction It's that time of the year already. A time for giving and sharing challenges and responses. A time for catching up with old friends around the glow of a warm tty. A time for (get to the point Steve! -A)... erm... ok. It's a time to get a little crazy and break stuff... It's 44CON TIEM!!!!1!11!1!!!one!!ones!!11 Welcome back to another year of 44CON. This year we've gone all out on talks and have some amazing ones from speakers around the world. We have the drinks primed for Gin O'Clock, the bus bar is ready and we have a cracking evening session ahead. Our CTF this year is run by Immersive Labs, who are offering good money for challenges. Go and talk to them if you'd like to make some extra cash developing challenges for their platform, but don't forget to have a go at the CTF too! If this is your first 44CON, you should know we might not be like other events you've attended. Everyone is approachable from our sponsors to speakers to the crew. If you have any questions, problems or suggestions, please do talk to our crew or ask at the front desk. We want to make sure you have the best time possible. 44CON couldn't happen without our sponsors, please make sure you say hello. Our sponsors aren't there to give you a hard sell, they're there to help you have a good time so do make sure to visit them and see what they have to offer. -
APCERT Annual Report 2012
AAPPCCEERRTT AAnnnnuuaall RReeppoorrtt 22001122 APCERT Secretariat E-mail: [email protected] URL: http://www.apcert.org 1 CONTENTS CONTENTS ........................................................................................................................... 2 Chair’s Message 2012 ............................................................................................................ 4 I. About APCERT ................................................................................................................... 6 II. APCERT Activity Report 2012 ...................................................................................... 12 1. International Activities and Engagements 12 2. Approval of New General Members / Full Members 16 3. APCERT SC Meetings 16 4. APCERT Study Calls 16 5. APCERT Information Classification Policy 17 III. Activity Reports from APCERT Members ................................................................... 18 Full Members 18 1. AusCERT Activity Report 18 2. BKIS Activity Report 20 3. BruCERT Activity Report 24 4. CERT Australia Activity Report 30 5. CERT-In Activity Report 35 6. CNCERT/CC Activity Report 47 7. HKCERT Activity Report 55 8. ID-CERT Activity Report 61 9. ID-SIRTII/CC Activity Report 71 10. JPCERT/CC Activity Report 78 11. KrCERT/CC Activity Report 86 12. MyCERT Activity Report 91 13. SingCERT Activity Report 99 14. Sri Lanka CERT|CC Activity Report 102 15. TechCERT Activity Report 113 16. ThaiCERT Activity Report 122 2 17. TWCERT/CC Activity Report 131 18. VNCERT Activity Report 142 General Members 146 19. bdCERT Activity Report 146 20. EC-CERT Activity Report 150 21. mmCERT Activity Report 154 22. MOCERT Activity Report 160 23. MonCIRT Activity Report 168 24. NCSC Activity Report 179 3 Chair’s Message 2012 The history of CERTs began in 1989 as a result of the Morris worm. As Internet expanded globally, CERTs began to form within the Asia Pacific region and quickly it became clear that collaboration to address challenges that went beyond individual national borders would become essential. -
ACR122U Application Programming Interface V2.04
ACR122U USB NFC Reader Application Programming Interface V2.04 Subject to change without prior notice [email protected] www.acs.com.hk Table of Contents 1.0. Introduction ............................................................................................................. 4 1.1. Features ................................................................................................................................. 4 1.2. USB Interface ........................................................................................................................ 5 2.0. Implementation ........................................................................................................ 6 2.1. Communication Flow Chart of ACR122U .............................................................................. 6 2.2. Smart Card Reader Interface Overview ................................................................................ 7 3.0. PICC Interface Description ..................................................................................... 8 3.1. ATR Generation ..................................................................................................................... 8 3.1.1. ATR format for ISO 14443 Part 3 PICCs ...................................................................... 8 3.1.2. ATR format for ISO 14443 Part 4 PICCs ...................................................................... 9 4.0. PICC Commands for General Purposes .............................................................. 11 4.1. Get Data..............................................................................................................................