Allogeneic Stem Cell Transplantation from Donors with Mosaic Turner Syndrome

Total Page:16

File Type:pdf, Size:1020Kb

Allogeneic Stem Cell Transplantation from Donors with Mosaic Turner Syndrome Bone Marrow Transplantation (2006) 38, 385–386 & 2006 Nature Publishing Group All rights reserved 0268-3369/06 $30.00 www.nature.com/bmt LETTER TO THE EDITOR Allogeneic stem cell transplantation from donors with mosaic Turner syndrome Bone Marrow Transplantation (2006) 38, 385–386. extensive chronic cutaneous GVHD with conjuctival and doi:10.1038/sj.bmt.1705456 oral involvement. The post transplant course was further complicated by the development of DM, severe osteoporo- sis with a pathologic fracture of L2 and cytomegalovirus (CMV) infection. Turner syndrome (TS) is a genetic disorder affecting Reports of leukemia in patients with TS are rare. 1/2500–3000 live-born females. It is characterized by the Therefore, toxicity and outcome after intensive chemother- complete or partial absence of one of the X-chromosomes, apy for patients with 45,X/46,XX mosaicism are still and is frequently accompanied by mosaicism (45,X/46,XX). unclear.3 Various immunological disturbances have been Its most consistent clinical features are short stature and detected in patients with TS, includingdecreased numbers ovarian failure. Loss of specific genes located on the X- of circulatingT-lymphocytes. 2,4 Consequently, the study of chromosome are thought to be responsible for a range of immune recovery of the donor’s 45,X T cells followingSCT disorders, includingosteoporosis, hypothyroidism, diabetes is particularly interesting, because it might influence mellitus (DM), cardiovascular and gastrointestinal dis- infectious complications, antitumor activity, the develop- eases, ophthalmic disorders, as well as various immuno- ment and the extent of acute and chronic GVHD, as well as logical defects.1,2 We report two cases of allogeneic stem the process of engraftment of hematopoietic stem cells. It is cell transplantation (SCT) in which 45,X/46,XX stem cells also not clear if 45,X hematopoietic stem cells would derived from donors with mosaic TS were used. respond normally to immunosuppression. Patient 1, a 27-year-old woman, had common acute A prompt hematopoietic recovery and immune recon- lymphoblastic leukemia with an abnormal karyotype: stitution were noticed in both of our cases. Both recipients 46,X,t(X;22)(p11.3;q12),t(2;16)(p11;q11)[15]/46,XX[5]. She manifested acute GVHD and CMV infections, which were underwent a consolidative allogeneic SCT after a busulfan– successfully treated. The second patient developed severe cyclophosphamide (Bu–Cy) conditioningregimenfrom her osteoporosis and DM, which are common after steroid phenotypically human leukocyte antigen (HLA)-matched therapy. In the early post-transplantation period, the 2.5-year-old daughter. The post transplant course was effects of high-dose glucocorticosteroids combined with unremarkable and mild acute and chronic graft-versus-host other immunosuppressive drugs, such as cyclosporin A, disease (GVHD) were seen. A routine cytogenetic study of might have been implicated in the manifestation of the marrow at 6 months revealed 45,X[9]/46,XX[11]. To osteoporosis.5 DM has been reported to be multifactorial, investigate the origin of 45,X cells, the donor’s constitu- involvingpancreatic irradiation, endocrine replacement tional karyotype was evaluated, confirminga mosaic TS and corticosteroid therapy.6,7 Osteoporosis and DM are 45,X[15]/46,XX[5]. The disease relapsed at 9 months and very common in adults with TS, possibly owingto the cytogenetic analysis revealed 45,X[8]/46,X,t(X;22)(p11.3; dosage of specific genes located on X-chromosome in 45,X q12),t(2;16)(p11;q11)[2]/46,XX[16]. A second allograft was cells.1 Women with TS show a reduction in their bone performed from the same donor in second remission after mass and an increased risk of osteoporotic fractures. A total body irradiation-based conditioningand attenuated genome-wide linkage scan for bone mineral density, which GVHD prophylaxis. The patient developed grade II acute characterizes osteoporosis, has shown linkage on chromo- GVHD again. The disease relapsed 5 months after the somes 11q23 and Xq27.8 Type II DM is 2–4 times more second allograft and the patient died of relapse. frequent in women with TS compared with the general Patient 2, a 47-year-old man, had acute myeloid population. leukemia with a normal karyotype who was allografted in As a prompt hematopoietic recovery and immune first relapse after Bu–Cy conditioningfrom his 54-year-old reconstitution were noticed in both our patients, with no one HLA-A antigen-mismatched sister. Post transplant unusual transplant-related complications, we believe that a course was characterized by grade II acute GVHD and donor with TS is probably acceptable if no other donor is thrombotic microangiopathy. Cytogenetic analysis of the available. However, these patients should be followed bone marrow revealed 45,X[12]/46,XX[12]/46,XY[1]. closely after transplantation. Donor’s peripheral blood cultures stimulated with phyto- hemagglutinin showed a mosaic TS 45,X[7]/46,XX[18], confirmingdonor originof 45,X cells. Two months later, KN Manola1, C Sambani1, D Karakasis2, I Baltathakis2, chromosome studies showed complete donor karyotype N Zoumbos3 and A Symeonidis3 45,X[7]/46,XX[13] and chimerism analysis, by short tandem 1Laboratory of Health Physics & Environmental Hygiene, repeats of polymorphic DNA segments, was 99.5% of Inst. NT-RP, National Center for Scientific Research donor origin. On day þ 105, the patient developed (NCSR) ‘Demokritos’, Athens, Greece; Letter to the Editor 386 2Bone Marrow Transplantation Unit, Hematology and lymphoblastic leukemia complicated with Turner’s syndrome. Lymphoma Department, ‘Evangelismos’ General Hospital, Intern Med 2005; 44: 145–148. Athens, Greece and 4 Cacciari E, Masi M, Fantini MP, Licastro F, Cicognani A, 3Stem Cell Transplantation Unit, Department of Internal Pirazzoli P et al. Serum immunoglobulins and lymphocyte Medicine, Hematology Division, University of Patras subpopulations derangement in Turner’s syndrome. J Immuno- Medical School, Patras, Greece genet 1981; 8: 337–344. 5 Cohen A, Shane E. Osteoporosis after solid organ and bone E-mail: [email protected] marrow transplantation. Osteoporosis Int 2003; 14: 617–630. 6 Baker KS, Gurney JG, Ness KK, Bhatia R, Forman SJ, Francisco L et al. Late effects in survivors of chronic myeloid References leukemia treated with hematopoietic cell transplantation: results from the Bone Marrow Transplant Survivor Study. Blood 2004; 1 Elsheikh M, Dunger DB, Conway GS, Wass JAH. Turner’s 104: 1898–1906. syndrome in adulthood. Endocr Rev 2002; 23: 120–140. 7 Traggiai C, Stanhope R, Nussey S, Leiper AD. Diabetes 2 Gupta S, Chiplunkar S, Gupta A, Gollapudi S. Increased mellitus after bone marrow transplantation duringchildhood. spontaneous, tumor necrosis factor receptor- and CD95 (Fas)- Med Pediatr Oncol 2003; 40: 128–129. mediated apoptosis in cord blood T-cell subsets from Turner’s 8 Shen H, ZhangYY, LongJR, Xu FH, Liu YZ, Xiao P et al. A syndrome. Genes Immun 2003; 4: 239–243. genome-wide linkage scan for bone mineral density in an 3 Saito T, Usui N, Asai O, Yano S, Sugiyama K, Hisatomi M extended sample: evidence for linkage on 11q23 and Xq27. et al. Toxicity and outcome of intensive chemotherapy for acute J Med Genet 2004; 41: 743–751. Bone Marrow Transplantation.
Recommended publications
  • Klinefelter, Turner & Down Syndrome
    Klinefelter, Turner & Down Syndrome A brief discussion of gamete forma2on, Mitosis and Meiosis: h7ps://www.youtube.com/watch?v=zGVBAHAsjJM Non-disjunction in Meiosis: • Nondisjunction "not coming apart" is the failure of a chromosome pair to separate properly during meiosis 1, or of two chromatids of a chromosome to separate properly during meiosis 2 or mitosis. • Can effect each pair. • Not a rare event. • As a result, one daughter cell has two chromosomes or two chromatids and the other has none • The result of this error is ANEUPLOIDY. 4 haploid gametes 2 gametes with diploid 2 gametes with haploid number of x and 2 lacking number of X chromosome, 1 x chromosome gamete with diploid number of X chromosome, and 1 gamete lacking X chromosome MEIOSIS MITOSIS Nondisjunc2on at meiosis 1 = All gametes will be abnormal Nondisjunc2on at meiosis 2 = Half of the gametes are normal (%50 normal and %50 abnormal) Down’s Syndrome • Karyotype: 47, XY, +21 Three copies of chromosome 21 (21 trisomy) • The incidence of trisomy 21 rises sharply with increasing maternal age (above 37), but Down syndrome can also be the result of nondisjunction of the father's chromosome 21 (%15 of cases) • A small proportion of cases is mosaic* and probably arise from a non-disjunction event in early zygotic division. *“Mosaicism, used to describe the presence of more than one type of cells in a person. For example, when a baby is born with Down syndrome, the doctor will take a blood sample to perform a chromosome study. Typically, 20 different cells are analyzed.
    [Show full text]
  • Post-Zygotic Mosaic Mutation in Normal Tissue from Breast Cancer Patient
    Extended Abstract Research in Genes and Proteins Vol. 1, Iss. 1 2019 Post-zygotic Mosaic Mutation in Normal Tissue from Breast Cancer Patient Ryong Nam Kim Seoul National University Bio-MAX/NBIO, Seoul, Korea, Email: [email protected] ABSTRACT Even though numerous previous investigations had shed errors during replication, defects in chromosome fresh light on somatic driver mutations in cancer tissues, segregation during mitosis, and direct chemical attacks by the mutation-driven malignant transformation mechanism reactive oxygen species. the method of cellular genetic from normal to cancerous tissues remains still mysterious. diversification begins during embryonic development and during this study, we performed whole exome analysis of continues throughout life, resulting in the phenomenon of paired normal and cancer samples from 12 carcinoma somatic mosaicism. New information about the genetic patients so as to elucidate the post-zygotic mosaic diversity of cells composing the body makes us reconsider mutation which may predispose to breast carcinogenesis. the prevailing concepts of cancer etiology and We found a post-zygotic mosaic mutation PIK3CA pathogenesis. p.F1002C with 2% variant allele fraction (VAF) in normal tissue, whose respective VAF during a matched carcinoma Here, I suggest that a progressively deteriorating tissue, had increased by 20.6%. Such an expansion of the microenvironment (“soil”) generates the cancerous “seed” variant allele fraction within the matched cancer tissue and favors its development. Cancer Res; 78(6); 1375–8. ©2018 AACR. Just like nothing ha s contributed to the may implicate the mosaic mutation in association with the causation underlying the breast carcinogenesis. flourishing of physics quite war, nothing has stimulated the event of biology quite cancer.
    [Show full text]
  • Detection of Turner Syndrome by Quantitative PCR of SHOX and VAMP7 Genes
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Repositorio Academico Digital UANL GENETIC TESTING AND MOLECULAR BIOMARKERS ORIGINAL ARTICLES Volume 19, Number 2, 2015 ª Mary Ann Liebert, Inc. Pp. 1–5 DOI: 10.1089/gtmb.2014.0236 Detection of Turner Syndrome by Quantitative PCR of SHOX and VAMP7 Genes Marisol Ibarra-Ramı´rez,1 Michelle de Jesu´s Zamudio-Osuna,1 Luis Daniel Campos-Acevedo,1 Hugo Leonid Gallardo-Blanco,1 Ricardo Martin Cerda-Flores,2 Ira´m Pablo Rodrı´guez-Sa´nchez,1 and Laura Elia Martı´nez-de-Villarreal1 Turner Syndrome (TS) is an unfavorable genetic condition with a prevalence of 1:2500 in newborn girls. Prompt and effective diagnosis is very important to appropriately monitor the comorbidities. The aim of the present study was to propose a feasible and practical molecular diagnostic tool for newborn screening by quantifying the gene dosage of the SHOX, VAMP7, XIST, UBA1, and SRY genes by quantitative polymerase chain reaction (qPCR) in individuals with a diagnosis of complete X monosomy, as well as those with TS variants, and then compare the results to controls without chromosomal abnormalities. According to our results, the most useful markers for these chromosomal variants were the genes found in the pseudoautosomic regions 1 and 2 (PAR1 and PAR2), because differences in gene dosage (relative quantification) between groups were more evident in SHOX and VAMP7 gene expression. Therefore, we conclude that these markers are useful for early detection in aneuploidies involving sex chromosomes. Introduction Guidelines of the American College of Endocrinology for the management of patients with TS emphasize the benefit of urner syndrome (TS) affects 1 in 2500/3000 live- early detection through newborn screening methods (Bondy Tborn girls and is characterized by short stature, gonadal et al., 2007).
    [Show full text]
  • Genetic Mosaicism: What Gregor Mendel Didn't Know
    Genetic mosaicism: what Gregor Mendel didn't know. R Hirschhorn J Clin Invest. 1995;95(2):443-444. https://doi.org/10.1172/JCI117682. Research Article Find the latest version: https://jci.me/117682/pdf Genetic Mosaicism: What Gregor Mendel Didn't Know Editorial The word "mosaic" was originally used as an adjective to depending on the developmental stage at which the mutation describe any form of work or art produced by the joining to- occurs, may or may not be associated with somatic mosaicism gether of many tiny pieces that differ in size and color (1). In and may include all or only some of the germ cells. (A totally that sense, virtually all multicellular organisms are mosaics of different mechanism for somatic mosaicism has been recently cells of different form and function. Normal developmentally described, reversion of a transmitted mutation to normal [4]. determined mosaicism can involve permanent alterations of We have additionally identified such an event [our unpublished DNA in somatic cells such as the specialized cells of the im- observations]. ) mune system. In such specialized somatic cells, different re- Somatic and germ line mosaicism were initially inferred on arrangements of germ line DNA for immunoglobulin and T cell clinical grounds for a variety of diseases, including autosomal receptor genes and the different mutations accompanying these dominant and X-linked disorders, as presciently reviewed by rearrangements alter DNA and function. However, these alter- Hall (3). Somatic mosaicism for inherited disease was initially ations in individual cells cannot be transmitted to offspring definitively established for chromosomal disorders, such as since they occur only in differentiated somatic cells.
    [Show full text]
  • Turner Syndrome (TS) Is a Genetic Disease That Affects About Physical Signs of TS May Include: 1 in Every 2,500 Female Live Births
    Notes: A Guide for Caregivers For easily accessible answers, education, and support, visit Nutropin.com or call 1-866-NUTROPIN (1-866-688-7674). 18 19 of patients with Your healthcare team is your primary source Turner Syndrome of information about your child’s treatment. Please see the accompanying full Prescribing Information, including Instructions for Use, and additional Important Safety Information througout and on pages 16-18. Models used for illustrative purposes only. Nutropin, Nutropin AQ, and NuSpin are registered trademarks, Nutropin GPS is a trademark, and NuAccess is a service mark of Genentech, Inc. © 2020 Genentech USA, Inc., 1 DNA Way, So. San Francisco, CA 94080 M-US-00005837(v1.0) 06/20 FPO Understanding Turner Syndrome What is Turner Syndrome? Turner Syndrome (TS) is a genetic disease that affects about Physical signs of TS may include: 1 in every 2,500 female live births. TS occurs when one • Short stature of a girl’s two X chromosomes is absent or incomplete. • Webbing of the neck Chromosomes are found in all cells of the human body. They contain the genes that determine the characteristics of a • Low-set, rotated ears person such as the color of hair or eyes. Every person has • Arms that turn out slightly at the elbows 22 pairs of chromosomes containing these characteristics, • Low hairline at the back of the head and one pair of sex chromosomes. • A high, arched palate in the mouth Normally cells in a female’s body contain two “X” chromosomes Biological signs of TS may include: (Fig. 1). • Underdevelopment of the ovaries In girls with TS, part or • Not reaching sexual maturity or starting all of one X chromosome a menstrual period (Fig.
    [Show full text]
  • Phenotype Manifestations of Polysomy X at Males
    PHENOTYPE MANIFESTATIONS OF POLYSOMY X AT MALES Amra Ćatović* &Centre for Human Genetics, Faculty of Medicine, University of Sarajevo, Čekaluša , Sarajevo, Bosnia and Herzegovina * Corresponding author Abstract Klinefelter Syndrome is the most frequent form of male hypogonadism. It is an endocrine disorder based on sex chromosome aneuploidy. Infertility and gynaecomastia are the two most common symptoms that lead to diagnosis. Diagnosis of Klinefelter syndrome is made by karyotyping. Over years period (-) patients have been sent to “Center for Human Genetics” of Faculty of Medicine in Sarajevo from diff erent medical centres within Federation of Bosnia and Herzegovina with diagnosis suspecta Klinefelter syndrome, azoo- spermia, sterilitas primaria and hypogonadism for cytogenetic evaluation. Normal karyotype was found in (,) subjects, and karyotype was changed in (,) subjects. Polysomy X was found in (,) examinees. Polysomy X was expressed at the age of sexual maturity in the majority of the cases. Our results suggest that indication for chromosomal evaluation needs to be established at a very young age. KEY WORDS: polysomy X, hypogonadism, infertility Introduction Structural changes in gonosomes (X and Y) cause different distribution of genes, which may be exhibited in various phenotypes. Numerical aberrations of gonosomes have specific pattern of phenotype characteristics, which can be classified as clini- cal syndrome. Incidence of gonosome aberrations in males is / male newborn (). Klinefelter syndrome is the most common chromosomal disorder associated with male hypogonadism. According to different authors incidence is / male newborns (), /- (), and even / (). Very high incidence indicates that the zygotes with Klinefelter syndrome are more vital than those with other chromosomal aberrations. BOSNIAN JOURNAL OF BASIC MEDICAL SCIENCES 2008; 8 (3): 287-290 AMRA ĆATOVIĆ: PHENOTYPE MANIFESTATIONS OF POLYSOMY X AT MALES In , Klinefelter et al.
    [Show full text]
  • Oocyte Cryopreservation for Fertility Preservation in Postpubertal Female Children at Risk for Premature Ovarian Failure Due To
    Original Study Oocyte Cryopreservation for Fertility Preservation in Postpubertal Female Children at Risk for Premature Ovarian Failure Due to Accelerated Follicle Loss in Turner Syndrome or Cancer Treatments K. Oktay MD 1,2,*, G. Bedoschi MD 1,2 1 Innovation Institute for Fertility Preservation and IVF, New York, NY 2 Laboratory of Molecular Reproduction and Fertility Preservation, Obstetrics and Gynecology, New York Medical College, Valhalla, NY abstract Objective: To preliminarily study the feasibility of oocyte cryopreservation in postpubertal girls aged between 13 and 15 years who were at risk for premature ovarian failure due to the accelerated follicle loss associated with Turner syndrome or cancer treatments. Design: Retrospective cohort and review of literature. Setting: Academic fertility preservation unit. Participants: Three girls diagnosed with Turner syndrome, 1 girl diagnosed with germ-cell tumor. and 1 girl diagnosed with lymphoblastic leukemia. Interventions: Assessment of ovarian reserve, ovarian stimulation, oocyte retrieval, in vitro maturation, and mature oocyte cryopreservation. Main Outcome Measure: Response to ovarian stimulation, number of mature oocytes cryopreserved and complications, if any. Results: Mean anti-mullerian€ hormone, baseline follical stimulating hormone, estradiol, and antral follicle counts were 1.30 Æ 0.39, 6.08 Æ 2.63, 41.39 Æ 24.68, 8.0 Æ 3.2; respectively. In Turner girls the ovarian reserve assessment indicated already diminished ovarian reserve. Ovarian stimulation and oocyte cryopreservation was successfully performed in all female children referred for fertility preser- vation. A range of 4-11 mature oocytes (mean 8.1 Æ 3.4) was cryopreserved without any complications. All girls tolerated the procedure well.
    [Show full text]
  • Turner Syndrome
    TURNER SYNDROME What is it? Turner syndrome (TS) is a condition only affecting females as a result of an X chromosome abnormality. TS occurs in approximately 1 in 2,500 newborn females. While one X chromosome is normal, the other female X chromosome is missing or altered. TS is characterized by a variety of medical and developmental problems but the most consistent features affect bone development and growth resulting in short stature and lack of ovarian development. Diagnosis can be made prenatally or in early childhood but over 1/3 of girls diagnosed are diagnosed in mid-childhood or adolescence. A blood test can confirm suspicion of the syndrome. The long term health outcomes are improved with an earlier diagnosis. What are the symptoms or complications? Diagnosis can be made prenatally or during early childhood years. However, over 1/3 of diagnoses occur during adolescence. A blood test can confirm suspicion of the syndrome. Signs and symptoms may be subtle and develop slow over time, or they may be significant. They can occur in varying degrees based on the individual's genetic makeup. Short stature Scoliosis Swelling of hands and feet Recurrent ear infections that may lead to hearing problems Lack of spontaneous puberty Webbed neck Kidney problems e.g. UTI’s Droopy eyelids Heart issues e.g. congenital defects Strabismus Type II Diabetes Low set ears and hairline Hypertension Poor vision Thyroid disease Infertility Lack of stamina A child with TS will not only face medical problems but also learning disabilities. Students with TS often have a cognitive profile that includes normal intelligence and verbal capabilities but weaknesses in the areas of visual–spatial, executive, and social cognitive function.
    [Show full text]
  • ABC of Clinical Genetics CHROMOSOMAL DISORDERS II
    ABC of Clinical Genetics CHROMOSOMAL DISORDERS II BMJ: first published as 10.1136/bmj.298.6676.813 on 25 March 1989. Downloaded from Helen M Kingston Developmental delay in Chromosomal abnormalities are generally associated with multiple child with deletion of congenital malformations and mental retardation. Children with more than chromosome 13. one physical abnormality, particularly ifretarded, should therefore undergo chromosomal analysis as part of their investigation. Chromosomal disorders are incurable but can be reliably detected by prenatal diagnostic techniques. Amniocentesis or chorionic villus sampling should be offered to women whose pregnancies are at increased risk-namely, women in their mid to late thirties, couples with an affected child, and couples in whom one partner carries a balanced translocation. Unfortunately, when there is no history of previous abnormality the risk in many affected pregnancies cannot be predicted beforehand. Autosomal abnormalities Parents Non-dysjunction Trisomy 21 (Down's syndrome) Down's syndrome is the commonest autosomal Gametes trisomy, the incidence in liveborn infants being one in 650, although more than half of conceptions with trisomy 21 do not survive to term. Affected children have a characteristic Offspring facial appearance, are mentally retarded, and Trisomy 21 often die young. They may have associated Non-dysjunction of chromosome 21 leading to Down's syndrome. congenital heart disease and are at increased risk recurrent for infections, atlantoaxial instability, http://www.bmj.com/ -- All chromosomal abnormalities at and acute leukaemia. They are often happy and 100 - ainniocentesis ---- Downl's syndrome at amniocentesis Risk for trisomy 21 in liveborn infants affectionate children who are easy to manage.
    [Show full text]
  • Practice Guidelines for Molecular Diagnosis of Fragile X Syndrome
    Practice Guidelines for Molecular Diagnosis of Fragile X Syndrome Prepared and edited by James Macpherson 1 and Abid Sharif 2 following a CMGS Workshop held on 10 th July 2012. 1. Wessex Regional Genetics Laboratory, Salisbury NHS Foundation Trust, Salisbury, Wiltshire, SP2 8BJ, U.K. 2. East Midlands Regional Molecular Genetics Service, Nottingham University Hospitals NHS Trust, City Hospital Campus, Nottingham, NG5 1PB, U.K. Guidelines updated by the Association for Clinical Genetic Science (formally Clinical Molecular Genetics Society and Association of Clinical Cytogenetics) approved November 2014. 1. NOMENCLATURE and GENE IDs OMIM Condition Gene name Gene map locus 309550 Fragile X Syndrome FMR1 Xq27.3 309548 FRAXE FMR2 Xq28 2. DESCRIPTION OF DISEASE 2.1 Fragile X Syndrome Fragile X Syndrome is thought to be the commonest single-gene cause of learning disability features in humans with an estimated prevalence of 1 in 4000- 1 in 6000 males, where it causes moderate to severe intellectual and social impairment together with syndromic features including large ears and head, long face and macroorchidism 1. A fragile site (FRAXA) is expressible at the gene locus at Xq27.3, typically in 2-40 % of blood cells in affected males. The pathogenic mutation in most cases is a large expansion (‘full mutation’) in a CGG repeat tract in the first untranslated exon of the gene FMR1, which normally encodes the RNA-binding protein FMRP. Full mutations (from approximately 200 repeats upwards) result in hypermethylation of the DNA in and around the CGG tract, curtailed gene expression and no FMRP being produced 2-4. Smaller expansions of the CGG repeat, or ‘premutations’ are not hypermethylated and hence do not cause Fragile X syndrome, but may show expansion into full mutations over one or more generations.
    [Show full text]
  • Genetic Disorders in Premature Ovarian Failure
    Human Reproduction Update, Vol.8, No.4 pp. 483±491, 2002 Genetic disorders in premature ovarian failure T.Laml1,3, O.Preyer1, W.Umek1, M.HengstschlaÈger2 and E.Hanzal1 University of Vienna Medical School, Department of Obstetrics and Gynaecology, 1Division of Gynaecology and 2Division of Prenatal Diagnosis and Therapy, Waehringer Guertel 18-20, A-1090 Vienna, Austria 3To whom correspondence should be addressed. E-mail: [email protected] This review presents the genetic disorders associated with premature ovarian failure (POF), obtained by Medline, the Cochrane Library and hand searches of pertinent references of English literature on POF and genetic determinants cited between the year 1966 and February 2002. X monosomy or X deletions and translocations are known to be responsible for POF. Turner's syndrome, as a phenotype associated with complete or partial monosomy X, is linked to ovarian failure. Among heterozygous carriers of the fragile X mutation, POF was noted as an unexpected phenotype in the early 1990s. Autosomal disorders such as mutations of the phosphomannomutase 2 (PMM2) gene, the galactose-1-phosphate uridyltransferase (GALT) gene, the FSH receptor (FSHR) gene, chromosome 3q containing the Blepharophimosis gene and the autoimmune regulator (AIRE) gene, responsible for polyendocrinopathy-candidiasis-ectodermal dystrophy, have been identi®ed in patients with POF. In conclusion, the relationship between genetic disorders and POF is clearly demonstrated in this review. Therefore, in the case of families affected by POF a thorough screening, including cytogenetic analysis, should be performed. Key words: autosomal disorders/FSH receptor/inhibin/premature ovarian failure/X chromosome abnormalities TABLE OF CONTENTS diagnosis requires histological examination of a full-thickness ovarian biopsy (Metha et al., 1992; Olivar, 1996).
    [Show full text]
  • Dr. Fern Tsien, Dept. of Genetics, LSUHSC, NO, LA Down Syndrome
    COMMON TYPES OF CHROMOSOME ABNORMALITIES Dr. Fern Tsien, Dept. of Genetics, LSUHSC, NO, LA A. Trisomy: instead of having the normal two copies of each chromosome, an individual has three of a particular chromosome. Which chromosome is trisomic determines the type and severity of the disorder. Down syndrome or Trisomy 21, is the most common trisomy, occurring in 1 per 800 births (about 3,400) a year in the United States. It is one of the most common genetic birth defects. According to the National Down Syndrome Society, there are more than 400,000 individuals with Down syndrome in the United States. Patients with Down syndrome have three copies of their 21 chromosomes instead of the normal two. The major clinical features of Down syndrome patients include low muscle tone, small stature, an upward slant to the eyes, a single deep crease across the center of the palm, mental retardation, and physical abnormalities, including heart and intestinal defects, and increased risk of leukemia. Every person with Down syndrome is a unique individual and may possess these characteristics to different degrees. Down syndrome patients Karyotype of a male patient with trisomy 21 What are the causes of Down syndrome? • 95% of all Down syndrome patients have a trisomy due to nondisjunction before fertilization • 1-2% have a mosaic karyotype due to nondisjunction after fertilization • 3-4% are due to a translocation 1. Nondisjunction refers to the failure of chromosomes to separate during cell division in the formation of the egg, sperm, or the fetus, causing an abnormal number of chromosomes. As a result, the baby may have an extra chromosome (trisomy).
    [Show full text]