An Economic Evaluation of Canola for Food and Fuel in Western Australia

Total Page:16

File Type:pdf, Size:1020Kb

An Economic Evaluation of Canola for Food and Fuel in Western Australia An economic evaluation of canola for food and fuel in Western Australia Ross Kingwell1,2 1Department of Agriculture & Food, Western Australia, 3 Baron-Hay Court, South Perth 6151, Australia 2University of Western Australia, Nedlands 6009, Australia, [email protected] ABSTRACT Sustained increases in diesel and petroleum prices since mid-2004 have stimulated interest in the technical and economic feasibility of both on-farm fuel production and the production of crops to service emerging biofuel markets. Local and international evidence plainly shows the technical feasibility of producing biodiesel from various oilseed crops, including canola. Less clear, especially during periods of high grain prices, is the economic wisdom of on-farm investment in biodiesel production and targeting plant breeding, agronomy and farm production towards biofuel production. Against the backdrop of developments in international markets and national bioenergy policies, this paper outlines that on-farm biodiesel production based on canola is currently uneconomic. Diesel prices are not yet high enough, relative to the price of canola, to justify many farmers investing in their own on-farm production of biodiesel. Furthermore, biodiesel production based on seed crops may only ever be an interim commercial opportunity so devoting plant breeding and agronomy resources to capitalise on any emerging opportunity may be a poor strategic use of these scarce resources. Producing canola for food rather than fuel is the currently superior economic strategy. Key words biodiesel, canola, farm economics INTRODUCTION Maintained high prices are forecast for most forms of energy in the near to medium term (EIA 2006). These high prices are fuelling cost escalation in many industries, including agriculture, and they have sparked interest in alternative fuels. In the particular case of petroleum and diesel, widespread interest has emerged regarding the production of biofuels, ethanol and biodiesel, as replacements or additives to petroleum and diesel, respectively. In many countries governments have provided incentives for farmers to grow crops (e.g. sugarcane, corn and rapeseed) that are feedstocks for biofuel production. Further, many farmers are keen to reduce their fuel bills and so are curious to know if biofuels are the answer. In broadacre regions of Australia that lack access to ethanol supplies, some farmers want to know if on-farm production of biodiesel is commercially attractive. This paper examines the relative profitability of growing canola for food or fuel (biodiesel), using broadcare farming in Western Australia as the case study. Firstly, the paper outlines briefly the importance of fuel to these broadacre farms and then considers farmers’ management options in the face of higher fuel and energy prices. Secondly, the paper examines the economic case for biodiesel production based on canola. The paper offers a set of concluding remarks. WHY FUEL PRICES MATTER TO FARMERS Since mid-2004 farmers in Western Australia have experienced a strong upward movement in fuel prices (see Figure 1). Not since the 1980s have farmers experienced such rapid and prolonged increases in their fuel prices. The increase in fuel prices has increased not only the cost of major on-farm activities such as crop establishment and grain harvesting but also has spilled over into cost increases for transport of agricultural products and inputs (animals, crops, wool, milk, feeds, fertilisers and chemicals) via all transport modes (road, rail, sea and air). Accompanying the rise in fuel prices has been an associated general rise in energy prices that - 19 - also has underpinned rises in the prices of key agricultural inputs (fertilisers and chemicals), offset to some degree by the recent appreciation of the Australian dollar that has lessened the price increases of some imported farm inputs. 160 150 ) 140 re it /l c 130 Diesel Prices from 2001 to 2007 (c/litre) ( e c ri 120 P 110 100 90 80 Jan-01 May-01 Sep-01 Table 1. Fuel use and fuel expenditureJan-0 on2 broadacre farms: 1995/6 to 2005/6 Fig. 1. DieselM pricesay-02 in the wheatbelt: Jan 2001 to July 2007 Sep-02 Jan-03 May-03 Sep-03 Year 1995/6 Jan-04 1996/7 May-04 1997/8 Litres of fuel used per Sep-04 1999/20001998/9 effective ha (l/ha) Jan-05 2000/1 May-05 2001/2 2002/3 Sep-05 Farmers are concerned about these price increases for several reasons: 17.5 2003/4 (i) 18.1 Jan-06 2004/5 a 19.5 2005/6 May-06 based on a balanced panel of 65 southern region farmers18.3 in Western Australia Fuel costs form a significant component of farm operating costs18.3 and so farmers are Sep-06 concerned about the impact on their businesses of high prices18.2 of fuel. For example, in season 2005 Western Australian broadacre farmers spent on average around $65,000 Cost of fuel per Jan-07 16.8 effective ha ($/ha) on fuel, with the fuel bill comprising around 11 per cent of farm operating costs or 25 per May-07 cent of variable costs of crop production (BankWest 2006). Another18.9 illustration of the importance of fuel expenses is shown in Table 1 for a sample18.8 of 65 farms in the southern agricultural region of Western Australia. These mixed20.6 enterprise businesses 11.4 a 18.7 12.5 13.1 12.4 12.4 16.3 15.2 17.0 17.0 18.5 16.8 - 20 - used roughly the same amount of fuel per effective hectare of farmland over the 11 year period, although the expenditure on fuel per effective hectare increased over the period due to the rise in the price of fuel. In 1995 fuel was 65 c/l rising to 90 c/L in 2002. In 2005 and subsequent seasons the price of fuel has increased further to be over 130 c/l in mid 2007. On average over the period the farms became more crop dominant with the average percentage of farm in crop increasing from 46 to over 55 per cent. Although cropping relies on greater fuel input than pasture production, nonetheless farmers over the period improved slightly the efficiency of their fuel use in cropping operations such that expenditure on fuel per effective hectare of farmland changed little. (ii) The main broadacre agricultural industries in Western Australia are export-orientated and have a limited capacity to pass on their fuel costs directly and fully to overseas’ buyers. Most of the State’s production of major agricultural commodities, wheat, barley, wool, canola and live sheep, are exported overseas. As such most farmers are price- takers and are in direct competition with other agricultural suppliers across the globe. If increases in fuel and energy prices worsen the comparative advantage of Western Australian farmers, then they will face a worsened cost-price squeeze and a real decline in farm profits. Any production region that will be less affected by fuel and energy price increases (for example, due to their greater proximity to markets or greater natural endowment of natural resources) relative to Western Australia is likely to increase their market share or be less susceptible to profit decline. The Western Australian farm sector does have some characteristics that make it less vulnerable to the impacts of high fuel prices relative to some other production regions. It has sea freight advantages for sales into south-east Asia, southern China and Middle East markets. It has modern grain freight, handling and storage facilities. Farm production is based on fuel-efficient, large scale, often relatively low input crop and animal production systems. For example, farmers have switched from the multiple pass crop establishment systems of the early 1980s to single pass, minimal disturbance systems that per hectare use less fuel. However, farmers in Western Australia face competition in some markets from an expanding agricultural sector in South America and eastern Europe. These other regions have access to cheaper labour, more fertile soils, access to relatively cheap energy sources and, in the case of South America, widely employ GM technologies that offer cost and yield advantages (Greenville and Keogh 2005). The fact that most broadacre farmers have already adopted fairly fuel efficient crop establishment and crop harvesting methods means the technical option of changing crop establishment methods to lessen fuel costs is not an option for the current generation of farmers, unlike in the 1980s. So many farmers will need to look elsewhere for other options. (iii) There is evidence that the natural environment for agricultural production in Western Australia is worsening, exacerbating the adverse impacts of high prices for fuel and energy. Recent studies of climate change document a current drying and warming of the environment in the south-west of Western Australia (Sadler 2002, Pittock 2003) with predictions of a further deterioration (CSIRO 2001, Howden and Jones 2004). Excluding any impact of fuel price rises, climate change alone represents a great challenge to the profitability of broadacre farming in the south-west of Western Australia (John et al. 2005, Kokic et al. 2005, van Gool and Vernon 2005, Kingwell 2006a). If the rise in fuel prices since 2004 is prolonged and if there is no off-setting rise in commodity prices then broadacre farming in this State faces some serious commercial challenges from climate variability and climate change. In responding to those challenges farmers will need access to innovation and R&D services to deliver the needed productivity improvement (Mullen 2002, Kingwell and Pannell 2005). Support for such innovation will be one way that farmers and - 21 - government can jointly ameliorate the likely adverse impacts of a sustained period of high fuel prices and a worsening trend in the natural environment. (iv) Unlike some of their international and inter-state rivals, Western Australian farmers are unlikely to receive high levels of financial support from government.
Recommended publications
  • Assessing Crop Performance in Maize Field Trials Using a Vegetation Index
    Open Agriculture. 2018; 3: 250–263 Research Article Carl-Philipp Federolf, Matthias Westerschulte, Hans-Werner Olfs, Gabriele Broll*, Dieter Trautz Assessing crop performance in maize field trials using a vegetation index https://doi.org/10.1515/opag-2018-0027 received February 17, 2018; accepted June 20, 2018 1 Introduction Abstract: New agronomic systems need scientific Nitrogen (N) is a crucial nutrient for crop growth and below proof before being adapted by farmers. To increase the optimal plant N concentration can lead to significant yield informative value of field trials, expensive samplings losses (Mollier and Pellerin 1999, Plénet and Lemaire 2000). throughout the cropping season are required. In a series Excess N fertilization however, can have a negative impact of trials where different application techniques and on ecosystems (Sutton et al. 2011). To acquire reliable rates of liquid manure in maize were tested, a handheld information on balanced N fertilization, researchers sensor metering the red edge inflection point (REIP) usually use multi-location and/or multi-annual field trials was compared to conventional biomass sampling at to acquire fundamental information (Gomez and Gomez different growth stages and in different environments. 1984). Regarding maize (Zea mays L.) fertilization trials in In a repeatedly measured trial during the 2014, 2015, and areas with higher contents of soil organic matter, major 2016 growing seasons, the coefficients of determination differences in early-growth might become insignificant at between REIP and biomass / nitrogen uptake (Nupt) harvest due to a high N mineralization potential (Federolf ascended from 4 leaves stage to 8 leaves stage, followed by et al.
    [Show full text]
  • How South Australian Broadacre Farms Increased Productivity From
    THIRTY YEARS OF CHANGE IN SOUTH AUSTRALIAN BROADACRE AGRICULTURE: TREND, YIELD AND PRODUCTIVITY ANALYSES OF INDUSTRY STATISTICS FROM 1977 TO 2006 Ian Black and Chris Dyson January 2009 SARDI Publication Number F2009/000182-1 SARDI Research Report Series Number 340 ISBN: 978-1-921563-09-6 South Australian Research and Development Institute Plant Research Centre Gate 2b Hartley Grove URRBRAE SA 5064 Telephone: (08) 8303 9400 Facsimile: (08) 8303 9403 http://www.sardi.sa.gov.au This Publication may be cited as: Black, I.D. and Dyson, C.B. Thirty Years of Change in South Australian Broadacre Agriculture: Trend, Yield and Productivity Analyses of Industry Statistics from 1977 to 2006. South Australian Research and Development Institute, Adelaide, 79pp. SARDI Publication Number F2009/000182-1. South Australian Research and Development Institute Plant Research Centre Gate 2b Hartley Grove URRBRAE SA 5064 Telephone: (08) 8303 9400 Facsimile: (08) 8303 9403 http://www.sardi.sa.gov.au DISCLAIMER The authors warrant that they have taken all reasonable care in producing this report. The report has been through the SARDI internal review process, and has been formally approved for release by the Deputy Executive Director. Although all reasonable efforts have been made to ensure quality, SARDI does not warrant that the information in this report is free from errors or omissions. SARDI does not accept any liability for the contents of this report or for any consequences arising from its use or any reliance placed upon it. © 2009 SARDI This work is copyright. Apart from any use as permitted under the Copyright Act 1968, no part may be reproduced by any process without prior written permission from the authors.
    [Show full text]
  • The Faba Bean: a Historic Perspective (J.I
    Downloaded from orbit.dtu.dk on: Oct 06, 2021 Faba bean in cropping systems Hauggaard-Nielsen, Henrik; Peoples, Mark B.; Jensen, Erik S. Published in: Grain legumes Publication date: 2011 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA): Hauggaard-Nielsen, H., Peoples, M. B., & Jensen, E. S. (2011). Faba bean in cropping systems. Grain legumes, (56), 32-33. General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. ISSUE No. 56 April 2011 Towards the world’s earliest maturing faba beans Molecular breeding approaches in faba bean Diseases infecting faba bean Resistance to freezing in winter faba beans Faba bean in cropping systems ‘Why should I grow faba beans?’ There is hope for faba bean cultivation EVENTS 2011 Model Legume Congress Sainte Maxime, France, 15-19 May 2011 http://inpact.inp-toulouse.fr/ModelLegume2011/index.html
    [Show full text]
  • The Implications of Digital Agriculture and Big Data for Australian Agriculture
    research report April 2016 The Implications of Digital Agriculture and Big Data for Australian Agriculture © 2016 Australian Farm Institute ISBN 978-1-921808-38-8 (Print and Web) Australia’s Independent Farm Policy Research Institute The Australian Farm Institute The Australian Farm Institute is an agricultural policy research organisation that has been established to develop and promote public policies that maximise the opportunity for Australian farmers to operate their businesses in a profitable and sustainable manner. To do this, the Institute carries out or contracts leading academics and consultants to conduct research into farm policy issues that the Institute’s Research Advisory Committee has identified as being of high strategic importance for Australian farmers. The Institute has a commitment to ensuring research findings are the conclusion of high quality, rigorous and objective analysis. The Australian Farm Institute promotes the outcomes of the research to policy-makers and the wider community. The Australian Farm Institute Limited is incorporated as a company limited by guarantee and commenced operations on 23 March 2004. The Institute is governed by a Board of Directors who determine the strategic direction for the Institute. The Institute utilises funding voluntarily contributed by individuals and corporations to perform its activities. Initial seed funding has been contributed by the NSW Farmers’ Association. Vision Farm policies that maximise the opportunity for Australian farmers to operate their businesses in a profitable and sustainable manner. Objective To enhance the economic and social wellbeing of farmers and the agricultural sector in Australia by conducting highly credible public policy research, and promoting the outcomes to policy-makers and the wider community.
    [Show full text]
  • Previous Supply Elasticity Estimates for Australian Broadacre Agriculture
    Previous Supply Elasticity Estimates For Australian Broadacre Agriculture Garry Griffith Meat, Dairy and Intensive Livestock Products Program, NSW Agriculture, Armidale Kym I’Anson Previously with the Industry Economics Sub-program, Cooperative Research Centre for the Cattle and Beef Industry, Armidale Debbie Hill Previously with the Industry Economics Sub-program, Cooperative Research Centre for the Cattle and Beef Industry, Armidale David Vere Pastures and Rangelands Program, NSW Agriculture, Orange Economic Research Report No. 6 August 2001 ii © NSW Agriculture 2001 This publication is copyright. Except as permitted under the Copyright Act 1968, no part of the publication may be reproduced by any process, electronic or otherwise, without the specific written permission of the copyright owner. Neither may information be stored electronically in any way whatever without such permission. ISSN 1442-9764 ISBN 0 7347 1263 4 Senior Author's Contact: Dr Garry Griffith, NSW Agriculture, Beef Industry Centre, University of New England, Armidale, 2351. Telephone: (02) 6770 1826 Facsimile: (02) 6770 1830 Email: [email protected] Citation: Griffith, G.R., I'Anson, K., Hill, D.J. and Vere, D.T. (2001), Previous Supply Elasticity Estimates for Australian Broadacre Agriculture, Economic Research Report No. 6, NSW Agriculture, Orange. iii Previous Supply Elasticity Estimates For Australian Broadacre Agriculture Table of Contents Page List of Tables…………………………………………………………………………………iv Acknowledgements…………………………………………………………………………...v Acronyms and Abbreviations Used in the Report…………………………………………..v Executive Summary………………………………………………………………………….vi 1. Introduction………………………………………………………………………………...1 2. Previous Supply Elasticity Studies……………………………………………………….. 4 2.1 Background………………………………………………………………………..4 2.2 Econometric Studies………………………………………………………………5 2.3 Programming Studies……………………………………………………………..8 3. Comparison and Evaluation of Previous Supply Elasticity Estimates………………….11 4.
    [Show full text]
  • Farming for the Future
    Farming for the Future Optimising soil health for a sustainable future in Australian broadacre cropping A report for By Alexander Nixon 2017 Nuffield Scholar March 2019 Nuffield Australia Project No 1709 Supported by: © 2019 Nuffield Australia. All rights reserved. This publication has been prepared in good faith on the basis of information available at the date of publication without any independent verification. Nuffield Australia does not guarantee or warrant the accuracy, reliability, completeness of currency of the information in this publication nor its usefulness in achieving any purpose. Readers are responsible for assessing the relevance and accuracy of the content of this publication. Nuffield Australia will not be liable for any loss, damage, cost or expense incurred or arising by reason of any person using or relying on the information in this publication. Products may be identified by proprietary or trade names to help readers identify particular types of products but this is not, and is not intended to be, an endorsement or recommendation of any product or manufacturer referred to. Other products may perform as well or better than those specifically referred to. This publication is copyright. However, Nuffield Australia encourages wide dissemination of its research, providing the organisation is clearly acknowledged. For any enquiries concerning reproduction or acknowledgement contact the Publications Manager on ph: (02) 9463 9229. Scholar Contact Details Alexander Nixon Bexa Pty Ltd T/A Devon Court Stud 769 Wallan Creek Road Drillham, Qld, 4424 Phone: 0429 432 467 Email: [email protected] In submitting this report, the Scholar has agreed to Nuffield Australia publishing this material in its edited form.
    [Show full text]
  • The Challenge to Sustainability of Broadacre Grain Cropping Systems on Clay Soils in Northern Australia
    The challenge to sustainability of broadacre grain cropping systems on clay soils in northern Australia Mike Bell A, Phil Moody B, Kaara Klepper C and Dave Lawrence C APrimary Industries and Fisheries, Dept. of Employment, Economic Development and Innovation, Kingaroy QLD, Australia, Email [email protected] BEnvironment and Resource Sciences, Department of Environment and Resource Management, Indooroopilly QLD, Australia, CPrimary Industries and Fisheries, Dept. of Employment, Economic Development and Innovation, Toowoomba QLD, Australia. Abstract Fertilizer inputs, crop yields and grain nutrient concentrations were determined for sorghum, wheat, barley and chickpeas - the main species grown in the extensive grain cropping systems of north-eastern Australia. Apparent nutrient budgets (nutrient input in fertilizer – nutrients removed in grain) almost universally showed negative balances, indicating a decline in native soil fertility reserves. This was consistent with analysis of soil chemical fertility in paired cropped and uncropped sites across Queensland that showed a significant decrease in reserves of N, P and K in all cropping areas. Variable yields from cropping under rainfed conditions in these subtropical environments make additional investment in fertiliser inputs financially risky. It is suggested that an increased frequency of legumes (grain or pasture ley) in the farming system may reduce the requirement for N fertiliser, thus allowing growers to meet the demands for other fertiliser nutrient inputs. Such changes may be essential to ensure long term sustainability of the farming system. Key Words Fertility decline, nutrient budgeting, farming systems, legumes, nitrogen Introduction The northern grains region (Figure 1) occupies approximately 4M ha across northern NSW, southern and central Queensland.
    [Show full text]
  • Identification of High Quality Agricultural Land in the Mid West Region: Stage 1 – Geraldton Planning Region Second Edition Resource Management Technical Report 386
    Department of Agriculture and Food Identification of high quality agricultural land in the Mid West region: Stage 1 – Geraldton Planning Region Second edition Resource management technical report 386 Supporting your success Identification of high quality agricultural land in the Mid West region: Stage 1 – Geraldton planning region Second edition, replaces Resource management technical report 384 Resource management technical report 386 Peter Tille, Angela Stuart-Street and Dennis van Gool Copyright © Western Australian Agriculture Authority, 2013 April 2013 ISSN 1039–7205 Cover photo: Young wheat crop growing on the rich alluvial soils of the Greenough flats. (Photo: A. Stuart-Street,) Disclaimer While all reasonable care has been taken in the preparation of the information in this document, the Chief Executive Officer of the Department of Agriculture and Food and its officers and the State of Western Australia accept no responsibility for any errors or omissions it may contain, whether caused by negligence or otherwise, or for any loss, however caused, arising from reliance on, or the use or release of, this information or any part of it. Copies of this document are available in alternative formats upon request. 3 Baron-Hay Court, South Perth WA 6151 Tel: (08) 9368 3333 Email: [email protected] agric.wa.gov.au Identification of high quality agricultural land in the Geraldton planning region Contents Acknowledgments ........................................................................................................... v Executive
    [Show full text]
  • Intercropping—Evaluating the Advantages to Broadacre Systems
    agriculture Review Intercropping—Evaluating the Advantages to Broadacre Systems Uttam Khanal 1,* , Kerry J. Stott 2 , Roger Armstrong 1,3, James G. Nuttall 1,3, Frank Henry 4, Brendan P. Christy 5 , Meredith Mitchell 5 , Penny A. Riffkin 4, Ashley J. Wallace 1, Malcolm McCaskill 4, Thabo Thayalakumaran 2 and Garry J. O’Leary 1,3 1 Agriculture Victoria, 110 Natimuk Road, Horsham, VIC 3400, Australia; [email protected] (R.A.); [email protected] (J.G.N.); [email protected] (A.J.W.); [email protected] (G.J.O.) 2 Agriculture Victoria, Centre for AgriBioscience, Bundoora, VIC 3083, Australia; [email protected] (K.J.S.); [email protected] (T.T.) 3 Centre for Agricultural Innovation, The University of Melbourne, Parkville, VIC 3010, Australia 4 Agriculture Victoria, 915 Mt Napier Road, Hamilton, VIC 3300, Australia; [email protected] (F.H.); [email protected] (P.A.R.); [email protected] (M.M.) 5 Agriculture Victoria, 124 Chiltern Valley Road, Rutherglen, VIC 3685, Australia; [email protected] (B.P.C.); [email protected] (M.M.) * Correspondence: [email protected] Abstract: Intercropping is considered by its advocates to be a sustainable, environmentally sound, and economically advantageous cropping system. Intercropping systems are complex, with non- uniform competition between the component species within the cropping cycle, typically leading to Citation: Khanal, U.; Stott, K.J.; unequal relative yields making evaluation difficult.
    [Show full text]
  • Current Recommended Practice a DIRECTORY for BROADACRE DRYLAND AGRICULTURE
    Landscapes & Industries KNOWLEDGE Current recommended practice A DIRECTORY FOR BROADACRE DRYLAND AGRICULTURE Craig Clifton, Camille McGregor, Roger Standen & Simon Fritsch Current recommended practice A DIRECTORY FOR BROADACRE DRYLAND AGRICULTURE Craig Clifton, Camille McGregor, Roger Standen & Simon Fritsch Authors: Craig Clifton, Camille McGregor, Roger Standen & Simon Fritsch Published by: Murray-Darling Basin Commission Level 5, 15 Moore Street Canberra ACT 2600 Telephone: (02) 6279 0100 from overseas + 61 2 6279 0100 Facsimile: (02) 6248 8053 from overseas + 61 2 6248 8053 Email: [email protected] Internet: http://www.mdbc.gov.au ISBN: 1 876830 69 7 Cover Photo: Lisa Robins © 2004 Murray-Darling Basin Commission This work is copyright. Graphical and textual information in the work (with the exception of photographs and the MDBC logo) may be stored, retrieved and reproduced in whole or in part, provided the information is not sold or used for commercial benefi t and its source (Murray-Darling Basin Commission, Landscapes and Industries Program, Current Recommended Practice for Broadacre Dryland Agriculture) is acknowledged. Such reproduction includes fair dealing for the purpose of private study, research, criticism or review as permitted under the Copyright Act 1968. Reproduction for other purposes is prohibited without prior permission of the Murray-Darling Basin Commission or the individual photographers and artists with whom copyright applies. To the extent permitted by law, the copyright holders (including their employees and consultants) exclude all liability to any person for any consequences, including but not limited to all losses, damages, costs, expenses and any other compensation, arising directly or indirectly from using this report (in part or in whole) and any information or material contained in it.
    [Show full text]
  • Weed Management in Sugarcane Manual Acknowledgements
    TM Weed Management in Sugarcane Manual Acknowledgements • Bayer Australia Limited • Nufarm Limited • Sumitomo Chemical Australia Pty Ltd • Barry Callow – MSF Agriculture • Allan Blair – Department of Agriculture and Fisheries • Jack Robertson – Department of Agriculture and Fisheries • Emilie Fillols – SRA Limited • Phil Ross – SRA Limited • Alexa Adamson – SRA Limited More information Authors We are committed to providing the Australian sugarcane Written by Phil Ross and Emilie Fillols. industry with resources that will help to improve its productivity, profitability and sustainability. Edition A variety of information products, tools and events which Sugar Research Australia Limited 2017 edition of the complement this manual are available including: Weed Management Manual published in 2010 by BSES Limited. • Information sheets and related articles ISBN: 978-0-949678-38-6 • Publications including soil guides, technical manuals and field guides Contact details • Research papers • Extension and research magazines Sugar Research Australia PO Box 86 • E-newsletters and industry alerts Indooroopilly QLD 4068 Australia • Extension videos Phone: 07 3331 3333 • Online decision-making and identification tools Fax: 07 3871 0383 • Training events. Email: [email protected] These resources are available on the SRA website and many items can be downloaded for mobile and tablet use. Hard copies for some items are available on request. We recommend that you subscribe to receive new resources automatically. Simply visit our website and click on Subscribe to Updates. www.sugarresearch.com.au © Copyright 2017 by Sugar Research Australia Limited. All rights reserved. No part of the Weed Management in Sugarcane Manual (this publication), may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior permission of Sugar Research Australia Limited.
    [Show full text]
  • The Health and Safety of South Australian Farmers, Farm Families and Farm Workers
    The Health and Safety of South Australian Farmers, Farm Families and Farm Workers Northern Territory Queensland Western Australia South Australia New South Wales Victoria Tasmania Richard Franklin Lyn Fragar Andrew Page ISBN 1 876491 54 X © 1999 Australian Agricultural Health Unit Franklin, R; Fragar, L. & Page, A. (1999). The Health and Safety of South Australian Farmers, Farm Families and Farm Workers. Australian Agricultural Health Unit, Moree PO Box 256 Moree NSW 2400 Australia Acknowledgments Many people contributed to the development of this publication and without their support and commitment it would not have been possible. We would like to thank: • Jane Mackereth from South Australian Divisions of General Practice Inc and Merelyn Boyce from the Farm Injury Reference Group for collecting the information on deaths from the coroners office and for patiently waiting while we wrote the report. • Donna Dias at the Research and Analysis Unit of WorkCover for providing information on agricultural injuries. • Julie Mitchell from the Health Information Centre of the South Australian Health Commission. • South Australian Coroners Office for assistance and access to their records. • Alex Van Rooijen, the Eyre Division of General Practice and the York Peninsula Division of General Practice. • South Australian Ambulance Service for the information they provided, in particular Roslyn Clermont. • Dr Tony Lower, Dr Tim Driscoll and Dr Lesley Day for reviewing the report for publication. This report is part of the project National Farm Injury Data
    [Show full text]