Brachymonas Denitrificans Gen. Nov., Sp. Nov., An
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Response of Heterotrophic Stream Biofilm Communities to a Gradient of Resources
The following supplement accompanies the article Response of heterotrophic stream biofilm communities to a gradient of resources D. J. Van Horn1,*, R. L. Sinsabaugh1, C. D. Takacs-Vesbach1, K. R. Mitchell1,2, C. N. Dahm1 1Department of Biology, University of New Mexico, Albuquerque, New Mexico 87131, USA 2Present address: Department of Microbiology & Immunology, University of British Columbia Life Sciences Centre, Vancouver BC V6T 1Z3, Canada *Email: [email protected] Aquatic Microbial Ecology 64:149–161 (2011) Table S1. Representative sequences for each OTU, associated GenBank accession numbers, and taxonomic classifications with bootstrap values (in parentheses), generated in mothur using 14956 reference sequences from the SILVA data base Treatment Accession Sequence name SILVA taxonomy classification number Control JF695047 BF8FCONT18Fa04.b1 Bacteria(100);Proteobacteria(100);Gammaproteobacteria(100);Pseudomonadales(100);Pseudomonadaceae(100);Cellvibrio(100);unclassified; Control JF695049 BF8FCONT18Fa12.b1 Bacteria(100);Proteobacteria(100);Alphaproteobacteria(100);Rhizobiales(100);Methylocystaceae(100);uncultured(100);unclassified; Control JF695054 BF8FCONT18Fc01.b1 Bacteria(100);Planctomycetes(100);Planctomycetacia(100);Planctomycetales(100);Planctomycetaceae(100);Isosphaera(50);unclassified; Control JF695056 BF8FCONT18Fc04.b1 Bacteria(100);Proteobacteria(100);Gammaproteobacteria(100);Xanthomonadales(100);Xanthomonadaceae(100);uncultured(64);unclassified; Control JF695057 BF8FCONT18Fc06.b1 Bacteria(100);Proteobacteria(100);Betaproteobacteria(100);Burkholderiales(100);Comamonadaceae(100);Ideonella(54);unclassified; -
Enrichment of Beneficial Cucumber Rhizosphere Microbes Mediated By
Wen et al. Horticulture Research (2020) 7:154 Horticulture Research https://doi.org/10.1038/s41438-020-00380-3 www.nature.com/hortres ARTICLE Open Access Enrichment of beneficial cucumber rhizosphere microbes mediated by organic acid secretion Tao Wen1,JunYuan1, Xiaoming He2,YueLin2,QiweiHuang1 andQirongShen 1 Abstract Resistant cultivars have played important roles in controlling Fusarium wilt disease, but the roles of rhizosphere interactions among different levels of resistant cultivars are still unknown. Here, two phenotypes of cucumber, one resistant and one with increased susceptibility to Fusarium oxysporum f.sp. cucumerinum (Foc), were grown in the soil and hydroponically, and then 16S rRNA gene sequencing and nontargeted metabolomics techniques were used to investigate rhizosphere microflora and root exudate profiles. Relatively high microbial community evenness for the Foc-susceptible cultivar was detected, and the relative abundances of Comamonadaceae and Xanthomonadaceae were higher for the Foc-susceptible cultivar than for the other cultivar. FishTaco analysis revealed that specific functional traits, such as protein synthesis and secretion, bacterial chemotaxis, and small organic acid metabolism pathways, were significantly upregulated in the rhizobacterial community of the Foc-susceptible cultivar. A machine- learning approach in conjunction with FishTaco plus metabolic pathway analysis revealed that four organic acids (citric acid, pyruvate acid, succinic acid, and fumarate) were released at higher abundance by the Foc-susceptible cultivar compared with the resistant cultivar, which may be responsible for the recruitment of Comamonadaceae, a potential beneficial microbial group. Further validation demonstrated that Comamonadaceae can be “cultured” by these organic acids. Together, compared with the resistant cultivar, the susceptible cucumber tends to assemble beneficial microbes by secreting more organic acids. -
Microbial Community Response to Heavy and Light Crude Oil in the Great Lakes
Microbial Community Response to Heavy and Light Crude Oil in the Great Lakes Stephen Techtmann 10/24/19 Microbial Sensors Techtmann Lab @ MTU Investigating the applications of environmental microbial communities Hydraulic Fracturing Related Antibiotic Resistance Oil Bioremediation Techtmann Lab @ MTU Overview • Background on oil biodegradation • Microbial response to light and heavy crude oil in the Great Lakes • Machine learning for prediction of contamination in the Great Lakes. Oil Spills Deepwater Horizon Enbridge Line 6B Deepwater Horizon Oil Spill • 4,1000,000 bbl of oil released • Light Sweet Crude oil released • April 20, 2010 • 1101.7 miles of shoreline oiled Atlas and Hazen 2011 Enbridge Line 6B Spill – Marshall MI • 20,082 bbl of oil released • Diluted Bitumen • July 26, 2010 • 70 miles of shoreline oiled https://www.mlive.com/news/kalamazoo/2010/07/state_of_emergency_declared_as.html Oil Transmissions Pipelines in the Great Lakes Region Line 5: • 645 miles from Superior WI to Sarnia Ontario • 540,000 barrels per day • Light crude and natural gas liquids (NGLs) Crude oil Oil types and API Gravity Microbes and Biotechnology (Bioremediation) Low cost input Microbe High value output Decreased Cost Contaminant Increased Efficiency Carbon dioxide or non- toxic daughter products Carbon dioxide Microbial Biomass Petroleum Microbe Daughter Products Water Microbial Ecology and Biotechnology Low cost input Microbe High value output Decreased Cost/Increased Efficiency Complex input Input A Microbe Microbe Output A Input B Microbe Output -
Anti-Bacterial Effects of Mno2 on the Enrichment of Manganese
Microbes Environ. 35(4), 2020 https://www.jstage.jst.go.jp/browse/jsme2 doi:10.1264/jsme2.ME20052 Anti-bacterial Effects of MnO2 on the Enrichment of Manganese-oxidizing Bacteria in Downflow Hanging Sponge Reactors Shuji Matsushita1,2, Takafumi Hiroe1, Hiromi Kambara1, Ahmad Shoiful1,3, Yoshiteru Aoi4, Tomonori Kindaichi1, Noriatsu Ozaki1, Hiroyuki Imachi5, and Akiyoshi Ohashi1* 1Department of Civil and Environmental Engineering, Graduate School of Advanced Science and Engineering, Hiroshima University, 1–4–1, Kagamiyama, Higashi-Hiroshima, Hiroshima 739–8527, Japan; 2Western Region Industrial Research Center, Hiroshima Prefectural Technology Research Institute, 2–10–1, Aga-minami, Kure, Hiroshima 737–0004, Japan; 3Center of Technology for the Environment, Agency for the Assessment and Application of Technology, Geostech Building, Kawasan PUSPIPTEK, Serpong, Tangerang Selatan 15314, Indonesia; 4Environmental Microbiology Laboratory, Graduate School of Advance Sciences of Matter, Hiroshima University, 2–313, Kagamiyama, Higashi-Hiroshima, Hiroshima 739–8527, Japan; and 5Department of Subsurface Geobiological Analysis and Research, Japan Agency for Marine-Earth Science & Technology, Yokosuka, Kanagawa 237–0061, Japan (Received April 26, 2020—Accepted August 2, 2020—Published online September 19, 2020) We focused on the use of abiotic MnO2 to develop reactors for enriching manganese-oxidizing bacteria (MnOB), which may then be used to treat harmful heavy metal-containing wastewater and in the recovery of useful minor metals. Downflow hanging sponge (DHS) reactors were used under aerobic and open conditions to investigate the potential for MnOB enrichment. The results of an experiment that required a continuous supply of organic feed solution containing Mn(II) demonstrated that MnOB enrichment and Mn(II) removal were unsuccessful in the DHS reactor when plain sponge cubes were used. -
Hydrogenophaga Electricum Sp. Nov., Isolated from Anodic Biofilms of an Acetate-Fed Microbial Fuel Cell
J. Gen. Appl. Microbiol., 59, 261‒266 (2013) Full Paper Hydrogenophaga electricum sp. nov., isolated from anodic biofilms of an acetate-fed microbial fuel cell Zen-ichiro Kimura and Satoshi Okabe* Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, Kita-ku, Sapporo, Hokkaido 060‒8628, Japan (Received October 25, 2012; Accepted April 2, 2013) A Gram-negative, non-spore-forming, rod-shaped bacterial strain, AR20T, was isolated from an- odic biofilms of an acetate-fed microbial fuel cell in Japan and subjected to a polyphasic taxo- nomic study. Strain AR20T grew optimally at pH 7.0‒8.0 and 25°C. It contained Q-8 as the pre- dominant ubiquinone and C16:0, summed feature 3 (C16:1ω7c and/or iso-C15:02OH), and C18:1ω7c as the major fatty acids. The DNA G+C content was 67.1 mol%. A neighbor-joining phylogenetic tree revealed that strain AR20T clustered with three type strains of the genus Hydrogenophaga (H. flava, H. bisanensis and H. pseudoflava). Strain AR20T exhibited 16S rRNA gene sequence similarity values of 95.8‒97.7% to the type strains of the genus Hydrogenophaga. On the basis of phenotypic, chemotaxonomic and phylogenetic data, strain AR20T is considered a novel species of the genus Hydrogenophaga, for which the name Hydrogenophaga electricum sp. nov. is pro- posed. The type strain is AR20T (= KCTC 32195T = NBRC 109341T). Key Words—Hydrogenophaga electricum; hydrogenotrophic exoelectrogen; microbial fuel cell Introduction the MFC was analyzed. Results showed that bacteria belonging to the genera Geobacter and Hydrogenoph- Microbial fuel cells (MFCs) are devices that are able aga were abundantly present in the anodic biofilm to directly convert the chemical energy of organic community (Kimura and Okabe, 2013). -
Assessing Diversity and Biogeography of Aerobic
Assessing diversity and biogeography of aerobic anoxygenic phototrophic bacteria in surface waters of the Atlantic and Pacific Oceans using the Global Ocean Sampling expedition metagenomes Natalya Yutin, Marcelino Suzuki, Hanno Teeling, Marc Weber, J Venter, Douglas Rusch, Oded Béjà To cite this version: Natalya Yutin, Marcelino Suzuki, Hanno Teeling, Marc Weber, J Venter, et al.. Assessing diversity and biogeography of aerobic anoxygenic phototrophic bacteria in surface waters of the Atlantic and Pacific Oceans using the Global Ocean Sampling expedition metagenomes. Environmental Microbiology, Society for Applied Microbiology and Wiley-Blackwell, 2007, 9, pp.1464 - 1475. 10.1111/j.1462- 2920.2007.01265.x. hal-03012626 HAL Id: hal-03012626 https://hal.archives-ouvertes.fr/hal-03012626 Submitted on 18 Nov 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. emi_1265 Environmental Microbiology (2007) doi:10.1111/j.1462-2920.2007.01265.x Assessing diversity and biogeography of aerobic anoxygenic phototrophic bacteria in surface waters of the Atlantic and Pacific Oceans using the Global Ocean Sampling expedition metagenomes Natalya Yutin,1 Marcelino T. Suzuki,2* phs were detected using various techniques ranging Hanno Teeling,3 Marc Weber,3 J. -
Impact of Cropping Systems, Soil Inoculum, and Plant Species Identity on Soil Bacterial Community Structure
Impact of Cropping Systems, Soil Inoculum, and Plant Species Identity on Soil Bacterial Community Structure Authors: Suzanne L. Ishaq, Stephen P. Johnson, Zach J. Miller, Erik A. Lehnhoff, Sarah Olivo, Carl J. Yeoman, and Fabian D. Menalled The final publication is available at Springer via http://dx.doi.org/10.1007/s00248-016-0861-2. Ishaq, Suzanne L. , Stephen P. Johnson, Zach J. Miller, Erik A. Lehnhoff, Sarah Olivo, Carl J. Yeoman, and Fabian D. Menalled. "Impact of Cropping Systems, Soil Inoculum, and Plant Species Identity on Soil Bacterial Community Structure." Microbial Ecology 73, no. 2 (February 2017): 417-434. DOI: 10.1007/s00248-016-0861-2. Made available through Montana State University’s ScholarWorks scholarworks.montana.edu Impact of Cropping Systems, Soil Inoculum, and Plant Species Identity on Soil Bacterial Community Structure 1,2 & 2 & 3 & 4 & Suzanne L. Ishaq Stephen P. Johnson Zach J. Miller Erik A. Lehnhoff 1 1 2 Sarah Olivo & Carl J. Yeoman & Fabian D. Menalled 1 Department of Animal and Range Sciences, Montana State University, P.O. Box 172900, Bozeman, MT 59717, USA 2 Department of Land Resources and Environmental Sciences, Montana State University, P.O. Box 173120, Bozeman, MT 59717, USA 3 Western Agriculture Research Center, Montana State University, Bozeman, MT, USA 4 Department of Entomology, Plant Pathology and Weed Science, New Mexico State University, Las Cruces, NM, USA Abstract Farming practices affect the soil microbial commu- then individual farm. Living inoculum-treated soil had greater nity, which in turn impacts crop growth and crop-weed inter- species richness and was more diverse than sterile inoculum- actions. -
Rhodoplanes Gen. Nov., a New Genus of Phototrophic Including
INTERNATIONALJOURNAL OF SYSTEMATICBACTERIOLOGY, Oct. 1994, p. 665-673 Vol. 44, No. 4 0020-7713/94/$04.00+0 Copyright 0 1994, International Union of Microbiologicai Societies Rhodoplanes gen. nov., a New Genus of Phototrophic Bacteria Including Rhodopseudomonas rosea as Rhodoplanes roseus comb. nov. and Rhodoplanes elegans sp. nov. AKIRA HIMISHI* AND YOKO UEDA Laboratory of Environmental Biotechnology, Konishi Co., Yokokawa, Sumida-ku, Tokyo 130, Japan Two new strains (AS130 and AS140) of phototrophic purple nonsulfur bacteria isolated from activated sludge were characterized and compared with Rhodopseudomoms rosea and some other species of the genus Rhodopseudomoms. The new isolates produced pink photosynthetic cultures, had rod-shaped cells that divided by budding, and formed intracytoplasmic membranes of the lamellar type together with bacteriochlorophyll a and carotenoids of the normal spirilloxanthin series. They were also characterized by their capacity for complete denitrification and their production of both ubiquinone-10 and rhodoquinone-10 as major quinones. The isolates were phenotypically most similar to R. rosea but exhibited low levels of genomic DNA hybridization to this species and to all other Rhodopseudomonas species compared. Phylogenetic analyses on the basis of PCR-amplified 16s rRNA gene sequences showed that our isolates and R. rosea formed a cluster distinct from other members of the genus Rhodopseudomonas. The phenotypic, genotypic, and phylogenetic data show that the new isolates and R. rosea should be placed in a new single genus rather than included in the genus Rhodopseudomonas. Thus, we propose to transfer R. rosea to a new genus, Rhodoplanes, as Rhodoplanes roseus gen. nov., comb. nov. (type species) and to designate strains AS130 and AS140 a new species, Rhodoplanes elegans sp. -
Fish Bacterial Flora Identification Via Rapid Cellular Fatty Acid Analysis
Fish bacterial flora identification via rapid cellular fatty acid analysis Item Type Thesis Authors Morey, Amit Download date 09/10/2021 08:41:29 Link to Item http://hdl.handle.net/11122/4939 FISH BACTERIAL FLORA IDENTIFICATION VIA RAPID CELLULAR FATTY ACID ANALYSIS By Amit Morey /V RECOMMENDED: $ Advisory Committe/ Chair < r Head, Interdisciplinary iProgram in Seafood Science and Nutrition /-■ x ? APPROVED: Dean, SchooLof Fisheries and Ocfcan Sciences de3n of the Graduate School Date FISH BACTERIAL FLORA IDENTIFICATION VIA RAPID CELLULAR FATTY ACID ANALYSIS A THESIS Presented to the Faculty of the University of Alaska Fairbanks in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE By Amit Morey, M.F.Sc. Fairbanks, Alaska h r A Q t ■ ^% 0 /v AlA s ((0 August 2007 ^>c0^b Abstract Seafood quality can be assessed by determining the bacterial load and flora composition, although classical taxonomic methods are time-consuming and subjective to interpretation bias. A two-prong approach was used to assess a commercially available microbial identification system: confirmation of known cultures and fish spoilage experiments to isolate unknowns for identification. Bacterial isolates from the Fishery Industrial Technology Center Culture Collection (FITCCC) and the American Type Culture Collection (ATCC) were used to test the identification ability of the Sherlock Microbial Identification System (MIS). Twelve ATCC and 21 FITCCC strains were identified to species with the exception of Pseudomonas fluorescens and P. putida which could not be distinguished by cellular fatty acid analysis. The bacterial flora changes that occurred in iced Alaska pink salmon ( Oncorhynchus gorbuscha) were determined by the rapid method. -
Phenotypic and Genetic Diversity of Pseudomonads
PHENOTYPIC AND GENETIC DIVERSITY OF PSEUDOMONADS ASSOCIATED WITH THE ROOTS OF FIELD-GROWN CANOLA A Thesis Submitted to the College of Graduate Studies and Research In Partial Fulfillment of the Requirements For the Degree of Doctor of Philosophy In the Department of Applied Microbiology and Food Science University of Saskatchewan Saskatoon By Danielle Lynn Marie Hirkala © Copyright Danielle Lynn Marie Hirkala, November 2006. All rights reserved. PERMISSION TO USE In presenting this thesis in partial fulfilment of the requirements for a Postgraduate degree from the University of Saskatchewan, I agree that the Libraries of this University may make it freely available for inspection. I further agree that permission for copying of this thesis in any manner, in whole or in part, for scholarly purposes may be granted by the professor or professors who supervised my thesis work or, in their absence, by the Head of the Department or the Dean of the College in which my thesis work was done. It is understood that any copying or publication or use of this thesis or parts thereof for financial gain shall not be allowed without my written permission. It is also understood that due recognition shall be given to me and to the University of Saskatchewan in any scholarly use which may be made of any material in my thesis. Requests for permission to copy or to make other use of material in this thesis in whole or part should be addressed to: Head of the Department of Applied Microbiology and Food Science University of Saskatchewan Saskatoon, Saskatchewan, S7N 5A8 i ABSTRACT Pseudomonads, particularly the fluorescent pseudomonads, are common rhizosphere bacteria accounting for a significant portion of the culturable rhizosphere bacteria. -
Mitigating Biofouling on Reverse Osmosis Membranes Via Greener Preservatives
Mitigating biofouling on reverse osmosis membranes via greener preservatives by Anna Curtin Biology (BSc), Le Moyne College, 2017 A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of MASTER OF APPLIED SCIENCE in the Department of Civil Engineering, University of Victoria © Anna Curtin, 2020 University of Victoria All rights reserved. This Thesis may not be reproduced in whole or in part, by photocopy or other means, without the permission of the author. Supervisory Committee Mitigating biofouling on reverse osmosis membranes via greener preservatives by Anna Curtin Biology (BSc), Le Moyne College, 2017 Supervisory Committee Heather Buckley, Department of Civil Engineering Supervisor Caetano Dorea, Department of Civil Engineering, Civil Engineering Departmental Member ii Abstract Water scarcity is an issue faced across the globe that is only expected to worsen in the coming years. We are therefore in need of methods for treating non-traditional sources of water. One promising method is desalination of brackish and seawater via reverse osmosis (RO). RO, however, is limited by biofouling, which is the buildup of organisms at the water-membrane interface. Biofouling causes the RO membrane to clog over time, which increases the energy requirement of the system. Eventually, the RO membrane must be treated, which tends to damage the membrane, reducing its lifespan. Additionally, antifoulant chemicals have the potential to create antimicrobial resistance, especially if they remain undegraded in the concentrate water. Finally, the hazard of chemicals used to treat biofouling must be acknowledged because although unlikely, smaller molecules run the risk of passing through the membrane and negatively impacting humans and the environment. -
Supplemental Information Supplemental Text Math for Back
Supplemental Information Supplemental Text Math for back calculating the per-cell division rates in Henson et al. 2018 assuming 15%--55% viability. "# Denote the initial cell count as �!, and the cell count in � generation as�$. If all the cells are viable, per each generation, all the cells are doubling: �$ = �$%& ⋅ 2 (eq. S1.1) And therefore, after �generations, the cell count �$would be: $ �$ = �! ⋅ 2 (eq. S1.2) When not all the cells are viable, for each generation, instead of simply doubling the whole population, only a portion of the cells (denoted as� < 1) replicates. In this case: �$ = �$%& ⋅ (1 + �) (eq. S1.3) Here we can see that (eq. 3.1) is actually a special case of (eq. 3.3), when � = 1, �$ = �$%& ⋅ (1 + 1) = �$%& ⋅ 2 When � < 1, after � generations: $ �$ = �! ⋅ (1 + �) (eq. S1.4) Denoting the total time to get � generations as �, which means the number of generations per unit time, also known as the per-cell division rate, is � = �/�. Rewriting (eq. 3.4), we have: '⋅" '⋅)*+!(&-.)⋅" �$ = �! ⋅ (1 + �) = �! ⋅ 2 (eq. S1.5) According to (eq. 3.5), a cell population of �viability and � per cell division rate, the population division rate is: �0*01)2"3*$ = � ⋅ ���4(1 + �) (eq. S1.6) %& Henson et al. 2018 show that the optimal population division rate of SAR11 LD12 is �0*01)2"3*$ = 0.5 ��� , assuming the viability of LD12 is � = 0.15, by plugging in these two numbers to (eq. S1.6), we can get the per-cell division rate of LD12 is: � = �0*01)2"3*$/���4(1 + �) %& = 0.5 ��� /���4(1 + 0.15) = 0.5 ���%&/0.20163 = 2.48 ���%& If assuming � = 0.55, � = 0.79 ���%&.