Bibliography
Total Page:16
File Type:pdf, Size:1020Kb
Bibliography [1] E. Abe, Hopf algebras. Cambridge University Press, 1980. [2] M. Abramowitz and I.A. Stegun, Handbook of mathematical functions. United States Department of Commerce, 1965. [3] M.S. Agranovich, Spectral properties of elliptic pseudodifferential operators on a closed curve. (Russian) Funktsional. Anal. i Prilozhen. 13 (1979), no. 4, 54–56. (English translation in Functional Analysis and Its Applications. 13, p. 279–281.) [4] M.S. Agranovich, Elliptic pseudodifferential operators on a closed curve. (Russian) Trudy Moskov. Mat. Obshch. 47 (1984), 22–67, 246. (English translation in Transactions of Moscow Mathematical Society. 47, p. 23–74.) [5] M.S. Agranovich, Elliptic operators on closed manifolds (in Russian). Itogi Nauki i Tehniki, Ser. Sovrem. Probl. Mat. Fund. Napravl. 63 (1990), 5–129. (English translation in Encyclopaedia Math. Sci. 63 (1994), 1–130.) [6] B.A. Amosov, On the theory of pseudodifferential operators on the circle. (Russian) Uspekhi Mat. Nauk 43 (1988), 169–170; translation in Russian Math. Surveys 43 (1988), 197–198. [7] B.A. Amosov, Approximate solution of elliptic pseudodifferential equations on a smooth closed curve. (Russian) Z. Anal. Anwendungen 9 (1990), 545– 563. [8] P. Antosik, J. Mikusi´nski and R. Sikorski, Theory of distributions. The se- quential approach. Warszawa. PWN – Polish Scientific Publishers, 1973. [9] A. Baker, Matrix Groups. An Introduction to Lie Group Theory. Springer- Verlag, 2002. [10] J. Barros-Neto, An introduction to the theory of distributions . Marcel Dekker, Inc., 1973. [11] R. Beals, Advanced mathematical analysis. Springer-Verlag, 1973. [12] R. Beals, Characterization of pseudodifferential operators and applications. Duke Mathematical Journal. 44 (1977), 45–57. 684 Bibliography [13] A.P. Bergamasco and P.L. da Silva, Solvability in the large for a class of vector fields on the torus. J. Math. Pures Appl. 86 (2006), 427–447. [14] J. Bergh and J. L¨ofstr¨om, Interpolation spaces. An introduction. Springer- Verlag, 1976. [15] G. Boole, Finite differences. 4th edition, Library of Congress catalogue card no. 57-8495. (1st edition 1860). [16] J. Bourgain, Exponential sums and nonlinear Schr¨odinger equations. Geom. Funct. Anal. 3 (1993), 157–178. [17] J. Bourgain, Fourier transform restriction phenomena for certain lattice sub- sets and applications to nonlinear evolution equations. I. Schr¨odinger equa- tions. Geom. Funct. Anal. 3 (1993), 107–156. [18] J. Bourgain, Global solutions of nonlinear Schr¨odinger equations. American Mathematical Society Colloquium Publications, 1999. [19] G.E. Bredon: Introduction to Compact Transformation Groups. Academic Press, 1972. [20] T. Br¨ocker and T. tom Dieck, Representations of Compact Lie Groups. Springer-Verlag, 1985. [21] A.P. Calder´on, Commutators of singular integral operators. Proc. Nat. Acad. Sci. USA 53 (1965), 1092–1099. [22] A.P. Calder´on and R. Vaillancourt, On the boundedness of pseudo-differen- tial operators , J. Math. Soc. Japan 23 (1971), 374–378. [23] R.R. Coifman and Y. Meyer, Au-del`ades op´erateurs pseudo-diff´erentiels. Ast´erisque 57, Soci´et´eMath. de France. 1978. [24] L. Comtet, Advanced combinatorics. Dordrecht. D.Reidel Publishing Com- pany, 1974. [25] H.O. Cordes, On compactness of commutators of multiplications and convo- lutions, and boundedness of pseudo-differential operators, J. Funct. Anal. 18 (1975), 115–131. [26] H.O. Cordes, On pseudodifferential operators and smoothness of special Lie group representations. Manuscripta Math. 28 (1979), 51–69. [27] H.O. Cordes, The technique of pseudodifferential operators . Cambridge Uni- versity Press, 1995. [28] D. Crespin, Hahn–Banach Theorem Implies Riesz Theorem. Portugaliae Mathematica 51 (1994), 217–218. [29] G. David, Wavelets and singular integrals on curves and surfaces. Springer- Verlag, 1992. [30] J.J. Duistermaat, Fourier integral operators. Birkh¨auser, 1996. Bibliography 685 [31] J.J. Duistermaat and J.A. Kolk, Lie groups. Springer-Verlag, 2000. [32] J. Dunau, Fonctions d’un operateur elliptique sur une variete compacte. J. Math. Pures et Appl. 56 (1977), 367–391. [33] Y.V. Egorov, B.-W. Schulze, Pseudo-differential operators, singularities, ap- plications. Operator Theory: Advances and Applications, 93, Birkh¨auser, 1997. [34] J. Elschner, Singular ordinary differential operators and pseudodifferential equations. Springer-Verlag, 1985. [35] G.B. Folland. Real Analysis. Modern techniques and their applications. Sec- ond edition. A Wiley-Interscience Publication. John Wiley and Sons, Inc., 1999. [36] G.B. Folland, Harmonic analysis in phase space. Princeton Univ. Press, 1989. [37] H. Freudenthal and H. de Vries, Linear Lie Groups. Academic Press, 1969. [38] S.A. Gaal, Linear Analysis and Representation Theory. Springer-Verlag, 1973. [39] I.M. Gelfand and G.E. Shilov, Generalized functions. Vols. 1–3, Academic Press, 1968 [40] F. Geshwind and N.H. Katz, Pseudodifferential operators on SU(2), J. Fourier Anal. Appl. 3 (1997), 193–205. [41] P. Glowacki, A symbolic calculus and L2-boundedness on nilpotent Lie groups , J. Funct. Anal. 206 (2004), 233–251. [42] T. Gramchev, P. Popivanov and M. Yoshino, Global solvability and hypoel- lipticity on the torus for a class of differential operators with variable coef- ficients. Proc. Japan Acad. Ser. A Math. Sci. 68 (1992), 53–57. [43] T. Gramchev, P. Popivanov and M. Yoshino, Global properties in spaces of generalized functions on the torus for second order differential operators with variable coefficients. Rend. Sem. Mat. Univ. Politec. Torino 51 (1993), 145–172. [44] T. Gramchev, Simultaneous normal forms of perturbations of vector fields on tori with zero order pseudodifferential operators. Symmetry and perturbation theory (Rome, 1998), 187–195, World Sci. Publ., River Edge, NJ, 1999. [45] A. Grigis and J. Sj¨ostrand, Microlocal analysis for differential operators. An introduction. Cambridge University Press, 1994. [46] P.R. Halmos, Naive Set Theory. Springer-Verlag. 1974. [47] S. Helgason, Differential geometry and symmetric spaces. Academic Press, 1962. 686 Bibliography [48] S. Helgason, Topics in harmonic analysis on homogeneous spaces. Birk- h¨auser, 1981. [49] S. Helgason, Groups and geometric analysis , Academic Press, 1984. [50] E. Hewitt and K.A. Ross, Abstract Harmonic Analysis I. Springer-Verlag, 1963. [51] E. Hewitt and K.A. Ross, Abstract Harmonic Analysis II. Springer-Verlag, 1963. [52] F.B. Hildebrand, Finite-difference equations and simulations. Prentice-Hall, Inc., 1968. [53] E. Hille and R.S. Phillips, Functional Analysis and Semi-Groups. American Mathematical Society, 1981. [54] M.W. Hirsch, Differential Topology. Springer-Verlag, 1976. [55] L. H¨ormander, The analysis of linear partial differential operators III. Springer-Verlag, 1985. [56] L. H¨ormander, The Analysis of Linear Partial Differential Operators IV. Springer-Verlag, 1985. [57] R. Howe, A symbolic calculus for nilpotent groups , Operator algebras and group representations, Vol. I (Neptun, 1980), 254–277, Monogr. Stud. Math., 17, Pitman, Boston, MA, 1984. [58] T. Husain, Introduction to Topological Groups. W.B. Saunders Company, 1966. [59] V. Hutson and J.S. Pym, Applications of functional analysis and operator theory. Academic Press, 1980. [60] Ch. Jordan, Calculus of finite differences. New York. Chelsea Publishing Company, 1950. [61] Y. Katznelson, An Introduction to Harmonic Analysis. Dover, 1976. [62] O. Kelle and G. Vainikko, A fully discrete Galerkin method of integral and pseudodifferential equations on closed curves. Journal for Analysis and its Applications. 14 (1995), 593–622. [63] J.L. Kelley, I. Namioka et al.: Linear Topological Spaces. D. Van Nostrand Company, Inc. Princeton, New Jersey, 1963. [64] A.A. Kirillov, Elements of the Theory of Representations. Springer-Verlag, 1976. [65] A. Klimyk and K. Schm¨udgen, Quantum Groups and Their Representations. Springer-Verlag, 1997. [66] K. Knopp, Theory and application of infinite series. Glasgow. Blackie & Son Limited, 1948. Bibliography 687 [67] D.E. Knuth, Two notes on notation. Amer. Math. Monthly 99 (1992), 403– 422. [68] J.J. Kohn and L. Nirenberg, On the algebra of pseudo-differential operators. Comm. Pure Appl. Math. 18 (1965), 269–305. [69] R. Kress, Linear integral equations. Springer-Verlag, 1989. [70] E. Kreyszig, Introductory Functional Analysis with Applications. John Wiley & Sons 1989. [71] H. Kumano-go, Pseudodifferential operators. MIT Press, Cambridge, Mass.- London, 1981. [72] J.-L. Lions and E. Magenes, Non-homogeneous boundary value problems and applications. Vol. I. Springer-Verlag. 1972. [73] S. Majid, Foundations of Quantum Group Theory. Cambridge University Press, 1995. [74] S. Majid, A Quantum Groups Primer. Cambridge University Press, 2002. [75] D.K. Maslen, Efficient computation of Fourier transforms on compact groups. J. Fourier Anal. Appl. 4 (1998), 19–52. [76] W. McLean, Local and global description of periodic pseudodifferential oper- ators. Math. Nachr. 150 (1991), 151–161. [77] G.A. Meladze and M.A. Shubin, A functional calculus of pseudodifferential operators on unimodular Lie groups . J. Soviet Math. 47 (1989), 2607–2638. [78] A. Melin, Parametrix constructions for right invariant differential operators on nilpotent groups , Ann. Global Anal. Geom. 1 (1983), 79–130. [79] S.T. Melo, Characterizations of pseudodifferential operators on the circle . Proc. Amer. Math. Soc. 125 (1997), 1407–1412. [80] S.T. Melo, Smooth operators for the regular representation on homogeneous spaces. Stud. Math. 142 (2000), 149–157. [81] R.B. Melrose, Geometric scattering theory.