Memberships Subscriptions& 2 Contents
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Download The
LEADING THE FUTURE OF TECHNOLOGY 2016 ANNUAL REPORT TABLE OF CONTENTS 1 MESSAGE FROM THE IEEE PRESIDENT AND THE EXECUTIVE DIRECTOR 3 LEADING THE FUTURE OF TECHNOLOGY 5 GROWING GLOBAL AND INDUSTRY PARTNERSHIPS 11 ADVANCING TECHNOLOGY 17 INCREASING AWARENESS 23 AWARDING EXCELLENCE 29 EXPANSION AND OUTREACH 33 ELEVATING ENGAGEMENT 37 MESSAGE FROM THE TREASURER AND REPORT OF INDEPENDENT CERTIFIED PUBLIC ACCOUNTANTS 39 CONSOLIDATED FINANCIAL STATEMENTS Barry L. Shoop 2016 IEEE President and CEO IEEE Xplore® Digital Library to enable personalized importantly, we must be willing to rise again, learn experiences based on second-generation analytics. from our experiences, and advance. As our members drive ever-faster technological revolutions, each of us MESSAGE FROM As IEEE’s membership continues to grow must play a role in guaranteeing that our professional internationally, we have expanded our global presence society remains relevant, that it is as innovative as our THE IEEE PRESIDENT AND and engagement by opening offices in key geographic members are, and that it continues to evolve to meet locations around the world. In 2016, IEEE opened a the challenges of the ever-changing world around us. second office in China, due to growth in the country THE EXECUTIVE DIRECTOR and to better support engineers in Shenzhen, China’s From Big Data and Cloud Computing to Smart Grid, Silicon Valley. We expanded our office in Bangalore, Cybersecurity and our Brain Initiative, IEEE members India, and are preparing for the opening of a new IEEE are working across varied disciplines, pursuing Technology continues to be a transformative power We continue to make great strides in our efforts to office in Vienna, Austria. -
Diana Marculescu
DIANA MARCULESCU Carnegie Mellon University Phone: (412) 268-1167 Dept. of ECE, 5000 Forbes Ave E-mail: [email protected] Pittsburgh, PA 15213-3890 URL: http://users.ece.cmu.edu/~dianam David Edward Schramm Professor of Electrical and Computer Engineering Founding Director, Center for Faculty Success, College of Engineering RESEARCH INTERESTS Sustainability- and energy-aware computer system modeling and optimization Energy-aware machine learning; Fast and accurate power modeling, estimation, optimization for multi- core systems; Modeling and optimization for sustainability in computing and renewable energy Reliability- and variability-aware system design Modeling, analysis, and optimization of soft-error rate in large digital circuits; Microarchitecture to system level design variability modeling and mitigation; 3D integration and impact of process variations Discrete modeling and analysis of non-silicon networks Logical models and hardware emulation for efficient nonlinear system analysis; Efficient models for computational biology; Electronic textiles and smart fabrics EDUCATION Ph.D. in Computer Engineering, University of Southern California - August 1998 Dissertation: Information-theoretic and Probabilistic Measures for Power Analysis of Digital Circuits Advisor: Prof. Massoud Pedram M.S. in Computer Science (Eng. Dipl.), Polytechnic Institute of Bucharest, Romania - June 1991 Dissertation: Fault-tolerant Database System Design Advisor: Prof. Irina Athanasiu PROFESSIONAL EXPERIENCE David Edward Schramm Professor, Dept. of ECE, Carnegie Mellon University, Oct. 2016 – Present Founding Director, Center for Faculty Success, College of Engineering, Carnegie Mellon University, Nov. 2014 – present Founded and led the only CMU center focused on faculty development and support. Developed and ran programs for faculty recruiting, mentoring, development, and diversity/inclusion awareness for over 600 faculty, staff, and students at CMU and other institutions. -
IEEE Xplore文献资源介绍 IEEE Xplore科研检索演示 IEEE国际期刊会议投稿流程 IEEE相关资源推介 1
深度解密IEEE数据库: 科研检索与学术投稿 陈伟 iGroup公司IEEE产品培训主管 2016 培训重点 IEEE Xplore文献资源介绍 IEEE Xplore科研检索演示 IEEE国际期刊会议投稿流程 IEEE相关资源推介 1. 关于IEEE The Institute of Electrical & Electronics Engineers, 全球 最大的行业技术学会,成员遍布全球160多个国家和地区 ,会员超过40万人 IEEE带来的不仅仅只是技术文献 Our Global Reach 45 431,000+ Technical Societies and 160+ Members Councils Countries Our Technical Breadth 1,400+ 3,700,000+ 170 Annual Conferences Technical Documents Top-cited Periodicals 4 IEEE Societies IEEE Instrumentation and Measurement Society IEEE Aerospace and Electronic Systems Society IEEE Intelligent Transportation Systems Society IEEE Antennas and Propagation Society IEEE Magnetics Society IEEE Broadcast Technology Society IEEE Microwave Theory and Techniques Society IEEE Circuits and Systems Society IEEE Nuclear and Plasma Sciences Society IEEE Communications Society IEEE Oceanic Engineering Society IEEE Components, Packaging, and Manufacturing IEEE Photonics Society Technology Society IEEE Power Electronics Society IEEE Computational Intelligence Society IEEE Power and Energy Society IEEE Computer Society IEEE Product Safety Engineering Society IEEE Consumer Electronics Society IEEE Professional Communications Society IEEE Control Systems Society IEEE Reliability Society IEEE Dielectrics and Electrical Insulation Society IEEE Robotics and Automation Society IEEE Education Society IEEE Signal Processing Society IEEE Electron Devices Society IEEE Society on Social Implications of Technology IEEE Electromagnetic Compatibility Society IEEE Solid-State Circuits Society IEEE Engineering in Medicine -
Arch2030: a Vision of Computer Architecture Research Over
Arch2030: A Vision of Computer Architecture Research over the Next 15 Years This material is based upon work supported by the National Science Foundation under Grant No. (1136993). Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation. Arch2030: A Vision of Computer Architecture Research over the Next 15 Years Luis Ceze, Mark D. Hill, Thomas F. Wenisch Sponsored by ARCH2030: A VISION OF COMPUTER ARCHITECTURE RESEARCH OVER THE NEXT 15 YEARS Summary .........................................................................................................................................................................1 The Specialization Gap: Democratizing Hardware Design ..........................................................................................2 The Cloud as an Abstraction for Architecture Innovation ..........................................................................................4 Going Vertical ................................................................................................................................................................5 Architectures “Closer to Physics” ................................................................................................................................5 Machine Learning as a Key Workload ..........................................................................................................................6 About this -
Da Li July 2016
FACILITATING EMERGING APPLICATIONS ON MANY-CORE PROCESSORS ________________________________________________ A Dissertation Presented to the Faculty of the Graduate School at the University of Missouri-Columbia ___________________________________________________ In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy ______________________________________________ by DA LI Dr. Michela Becchi, Supervisor JULY 2016 The undersigned, appointed by the dean of the Graduate School, have examined the dissertation entitled FACILITATING EMERGING APPLICATIONS ON MANY-CORE PROCESSORS presented by Da Li, a candidate for the degree of doctor of philosophy and hereby certify that, in their opinion, it is worthy of acceptance. Dr. Michela Becchi Dr. Tony Han Dr. Zhihai He Dr. William Harrison Dr. Jason Xu ACKNOWLEDGEMENTS First and foremost, I would like to deeply thank my adviser, Dr. Michela Becchi, for her valuable guidance and advice and for her vast reserve of patience and knowledge. I am fortunate and grateful to have worked with her during my studies. I also appreciate her generosity and flexibility in offering me opportunities to interact with other scientists and explore various projects through internships from industries. I would like also to express my sincere gratitude to Dr. Tony Han, Dr. Zhihai He, Dr. William Harrison and Dr. Jason Xu for their teaching, mentoring and assistance. I want to thank Dr. Ziliang Zong and Xinbo from Texas State University for their expertise, feedback and overall support. I would like to thank all the current and previous members of the Networking and Parallel System laboratory, especially Kittisak, Huan, Ruidong and Henry who helped me with my research. Finally, I would like to acknowledge my family and friends for their encouragement and devotion. -
Sensible Machine
Rebooting Computing Summit 4 : Sensible Machine R. Stanley Williams Senior Fellow Hewlett Packard Labs December 10, 2015 US National Grand Challenge in Future Computing: Sensible Machine • US BRAIN Initiative - April 22, 2013 • OSTP RFI: “Nanotechnology-Inspired Grand Challenges for the Next Decade” – June 17 • Submitted a response to RFI entitled “Sensible Machines” – June 24 • Presidential Executive Order: National Strategic Computing Initiative – July 29 • OSTP shortlisted ‘Sensible Machines’, asked to ‘develop a program’ – July 30 • Worked with IEEE Rebooting Computing and ITRS – Big thank you to Erik DeBenedictis, Tom Conte, Dave Mountain and many others! • Review of the Chinese Brain-Inspired Computing Research Program – Oct 15 • Tom Kalil announces Future Computing Grand Challenge at NSCI workshop – Oct. 20 The “Sensible Machine” response to OSTP RFI “The central thesis of this white paper is that although our present understanding of brains is limited, we know enough now to design and build circuits that can accelerate certain computational tasks; and as we learn more about how brains communicate and process information, we will be able to harness that understanding to create a new exponential growth path for computing technology.” Our challenge as a community is now to continuously perform more computation per unit energy rather than manufacture more transistors per unit area. URLs for further information • White House announcement of Future Computing Grand Challenge: https://www.whitehouse.gov/blog/2015/10/15/nanotechnology-inspired-grand-challenge-future-computing -
IEEE Annual Report- 2017
THE 2017 IEEE TABLE OF PRESIDENT’S COIN CONTENTS Initiated by 2016 President Barry Shoop, the IEEE President’s Coin 1 MESSAGE FROM THE IEEE PRESIDENT is given to individuals in recognition of their dedication to IEEE. For me, one of the most interesting aspects is the embodiment of the President’s unique design and story. 3 INSPIRING CHANGE. EMPOWERING PEOPLE. “Find Your Reason, Purpose and Passion” 5 GROWING GLOBAL AND INDUSTRY PARTNERSHIPS The front of my coin features a personal motto, inspired by my daughter - “Find Your Reason, Purpose and Passion,” along with the mission of IEEE. 9 GROWING AWARENESS OF IEEE The back highlights five areas of IEEE activities in the outer ring and different facets of IEEE in the center. 15 EXPANDING IEEE’S PRESENCE AROUND THE WORLD The Wi-Fi symbol denotes IEEE’s leadership in standards. 21 ADVANCING TECHNOLOGY FOR THE FUTURE The image next to that represents engineering in medicine and biology. The skyline signifies Smart Cities and IEEE’s global nature. 27 REWARDING EXCELLENCE The circuit diagram symbolizes our computer and electronic engineering disciplines. The plant is for 31 ENCOURAGING OUTREACH AND DRIVING RESEARCH IEEE’s power and energy fields and sustainability initiatives. The sine wave stands for our many communications domains. 35 ELEVATING ENGAGEMENT My favorite icon is the group of people with one individual who is a little different, showing IEEE 39 IEEE BOARD OF DIRECTORS AND MANAGEMENT COUNCIL members welcoming me as a female engineer. With each coin I presented, came the feeling of pride 41 MESSAGE FROM THE TREASURER AND REPORT and humbleness to serve our great institution. -
THE IEEE REGION TEN NEWSLETTER History
THE IEEE REGION TEN NEWSLETTER September 2008 Editor: Dr Zia Ahmed IEEE REGION 10 HISTORY SUPPLEMENT COUNCILS & MESSAGES OF PAST REGION 10 REGION 10 DIRECTORS SECTIONS ACTIVITIES MESSAGES OF PAST REGION 10 DIRECTORS F C. Kohli, Region 10 Director 1973 - 1974 Tata Consultancy Services I was Director of Region 10 in the year 1973-74. All my Predecessors at Region 10 were from Japan for two reasons, one was Region 10 Director was selected by the Board and not elected, and second, most of the technology development was taking place in Japan. I had the opportunity to build IEEE Sections, Councils and Student Chapters all over India. I also helped set up the first IEEE Section in South Korea and Singapore. The most significant contribution from my end was to get my colleagues on the Board to understand that most of the Indians and some from other countries would not find it possible to pay full dues of IEEE. During meeting of the Board in December 1974, the Board passed a Resolution to tie for those to provide discount in dues for those with income below a certain level. This helped the professional in developing countries to become member of IEEE. Naturally as their income level improved they started paying the regular dues. This gave tremendous response to IEEE Membership not only in India but also in Africa and some parts of South America. IEEE is a living organisation. It helps to build professional careers and is a source of knowledge on a continuos basis for members even at my age. -
IEEE Future Directions Newsletter
ISSUE 22 | December 2019 In this Issue: IEEE Technology Roadmaps Grow IEEE Future Directions at IEEE GLOBECOM 2019 IEEE Future Directions Technical Communities Technology Policy and Ethics Current Activities in our Technical Communities IEEE Future Directions Events IEEE Technology Roadmaps Grow Interest in technology roadmaps is growing. A number of IEEE organizational units are participating in the development of new technology roadmaps or continuing the work of established roadmaps. The start of some recent IEEE roadmap activity began as an effort to continue the work of the International Technology Roadmap for Semiconductors 2.0 (ITRS). The Heterogeneous Integration Roadmap (HIR), sponsored by IEEE Electronics Packaging Society (EPS), SEMI, IEEE Electron Devices Society (EDS), IEEE Photonics Society, and the ASME Electronic & Photonic Packaging Division (EPPD), published the first chapters of its 2019 edition in October, with additional chapters being released on a rolling basis. Another recently published technology roadmap, the International Technology Roadmap on Wide Bandgap Semiconductors (ITRW), has made the first edition of its roadmap free to members of the sponsoring society, IEEE Power Electronics Society (PELS). A third technology roadmap, which began in the IEEE Standards Association Industry Connections program and has found a home in the IEEE Rebooting Computing Initiative, IEEE International Roadmap for Devices and Systems™ (IRDS), published its second edition this year. In order to support IEEE’s technology roadmap activities, the IEEE Roadmaps Strategy and Governance (IRSG) Ad Hoc Committee was formed in May 2018. The committee, led by Chair Rakesh Kumar, consists of a steering committee and a user group. The user group serves as a forum for communication between the representatives of various published and developing IEEE roadmaps, as well as a resource for capturing best practices and guidelines. -
Challenge Today. Change Tomorrow
Challenge Today. Change Tomorrow. 2019 Annual Report Table of Contents 1 IEEE Overview: Challenge Today. Change Tomorrow. A Message to Our Community 3 Message from the IEEE President and the Executive Director IEEE and its volunteers and members have a long history of passionately embracing the 5 IEEE by the Numbers most pressing challenges of the day and finding ways to change tomorrow for the better. This spirit has never been more urgent as we face the global threat posed by COVID-19. 7 IEEE Shapes the Future We would like to express our heartfelt thanks to all IEEE volunteers and members supporting 9 Our Volunteers Drive Us Forward efforts to contain this crisis—connecting the world, powering communities and seeking vital treatments and cures. 15 Evolution of the Member Experience As an organization, IEEE actively responded to this global threat with speed, agility and 19 Diverse Membership with a Common Mission resourcefulness. To protect our volunteers, members and staff, IEEE shifted its operations, activities and global engagement to digital and virtual forums. 23 New Options for Researchers and Authors in Support of Open Science IEEE remains true to our mission of advancing technology for humanity, and we will sustain this mission and our engagement across our organization as together we overcome this 27 Honoring Technology Trailblazers crisis and move confidently into the future. 33 Advancing Technology for Humanity 37 Elevating Engagement 43 IEEE Board of Directors and Management Council 45 Message from the Treasurer and Report of Independent Certified Public Accountants 47 Consolidated Financial Statements Challenge Today. Change Tomorrow. -
RCS 2 2Nd Rebooting Computing Summit Summary Report
RCS 2 2nd Rebooting Computing Summit Summary Report The Chaminade Santa Cruz, CA May 14-16, 2014 Prepared By: Alan M. Kadin And the IEEE Rebooting Computing Committee http://rebootingcomputing.ieee.org/ http://rebootingcomputing-ieee.blogspot.com/ June 2014 1 | P a g e Contents Foreword ....................................................................................................................................................... 4 What Is “Rebooting Computing”? ................................................................................................................. 5 RCS 1: Future Vision and Pillars of Computing ............................................................................................. 6 Future Vision of Intelligent Mobile Assistant ............................................................................................ 6 Three Pillars of Future Computing ............................................................................................................ 6 Human/Computer Interface and Applications...................................................................................... 6 Energy Efficiency ................................................................................................................................... 6 Security ................................................................................................................................................. 6 RCS 2: Future Computer Technology – The End of Moore’s Law? ............................................................. -
Rebooting Computing Week 2017 Impressions by D. Scott Holmes, SNF Co-Editor Electronics January 28, 2017
IEEE/CSC & ESAS SUPERCONDUCTIVITY NEWS FORUM (global edition), February 2018. Rebooting Computing Week 2017 Impressions By D. Scott Holmes, SNF Co-editor Electronics January 28, 2017 (HE114, STH625). Rebooting Computing Week (November 6-10, 2017) included three related meetings focusing on the next era of computing. This year superconductor electronics, while still far from central, was noticeably present and actively discussed. Links to videos from the meetings are available here. Nov. 6-7 International Roadmap for Devices and Systems (IRDS) Fall Conference The International Technology Roadmap for Semiconductors (ITRS) projected technology requirements and potential solutions for semiconductors from 2001 to 2014. The ITRS used transistor feature sizes, density, clock rate, and other metrics to roadmap the future of integrated circuits. In 2015, the ITRS committee presented a new roadmap, called ITRS 2.0, for key systems that contain integrated circuits and drive process, design, and integration technologies. Subsequent partnering of ITRS 2.0 with the IEEE Rebooting Computing (IEEE RC) Initiative resulted in the International Roadmap for Devices and Systems (IRDS). The IRDS mission is to “Identify the roadmap of electronic industry from devices to systems and from systems to devices”, which represents a broadening of the scope. For an overview, see Paolo Gargini's presentation given at the November 10 Industry Summit and described below. “Beyond CMOS” is one of the IRDS focus topics and includes technologies other than Complementary Metal-Oxide Semiconductor (CMOS) electronics such as memristors, spintronics, straintronics, and superconductor electronics. As participants in the Beyond CMOS International Focus Team, D. Scott Holmes and Erik DeBenedictis started a Cryogenic Electronics group, thus initiating superconductor electronics as an activity within the IRDS.