A load-balancing strategy for sort-first distributed rendering Frederico Abraham, Waldemar Celes, Renato Cerqueira, Joao˜ Luiz Campos Tecgraf - Computer Science Department, PUC-Rio Rua Marquesˆ de Sao˜ Vicente 225, 22450-900 Rio de Janeiro, RJ, Brasil ffabraham,celes,rcerq,
[email protected] Abstract such algorithms, when applied to complex scenes, still de- mand graphics power that a single processor may not be In this paper, we present a multi-threaded sort-first dis- able to deliver. Examples of such scenarios include scenes tributed rendering system. In order to achieve load balance described by a dense and highly tessellated geometry set, among the rendering nodes, we propose a new partition- sophisticated per-pixel lighting algorithms and volume ren- ing scheme based on the rendering time of the previous dering. frame. The proposed load-balancing algorithm is very sim- The purpose of our research is to investigate the use of ple to be implemented and works well for both geometry- PC-based clusters for improving the rendering performance and rasterization-bound models. We also propose a strat- of such complex scenes, delivering the frame rate usually egy to assign tiles to rendering nodes that effectively uses required by virtual-reality applications. This goal can be the available graphics resources, thus improving rendering achieved by combining the graphics power of a set of PCs performance. equipped with graphics accelerators. Although PC clusters have also been used for supporting high resolution multi- display rendering systems [2, 12, 14, 13], in this paper we focus on the use of a PC cluster for improving rendering 1.