Arxiv:2010.14788V2 [Quant-Ph] 16 Jan 2021 Detection of Ancillary Photons
Heralded non-destructive quantum entangling gate with single-photon sources Jin-Peng Li,1, 2 Xuemei Gu,1, 2 Jian Qin,1, 2 Dian Wu,1, 2 Xiang You,1, 2 Hui Wang,1, 2 Christian Schneider,3, 4 Sven H¨ofling,2, 4 Yong-Heng Huo,1, 2 Chao-Yang Lu,1, 2 Nai-Le Liu,1, 2 Li Li,1, 2, ∗ and Jian-Wei Pan1, 2 1Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026, China 2CAS Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China, Shanghai 201315, China 3Institute of Physics, Carl von Ossietzky University, 26129 Oldenburg, Germany 4Technische Physik, Physikalische Institut and Wilhelm Conrad R¨ontgen-Centerfor Complex Material Systems, Universit¨atW¨urzburg, Am Hubland, D-97074 W¨urzburg, Germany (Dated: January 19, 2021) Heralded entangling quantum gates are an essential element for the implementation of large-scale optical quantum computation. Yet, the experimental demonstration of genuine heralded entangling gates with free-flying output photons in linear optical system, was hindered by the intrinsically probabilistic source and double-pair emission in parametric down-conversion. Here, by using an on-demand single-photon source based on a semiconductor quantum dot embedded in a micro-pillar cavity, we demonstrate a heralded controlled-NOT (CNOT) operation between two single photons for the first time. To characterize the performance of the CNOT gate, we estimate its average quantum gate fidelity of (87:8 ± 1:2)%.
[Show full text]