A Model-Driven Architecture Based Evolution Method and Its Application in an Electronic Learning System

Total Page:16

File Type:pdf, Size:1020Kb

A Model-Driven Architecture Based Evolution Method and Its Application in an Electronic Learning System A Model-Driven Architecture based Evolution Method and Its Application in An Electronic Learning System PhD Thesis Yingchun Tian Software Technology Research Laboratory De Montfort University October, 2012 To my husband, Delin Jing and my mum, Ning Zhang for their love and support Declaration Declaration I declare that the work described in this thesis was originally carried out by me during the period of registration for the degree of Doctor of Philosophy at De Montfort University, U.K., from October 2008 to December 2011. It is submitted for the degree of Doctor of Philosophy at De Montfort University. Apart from the degree that this thesis is currently applying for, no other academic degree or award was applied for by me based on this work. I Acknowledgements Acknowledgements For many years I had been dreaming about receiving a PhD, I would like to thank many people who helped me in achieving this dream in different ways since I undertook the work of this thesis. My deepest gratitude goes to my supervisor, Professor Hongji Yang, for his guidance, support and encouragement throughout my PhD career. He always provided me with many invaluable comments and suggestions for the improvement of the thesis. I am grateful for his leading role fostering my academic, professional and personal growth. Many thanks go to Professor Hussein Zedan and Doctor Wenyan Wu, for examining my PhD thesis and providing many helpful suggestions. My research career will benefit tremendously from the research methodologies to which Professor Zedan and Doctor Wu introduced me. I would like to thank colleagues in Software Technology Research Laboratory at De Montfort University, for their support and feedback, and for providing such a stimulating working atmosphere, Professor Hussein Zedan, Doctor Feng Chen, Doctor Amelia Platt, Doctor Antonio Cau, and many other colleagues. In addition, I would like to thank the Graduate School Office at De Montfort University for the outstanding management. Finally, I wish to express thanks to my husband, Delin Jing, my mother, Ning Zhang, and my parents in law for their love, encouragements, patience, and support over the past years. This thesis is dedicated to them. II Abstract Abstract Software products have been racing against aging problem for most of their lifecycles, and evolution is the most effective and efficient solution to this problem. Model-Driven Architecture (MDA) is a new technique for software product for evolving development and reengineering methods. The main steps for MDA are to establish models in different levels and phases, therefore to solve the challenges of requirement and technology change. However, there is only a standard established by Object Management Group (OMG) but without a formal method and approach. Presently, MDA is widely researched in both industrial and research areas, however, there is still without a smooth approach to realise it especially in electronic learning (e-learning) system due to the following reasons: (1) models’ transformations are hard to realise because of lack of tools, (2) most of existing mature research results are working for business and government services but not education area, and (3) most of existing model-driven researches are based on Model-Driven Development (MDD) but not MDA because of OMG standard’s preciseness. Hence, it is worth to investigate an MDA-based method and approach to improve the existing software development approach for e-learning system. Due to the features of MDA actuality, a MDA-based evolution method and approach is proposed in this thesis. The fundamental theories of this research are OMG’s MDA standard and education pedagogical knowledge. Unified Modelling Language (UML) and Unified Modelling Language Profile are hired to represent the information of software system from different aspects. This study can be divided into three main parts: MDA-based evolution method and approach research, Platform-Independent Model (PIM) to Platform-Specific Model (PSM) transformation development, and MDA-based III Abstract electronic learning system evolution. Top-down approach is explored to develop models for e-learning system. A transformation approach is developed to generate Computation Independent Model (CIM), Platform-Independent Model (PIM), and Platform-Specific Model (PSM); while a set of transformation rules are defined following MDA standard to support PSM’ s generation. In addition, proposed method is applied in an e-learning system as a case study with the prototype rules support. In the end, conclusions are drawn based on analysis and further research directions are discussed as well. The kernel contributions are the proposed transformation rules and its application in electronic learning system. IV Table of Contents Table of Contents Declaration ..................................................................................................................................... I Acknowledgements ....................................................................................................................... II Abstract ....................................................................................................................................... III Table of Contents .......................................................................................................................... V List of Figures ............................................................................................................................... X List of Tables .......................................................................................................................... XVII List of Acronyms ..................................................................................................................... XIX Chapter 1 Introduction .................................................................................................................. 1 1.1 Proposed Research and Overview of Problem .................................................................... 1 1.2 Research Objectives and Research Methods....................................................................... 3 1.3 Research Questions and Hypotheses ................................................................................... 5 1.4 Original Contributions ........................................................................................................ 7 1.5 Success Criteria ................................................................................................................... 8 1.6 Organisation of Thesis ........................................................................................................ 9 Chapter 2 Background and Basic Concepts ................................................................................ 12 2.1 Electronic Learning System .............................................................................................. 12 2.1.1 Electronic Learning .................................................................................................... 12 V Table of Contents 2.1.2 E-Learning Standards and Specifications .................................................................. 13 2.1.3 E-Learning 2.0 ........................................................................................................... 14 2.1.4 Web-Based E-Learning Development ....................................................................... 15 2.2 Meta Object Facility and Query/View/Transformation .................................................... 19 2.2.1 Meta Object Facility .................................................................................................. 19 2.2.2 Query/View/Transformation ...................................................................................... 20 2.3 Basic Concepts and Related Terms ................................................................................... 22 2.4 Summary ........................................................................................................................... 23 Chapter 3 Related Work .............................................................................................................. 25 3.1 Unified Modelling Language ............................................................................................ 25 3.1.1 Unified Modelling Language 2.x ............................................................................... 25 3.1.2 Unified Modelling Language and Model-Driven Architecture.................................. 29 3.1.3 UML Profile ............................................................................................................... 31 3.2 Overview of Extensible Markup Language (XML), XML Metadata Interchange, and Hypertext Preprocessor ........................................................................................................... 34 3.3 Software Evolution ........................................................................................................... 34 3.3.1 Software Changes and Evolution ............................................................................... 34 3.3.2 Laws of Software Evolution ...................................................................................... 36 3.4 Model Driven Architecture and Model Driven Engineering ............................................ 40 3.4.1 Model Driven Engineering......................................................................................... 40 3.4.2 Model-Driven Architecture .......................................................................................
Recommended publications
  • Communication Diagram.Pdf
    TU2943: Information Engineering Methodology Lab Notes, 2009-2010, Faculty of Technology and Information Science, Universiti Kebangsaan Malaysia LAB 5: Interaction Diagram - UML Communication Diagram OBJECTIVES To understand the role of dynamic models in requirement analysis by reading and constructing UML Communication Diagram. INTRODUCTION Communication Diagram (a.k.a. Collaboration Diagram) Communication Diagram provides another way to model a scenario. Essentially is a part of Interaction Diagram (just like Sequence Diagram). Each object is represented by an object icon, and links are used to indicate communication paths on which messages are transmitted. Messages presented in the same way as those in sequence diagram. Formerly known as Collaboration Diagram in UML 1.x specification. Communication Diagram represents a combination of information taken from Use Case, Class and Sequence Diagrams describing both the static structure and dynamic behavior of the system. Comparing and Contrasting: Collaboration and Sequence Both diagrams show the same information: Objects/classes Messages Sequence Conditional Repetition Messages to self Sequence Diagram and Communication Diagram are two views of the same scenario. Collaboration diagrams emphasize who-is-talking-to-who. But the time-ordering of the messages who gets obscured. Sequence diagrams emphasize time-ordering. But the who-is-talking-to-who gets obscured. Use the diagram that you are most comfortable with. Structure and Notation of Communication Diagram Objects are named <an object name>:< its class> . Nor Samsiah Binti Sani 1 TU2943: Information Engineering Methodology Lab Notes, 2009-2010, Faculty of Technology and Information Science, Universiti Kebangsaan Malaysia Either <an object name> or <a class name> can be removed. Collaborations / communications are shown by lines between objects.
    [Show full text]
  • Tempest™ DCS Toolkit Version 5.0 DECODES
    Tempest™ DCS Toolkit Version 5.0 DECODES (Device Conversion and Delivery System) Reference Manual Document Revision 1.0 September, 2011 Copyright 2011 Sutron Corporation Sutron Corporation, ILEX Division 22400 Davis Drive Sterling, VA 20164 Tel: (703) 406-2800 Email: [email protected] Table of Contents Contents 1. INTRODUCTION TO DCS TOOLKIT / DECODES RELEASE ................................................. 1 1.1 INTRODUCTION TO DECODES ......................................................................................................... 1 1.2 WHAT’S NEW? .................................................................................................................................. 3 1.2.1 DCS Toolkit 5.0 ...................................................................................................................... 3 1.2.2 DCS Toolkit 4.9 ...................................................................................................................... 3 1.2.3 DCS Toolkit 4.6 ...................................................................................................................... 3 1.2.4 DCS Toolkit 4.5 ...................................................................................................................... 3 1.2.5 New for DECODES 7.5 .......................................................................................................... 3 1.2.6 New for DECODES 7.4 .......................................................................................................... 3 1.2.7 New Features
    [Show full text]
  • Using the UML for Architectural Description?
    Using the UML for Architectural Description? Rich Hilliard Integrated Systems and Internet Solutions, Inc. Concord, MA USA [email protected] Abstract. There is much interest in using the Unified Modeling Lan- guage (UML) for architectural description { those techniques by which architects sketch, capture, model, document and analyze architectural knowledge and decisions about software-intensive systems. IEEE P1471, the Recommended Practice for Architectural Description, represents an emerging consensus for specifying the content of an architectural descrip- tion for a software-intensive system. Like the UML, IEEE P1471 does not prescribe a particular architectural method or life cycle, but may be used within a variety of such processes. In this paper, I provide an overview of IEEE P1471, describe its conceptual framework, and investigate the issues of applying the UML to meet the requirements of IEEE P1471. Keywords: IEEE P1471, architectural description, multiple views, view- points, Unified Modeling Language 1 Introduction The Unified Modeling Language (UML) is rapidly maturing into the de facto standard for modeling of software-intensive systems. Standardized by the Object Management Group (OMG) in November 1997, it is being adopted by many organizations, and being supported by numerous tool vendors. At present, there is much interest in using the UML for architectural descrip- tion: the techniques by which architects sketch, capture, model, document and analyze architectural knowledge and decisions about software-intensive systems. Such techniques enable architects to record what they are doing, modify or ma- nipulate candidate architectures, reuse portions of existing architectures, and communicate architectural information to others. These descriptions may the be used to analyze and reason about the architecture { possibly with automated support.
    [Show full text]
  • OMG Systems Modeling Language (OMG Sysml™) Tutorial 25 June 2007
    OMG Systems Modeling Language (OMG SysML™) Tutorial 25 June 2007 Sanford Friedenthal Alan Moore Rick Steiner (emails included in references at end) Copyright © 2006, 2007 by Object Management Group. Published and used by INCOSE and affiliated societies with permission. Status • Specification status – Adopted by OMG in May ’06 – Finalization Task Force Report in March ’07 – Available Specification v1.0 expected June ‘07 – Revision task force chartered for SysML v1.1 in March ‘07 • This tutorial is based on the OMG SysML adopted specification (ad-06-03-01) and changes proposed by the Finalization Task Force (ptc/07-03-03) • This tutorial, the specifications, papers, and vendor info can be found on the OMG SysML Website at http://www.omgsysml.org/ 7/26/2007 Copyright © 2006,2007 by Object Management Group. 2 Objectives & Intended Audience At the end of this tutorial, you should have an awareness of: • Benefits of model driven approaches for systems engineering • SysML diagrams and language concepts • How to apply SysML as part of a model based SE process • Basic considerations for transitioning to SysML This course is not intended to make you a systems modeler! You must use the language. Intended Audience: • Practicing Systems Engineers interested in system modeling • Software Engineers who want to better understand how to integrate software and system models • Familiarity with UML is not required, but it helps 7/26/2007 Copyright © 2006,2007 by Object Management Group. 3 Topics • Motivation & Background • Diagram Overview and Language Concepts • SysML Modeling as Part of SE Process – Structured Analysis – Distiller Example – OOSEM – Enhanced Security System Example • SysML in a Standards Framework • Transitioning to SysML • Summary 7/26/2007 Copyright © 2006,2007 by Object Management Group.
    [Show full text]
  • A Specification-Oriented Semantics for the Refinement of Real-Time Systems
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Theoretical Computer Science 131 (1994) 219-241 219 Elsevier A specification-oriented semantics for the refinement of real-time systems David Scholefield and Hussein Zedan Formal Systems Research Group, Department of ComputerScience, University of York, Heslington, York, UK He Jifeng Programming Research Group. Oxford University, Keble Road, Oxford, UK Communicated by I. Mitrani Received November 1992 Revised February 1993 Abslract Scholefield, D., H. Zedan and H. Jifeng, A specification-oriented semantics for the refinement of real-time systems, Theoretical Computer Science 131 (1994) 2199241. A refinement calculus for the development of real-time systems is presented. The calculus is based upon a wide-spectrum language called the temporal agent model (TAM), within which both functional and timing properties can be expressed in either abstract or concrete terms. A specifica- tion-oriented semantics for the language is given. Program development is considered as a refine- ment process, i.e. the calculation of a structured program from an unstructured specification. A calculus of decomposition is defined. An example program is developed. 1. Introduction The formal development of a computer system is traditionally separated into four tasks: the formulation of a specification, the formulation of a design, verification between specification and design, and the translation of the design into an implemen- tation. In real-time systems, verification must take into account both functional correctness and the timeliness of results - a consideration which adds further com- plexity to an already difficult task. Correspondence to: D.
    [Show full text]
  • Unified Modeling Language 2.0 Part 1 - Introduction
    UML 2.0 – Tutorial (v4) 1 Unified Modeling Language 2.0 Part 1 - Introduction Prof. Dr. Harald Störrle Dr. Alexander Knapp University of Innsbruck University of Munich mgm technology partners (c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp UML 2.0 – Tutorial (v4) 2 1 - Introduction History and Predecessors • The UML is the “lingua franca” of software engineering. • It subsumes, integrates and consolidates most predecessors. • Through the network effect, UML has a much broader spread and much better support (tools, books, trainings etc.) than other notations. • The transition from UML 1.x to UML 2.0 has – resolved a great number of issues; – introduced many new concepts and notations (often feebly defined); – overhauled and improved the internal structure completely. • While UML 2.0 still has many problems, current version (“the standard”) it is much better than what we ever had formal/05-07-04 of August ‘05 before. (c) 2005-2006, Dr. H. Störrle, Dr. A. Knapp UML 2.0 – Tutorial (v4) 3 1 - Introduction Usage Scenarios • UML has not been designed for specific, limited usages. • There is currently no consensus on the role of the UML: – Some see UML only as tool for sketching class diagrams representing Java programs. – Some believe that UML is “the prototype of the next generation of programming languages”. • UML is a really a system of languages (“notations”, “diagram types”) each of which may be used in a number of different situations. • UML is applicable for a multitude of purposes, during all phases of the software lifecycle, and for all sizes of systems - to varying degrees.
    [Show full text]
  • Sysml, the Language of MBSE Paul White
    Welcome to SysML, the Language of MBSE Paul White October 8, 2019 Brief Introduction About Myself • Work Experience • 2015 – Present: KIHOMAC / BAE – Layton, Utah • 2011 – 2015: Astronautics Corporation of America – Milwaukee, Wisconsin • 2001 – 2011: L-3 Communications – Greenville, Texas • 2000 – 2001: Hynix – Eugene, Oregon • 1999 – 2000: Raytheon – Greenville, Texas • Education • 2019: OMG OCSMP Model Builder—Fundamental Certification • 2011: Graduate Certification in Systems Engineering and Architecting – Stevens Institute of Technology • 1999 – 2004: M.S. Computer Science – Texas A&M University at Commerce • 1993 – 1998: B.S. Computer Science – Texas A&M University • INCOSE • Chapters: Wasatch (2015 – Present), Chicagoland (2011 – 2015), North Texas (2007 – 2011) • Conferences: WSRC (2018), GLRCs (2012-2017) • CSEP: (2017 – Present) • 2019 INCOSE Outstanding Service Award • 2019 INCOSE Wasatch -- Most Improved Chapter Award & Gold Circle Award • Utah Engineers Council (UEC) • 2019 & 2018 Engineer of the Year (INCOSE) for Utah Engineers Council (UEC) • Vice Chair • Family • Married 14 years • Three daughters (1, 12, & 10) 2 Introduction 3 Our Topics • Definitions and Expectations • SysML Overview • Basic Features of SysML • Modeling Tools and Techniques • Next Steps 4 What is Model-based Systems Engineering (MBSE)? Model-based systems engineering (MBSE) is “the formalized application of modeling to support system requirements, design, analysis, verification and validation activities beginning in the conceptual design phase and continuing throughout development and later life cycle phases.” -- INCOSE SE Vision 2020 5 What is Model-based Systems Engineering (MBSE)? “Formal systems modeling is standard practice for specifying, analyzing, designing, and verifying systems, and is fully integrated with other engineering models. System models are adapted to the application domain, and include a broad spectrum of models for representing all aspects of systems.
    [Show full text]
  • Removing Redundant Refusals: Minimal Complete Test Suites for Failure Trace Semantics
    Removing Redundant Refusals: Minimal Complete Test Suites for Failure Trace Semantics Maciej Gazda Robert M. Hierons Department of Computer Science Department of Computer Science University of Sheffield, UK University of Sheffield, UK Abstract—We explore the problem of finding a minimal com- in which no action in X is enabled. Most work uses ioco [21] plete test suite for a refusal trace (or failure trace) semantics. or one of its variants; see [22] for an overview. In ioco, an Since complete test suites are typically infinite, we consider the observation is a trace that can contain instances of quiescence: setting with a bound ` on the length of refusal traces of interest. A test suite T is thus complete if it is failed by all processes that the situation in which the system under test (SUT) cannot contain a disallowed refusal trace of length at most `. produce output or change state without first receiving input. The proposed approach is based on generating a minimal com- The ioco test theory assumes that the SUT cannot refuse inputs plete set of forbidden refusal traces. Our solution utilises several (is input-enabled) and the environment cannot block outputs, interesting insights into refusal trace semantics. In particular, which is why quiescence is the only type of refusal. we identify a key class of refusals called fundamental refusals which essentially determine the refusal trace semantics, and the A refusal of a set X is observed through the tester offering associated fundamental equivalence relation. We then propose a the actions in X and subsequent deadlock (detected through small but not necessarily minimal test suite based on our theory, a timeout).
    [Show full text]
  • Capabilities Statement
    Capabilities Statement Email: [email protected] Web site: www.modeldriven.com 1 Model Driven Solutions Model Driven Solutions is a leading provider of professional services and products that leverage Services Oriented Architecture (SOA), the Object Management Group’s (OMG) Model Driven Architecture (MDA), Information Sharing, Ontologies and Semantics and W3C’s Semantic Web techniques and standards to federate processes, information, systems and organizations. A current focus is information interoperability and federation with a current emphasis on finance, risk and threats across cyber and physical domains as well as a model-driven approach to NIEM. We assist major organizations in achieving effectiveness and agility in a changing and collaborative world. Founded in 1996, as Data Access Technologies, Inc., its division, Model Driven Solutions, has been a leader in the development of open standards and supporting products that result in SOA based Executable Enterprise Architectures (EEA). Model Driven Solutions’ EEA focus helps drive information systems to quickly and cost effectively address business and defense initiatives. Active in the Object Management Group (OMG), the Organization for the Advancement of Structured Information Standards (OASIS), the Open Group and other standards development organizations, Model Driven Solutions has provided industry leadership that is, today, resulting in significant technological advancements and customer satisfaction. With customers like the General Services Administration (GSA), the U.S. Information Sharing Environment, the US Army, Raytheon, Lockheed Martin, Kaiser Permanente, Unisys and many others, Model Driven Solutions is at the leading edge of today’s software technology advances. General Information Parent Company Name: Data Access Technologies, Inc. (DAT) Virginia Affiliate: Model Driven Solutions, Inc.
    [Show full text]
  • Unifying Modeling and Programming with ALF
    SOFTENG 2016 : The Second International Conference on Advances and Trends in Software Engineering Unifying Modeling and Programming with ALF Thomas Buchmann and Alexander Rimer University of Bayreuth Chair of Applied Computer Science I Bayreuth, Germany email: fthomas.buchmann, [email protected] Abstract—Model-driven software engineering has become more The Eclipse Modeling Framework (EMF) [5] has been and more popular during the last decade. While modeling the established as an extensible platform for the development of static structure of a software system is almost state-of-the art MDSE applications. It is based on the Ecore meta-model, nowadays, programming is still required to supply behavior, i.e., which is compatible with the Object Management Group method bodies. Unified Modeling Language (UML) class dia- (OMG) Meta Object Facility (MOF) specification [6]. Ideally, grams constitute the standard in structural modeling. Behavioral software engineers operate only on the level of models such modeling, on the other hand, may be achieved graphically with a set of UML diagrams or with textual languages. Unfortunately, that there is no need to inspect or edit the actual source code, not all UML diagrams come with a precisely defined execution which is generated from the models automatically. However, semantics and thus, code generation is hindered. In this paper, an practical experiences have shown that language-specific adap- implementation of the Action Language for Foundational UML tations to the generated source code are frequently necessary. (Alf) standard is presented, which allows for textual modeling In EMF, for instance, only structure is modeled by means of of software systems.
    [Show full text]
  • Plantuml Language Reference Guide (Version 1.2021.2)
    Drawing UML with PlantUML PlantUML Language Reference Guide (Version 1.2021.2) PlantUML is a component that allows to quickly write : • Sequence diagram • Usecase diagram • Class diagram • Object diagram • Activity diagram • Component diagram • Deployment diagram • State diagram • Timing diagram The following non-UML diagrams are also supported: • JSON Data • YAML Data • Network diagram (nwdiag) • Wireframe graphical interface • Archimate diagram • Specification and Description Language (SDL) • Ditaa diagram • Gantt diagram • MindMap diagram • Work Breakdown Structure diagram • Mathematic with AsciiMath or JLaTeXMath notation • Entity Relationship diagram Diagrams are defined using a simple and intuitive language. 1 SEQUENCE DIAGRAM 1 Sequence Diagram 1.1 Basic examples The sequence -> is used to draw a message between two participants. Participants do not have to be explicitly declared. To have a dotted arrow, you use --> It is also possible to use <- and <--. That does not change the drawing, but may improve readability. Note that this is only true for sequence diagrams, rules are different for the other diagrams. @startuml Alice -> Bob: Authentication Request Bob --> Alice: Authentication Response Alice -> Bob: Another authentication Request Alice <-- Bob: Another authentication Response @enduml 1.2 Declaring participant If the keyword participant is used to declare a participant, more control on that participant is possible. The order of declaration will be the (default) order of display. Using these other keywords to declare participants
    [Show full text]
  • Sysml Distilled: a Brief Guide to the Systems Modeling Language
    ptg11539604 Praise for SysML Distilled “In keeping with the outstanding tradition of Addison-Wesley’s techni- cal publications, Lenny Delligatti’s SysML Distilled does not disappoint. Lenny has done a masterful job of capturing the spirit of OMG SysML as a practical, standards-based modeling language to help systems engi- neers address growing system complexity. This book is loaded with matter-of-fact insights, starting with basic MBSE concepts to distin- guishing the subtle differences between use cases and scenarios to illu- mination on namespaces and SysML packages, and even speaks to some of the more esoteric SysML semantics such as token flows.” — Jeff Estefan, Principal Engineer, NASA’s Jet Propulsion Laboratory “The power of a modeling language, such as SysML, is that it facilitates communication not only within systems engineering but across disci- plines and across the development life cycle. Many languages have the ptg11539604 potential to increase communication, but without an effective guide, they can fall short of that objective. In SysML Distilled, Lenny Delligatti combines just the right amount of technology with a common-sense approach to utilizing SysML toward achieving that communication. Having worked in systems and software engineering across many do- mains for the last 30 years, and having taught computer languages, UML, and SysML to many organizations and within the college setting, I find Lenny’s book an invaluable resource. He presents the concepts clearly and provides useful and pragmatic examples to get you off the ground quickly and enables you to be an effective modeler.” — Thomas W. Fargnoli, Lead Member of the Engineering Staff, Lockheed Martin “This book provides an excellent introduction to SysML.
    [Show full text]