Targeting MALT1 Paracaspase Activity in Lymphoma

Total Page:16

File Type:pdf, Size:1020Kb

Targeting MALT1 Paracaspase Activity in Lymphoma Published OnlineFirst September 4, 2013; DOI: 10.1158/1078-0432.CCR-12-3869 Clinical Cancer Molecular Pathways Research Molecular Pathways: Targeting MALT1 Paracaspase Activity in Lymphoma Lorena Fontan 1,2 and Ari Melnick1,2 Abstract MALT1 mediates the activation of NF-kB in response to antigen receptor signaling. MALT1, in association with BCL10 and CARD11, functions as a scaffolding protein to activate the inhibitor of IkB kinase (IKK) complex. In addition, MALT1 is a paracaspase that targets key proteins in a feedback loop mediating termination of the NF-kB response, thus promoting activation of NF-kB signaling. Activated B-cell subtype of diffuse large B-cell lymphomas (ABC-DLBCL), which tend to be more resistant to chemotherapy, are often biologically dependent on MALT1 activity. Newly developed MALT1 small-molecule inhibitors suppress the growth of ABC-DLBCLs in vitro and in vivo. This review highlights the recent advances in the normal and disease-related functions of MALT1. Furthermore, recent progress targeting MALT1 proteolytic activity raises the possibility of deploying MALT1 inhibitors for the treatment of B-cell lymphomas and perhaps autoimmune diseases that involve increased B- or T-cell receptor signaling. Clin Cancer Res; 19(24); 1–7. Ó2013 AACR. Background phoinositide 3-kinase (PI3K), which in turn activates PDK1 and BTK, and then PLC-g2 to produce diacylglycerol (DAG) MALT1 as a critical mediator of B-cell receptor signaling 2þ The mucosa-associated lymphoid tissue lymphoma and Ca and activate PKC-b (refs. 8, 10; Fig. 1A). PKC-b translocation 1 (MALT1) gene was first identified in the then phosphorylates CARD11, promoting a conformational recurrent t(11;18)(q21;q21) in MALT lymphomas (1). change that enables interaction with BCL10 and MALT1 (9). Resulting fusion product contains the N-terminal portion Once this complex is formed, TRAF6 recruitment and poly- of cellular inhibitor of apoptosis 2 (cIAP2 or API2) and the ubiquitylation of MALT1 and BCL10 promote the binding of C-terminal portion of MALT1. MALT1 is also translocated to inhibitor of IkB kinase g (IKKg) and TAK1 (refs. 8, 11; Fig. the immunoglobulin (Ig) heavy-chain gene enhancer in 1A). Next, IKKg complexes with IKKa and IKKb, which are MALT lymphomas, leading to aberrant expression of the phosphorylated and activated by TAK1, to phosphorylate protein (2, 3). Notably, MALT1 transgenic mice develop the IkB proteins and induce their proteolytic degradation. MALT lymphomas histologically and molecularly analo- NF-kB proteins can then translocate to the nucleus, where gous to the human disease (4). MALT1 also plays a critical they activate genes involved in proliferation, apoptosis inhi- role in the activated B-cell subtype of diffuse large B-cell bition, and inflammation (ref. 8, 11; Fig. 1A). Remarkably, c- lymphoma (ABC-DLBCL; refs. 5–7), and indeed MALT1 REL nuclear translocation is dependent on MALT1 activity, transgenic mice develop an ABC-DLBCL–like disease when whereas it is dispensable for RELA activation (12–14). crossed into a p53 null background (4). Accordingly, studies of MALT1 knockout mice indicated its MALT1 forms a complex with the B-cell chronic lympho- essential role in antigen receptor–induced NF-kB activation, cytic leukemia (CLL)/lymphoma 10 (BCL10) and caspase cytokine production, and proliferation in T and B cells (15, recruitment domain family, member 11 (CARD11; ref. 8). 16). MALT1 knockout mice also exhibited impaired prolif- As part of this CARD11–BCL10–MALT1 (CBM) complex, eration of splenic B cells upon lipopolysaccharide (LPS) MALT1 transduces signals from the B-cell receptor (BCR) stimulation (15). Moreover, BCL10 interacts with IRAK1 and T-cell receptor (TCR), natural killer (NK) cell, and B cell– and transduces signaling through interaction with MALT1 activating factor receptors (9). Upon BCR engagement, a upon LPS treatment in macrophages (ref. 17; Fig. 1A). These cascade of tyrosine kinase phosphorylation activates phos- findings may implicate MALT1 in Toll-like receptor signaling; however, this remains controversial, as Ruland and collea- gues did not observe contribution of MALT1 to LPS response (16). MALT1 also signals downstream of C-type lectin family Authors' Affiliations: Departments of 1Medicine and 2Pharmacology, Weill Cornell Medical College, New York, New York and G-protein coupled receptors (GPCR) in complex with CARD9 and CARMA3, respectively (9). Corresponding Author: Ari Melnick, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065. Phone: 212-746-7643; Fax: 212-746- 8866; E-mail: [email protected] MALT1 protease activity in NF-kB signal transduction doi: 10.1158/1078-0432.CCR-12-3869 Structurally, MALT1 has a conserved dead domain, two Ó2013 American Association for Cancer Research. Ig-like domains, and a caspase-like paracaspase domain www.aacrjournals.org OF1 Downloaded from clincancerres.aacrjournals.org on September 29, 2021. © 2013 American Association for Cancer Research. Published OnlineFirst September 4, 2013; DOI: 10.1158/1078-0432.CCR-12-3869 Fontan and Melnick A * IgM CD79A/B TLR PI3K ∗ BTK PLC-γ2 PDK1 SYK MYD88 Figure 1. B-cell receptor IP3 DAG IRAK induced activation of NF-kB through the CBM complex. A, ↑ 2+ MALT1 (highlighted in orange) is Ca a mediator of NF-kB signaling in PKC B lymphocytes. BCR stimulation leads to a cascade of tyrosine phosphorylations that activate SYK and then ∗ CARD11 PI3K. This activates PDK1 and ∗ A20 BTK, which subsequently promotes PLCg activation and þ DAG and Ca2 production, to finally activate PKC. PKC TRAF6 ub BCL10 ub phosphorylates CARD11, MALT1 TAK1 which allows formation of the ub CBM complex. TRAF6 and TAK1 are then recruited to the IKKγ CBM complex and activate the IKKβ IKKα IKK signalosome through polyubiquitination and phosphorylation to finally ∗ Nuclear translocation engage canonical NF-kB Proteasome IκB REL and gene expression signaling. Red and bold with asterisk denote frequently mutated genes in ABC-DLBCL. B B, targets of the paracaspase Paracaspase activity: targets and effects activity of MALT1 and API2- MALT1 and effects of their cleavage. In red, inhibitory A20 BCL10 actions; in green, activating actions. Reduced MALT1 Integrin-mediated deubiquitinylation adhesion MALT1 API2-MALT1 CYLD Regnase-1 NIK Increased JNK Increase mRNA stability and AP-1 activity IL-6, IL-2, c-REL Noncanonical RELB NF-κB Reduced DNA binding © 2013 American Association for Cancer Research OF2 Clin Cancer Res; 19(24) December 15, 2013 Clinical Cancer Research Downloaded from clincancerres.aacrjournals.org on September 29, 2021. © 2013 American Association for Cancer Research. Published OnlineFirst September 4, 2013; DOI: 10.1158/1078-0432.CCR-12-3869 MALT1 Paracaspase Targeting (18). The paracaspase domain was first predicted by struc- Fontan and colleagues identified novel MALT1 protease tural similarity, but its protease activity and cleavage targets inhibitors by screening small-molecule libraries using an in remained elusive for years until the identification of MALT1 vitro active form of MALT1 (13). The most biologically substrates tumor necrosis factor a-induced protein 3 potent inhibitor identified, "MI-2," exhibited irreversible (TNFAIP3/A20; ref. 19) and BCL10 (20). Other identified and specific binding to MALT1 and suppressed its protease targets include cylindromatosis (CYLD; ref. 21), v-rel reti- function in vitro and in vivo. MI-2 induced nuclear depletion culoendotheliosis viraloncogene homologB (RELB;ref.22), of c-REL and suppressed NF-kB activity (13). Most notably, and regnase-1 (23). Notably, fusion of MALT1 to API2 leads MI-2 was nontoxic to mice and displayed potent and to ectopic cleavage of NF-kB–inducing kinase (NIK; specific activity against ABC-DLBCL cells in vitro and xeno- ref. 24; Fig. 1B). A20 and CYLD are deubiquitylases that transplanted in vivo (13). The compound was also specif- cleave Lys-63–linked polyubiquitin chains (25). A20 deu- ically effective against primary human non-GCB DLBCLs ex biquitylates MALT1, decreasing its stability and attenuating vivo (13). Hence, MI-2 may represent a potentially clinically the B-cell response (26). CYLD decreases c-jun-NH2-kinase useful MALT1 inhibitor. (JNK) activity, thereby inhibiting activator protein-1 (AP-1; Finally, monoubiquitylation of MALT1 on Lys644 acti- ref. 21). RELB cleavage by MALT1 enhanced RELA and c-REL vates the protease function of MALT1. Expression of a DNA binding (22). Regnase-1 is an RNase that specifically nonubiquitylatable MALT1(K644R) mutant reduced sur- targets and degrades mRNAs implicated in the inflamma- vival of ABC-DLBCL cell lines (35). Targeting the ubiquitin tory response such as interleukin (IL)-2, IL-6, and c-REL, ligase responsible for this activation, currently unknown, thus attenuating signaling downstream of the TCR (23). might also disrupt MALT1 activity. Collectively, MALT1 cleavage of its substrate proteins enhances and prolongs NF-kB signaling downstream of the Clinical context for translation of MALT1-targeted BCR and/or TCR (19–24). therapy Biologic dependency on BCR signaling is a central feature of several types of B-cell neoplasms (36), and its inhibition – Clinical Translational Advances has been proposed as a strategy to treat lymphomas. A MALT1 protease activity inhibition in ABC-DLBCL number of BCR pathway inhibitors are in development DLBCLs are a heterogeneous group of diseases. Among (Fig. 2). Among these, ibrutinib, an irreversible BTK inhib- them, the ABC subtype, characterized by constitutive NF-kB itor, is showing
Recommended publications
  • The CARMA3-Bcl10-MALT1 Signalosome Drives NF-Κb Activation and Promotes Aggressiveness in Angiotensin II Receptor-Positive Breast Cancer
    Author Manuscript Published OnlineFirst on December 19, 2017; DOI: 10.1158/0008-5472.CAN-17-1089 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. Molecular and Cellular Pathobiology .. The CARMA3-Bcl10-MALT1 Signalosome Drives NF-κB Activation and Promotes Aggressiveness in Angiotensin II Receptor-positive Breast Cancer. Prasanna Ekambaram1, Jia-Ying (Lloyd) Lee1, Nathaniel E. Hubel1, Dong Hu1, Saigopalakrishna Yerneni2, Phil G. Campbell2,3, Netanya Pollock1, Linda R. Klei1, Vincent J. Concel1, Phillip C. Delekta4, Arul M. Chinnaiyan4, Scott A. Tomlins4, Daniel R. Rhodes4, Nolan Priedigkeit5,6, Adrian V. Lee5,6, Steffi Oesterreich5,6, Linda M. McAllister-Lucas1,*, and Peter C. Lucas1,* 1Departments of Pathology and Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 2Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 3McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 4Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan 5Women’s Cancer Research Center, Magee-Womens Research Institute, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania 6Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania Current address for P.C. Delekta: Department of Microbiology & Molecular Genetics, Michigan State University, East Lansing, Michigan Current address for D.R. Rhodes: Strata
    [Show full text]
  • The LUBAC Participates in Lysophosphatidic Acid-Induced NF-Κb Activation
    bioRxiv preprint doi: https://doi.org/10.1101/2020.02.13.948125; this version posted February 13, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. The LUBAC participates in Lysophosphatidic Acid-induced NF-κB Activation Tiphaine Douanne1, Sarah Chapelier1, Robert Rottapel2, Julie Gavard1,3, Nicolas Bidère1,* 1Université de Nantes, INSERM, CNRS, CRCINA, Team SOAP, F-440000 Nantes, France; 2Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada ; 3Institut de Cancérologie de l’Ouest, Site René Gauducheau, 44800 Saint-Herblain, France *Author for correspondence: [email protected] Abstract The natural bioactive glycerophospholipid lysophosphatidic acid (LPA) binds to its cognate G protein-coupled receptors (GPCRs) on the cell surface to promote the activation of several transcription factors, including NF-κB. LPA-mediated activation of NF-κB relies on the formation of a signalosome that contains the scaffold CARMA3, the adaptor BCL10 and the paracaspase MALT1 (CBM complex). The CBM has been extensively studied in lymphocytes, where it links antigen receptors to NF-κB activation via the recruitment of the linear ubiquitin assembly complex (LUBAC), a tripartite complex of HOIP, HOIL1 and SHARPIN. Moreover, MALT1 cleaves the LUBAC subunit HOIL1 to further enhance NF- κB activation. However, the contribution of the LUBAC downstream of GPCRs has not been investigated. By using murine embryonic fibroblasts from mice deficient for HOIP, HOIL1 and SHARPIN, we report that the LUBAC is crucial for the activation of NF-κB in response to LPA. Further echoing the situation in lymphocytes, LPA unbridles the protease activity of MALT1, which cleaves HOIL1 at the Arginine 165.
    [Show full text]
  • Laboratory Mouse Models for the Human Genome-Wide Associations
    Laboratory Mouse Models for the Human Genome-Wide Associations The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Kitsios, Georgios D., Navdeep Tangri, Peter J. Castaldi, and John P. A. Ioannidis. 2010. Laboratory mouse models for the human genome-wide associations. PLoS ONE 5(11): e13782. Published Version doi:10.1371/journal.pone.0013782 Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:8592157 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA Laboratory Mouse Models for the Human Genome-Wide Associations Georgios D. Kitsios1,4, Navdeep Tangri1,6, Peter J. Castaldi1,2,4,5, John P. A. Ioannidis1,2,3,4,5,7,8* 1 Institute for Clinical Research and Health Policy Studies, Tufts Medical Center, Boston, Massachusetts, United States of America, 2 Tufts University School of Medicine, Boston, Massachusetts, United States of America, 3 Department of Hygiene and Epidemiology, University of Ioannina School of Medicine and Biomedical Research Institute, Foundation for Research and Technology-Hellas, Ioannina, Greece, 4 Tufts Clinical and Translational Science Institute, Tufts Medical Center, Boston, Massachusetts, United States of America, 5 Department of Medicine, Center for Genetic Epidemiology and Modeling, Tufts Medical Center, Tufts University
    [Show full text]
  • Structural and Functional Diversity of Caspase Homologues in Non-Metazoan Organisms
    Protoplasma DOI 10.1007/s00709-017-1145-5 REVIEW ARTICLE Structural and functional diversity of caspase homologues in non-metazoan organisms Marina Klemenčič1,2 & Christiane Funk1 Received: 1 June 2017 /Accepted: 5 July 2017 # The Author(s) 2017. This article is an open access publication Abstract Caspases, the proteases involved in initiation and supports the role of metacaspases and orthocaspases as im- execution of metazoan programmed cell death, are only pres- portant contributors to cell homeostasis during normal physi- ent in animals, while their structural homologues can be ological conditions or cell differentiation and ageing. found in all domains of life, spanning from simple prokary- otes (orthocaspases) to yeast and plants (metacaspases). All members of this wide protease family contain the p20 do- Keywords Algae . Cyanobacteria . Cell death . Cysteine main, which harbours the catalytic dyad formed by the two protease . Metacaspase . Orthocaspase amino acid residues, histidine and cysteine. Despite the high structural similarity of the p20 domain, metacaspases and orthocaspases were found to exhibit different substrate speci- ficities than caspases. While the former cleave their substrates Introduction after basic amino acid residues, the latter accommodate sub- strates with negative charge. This observation is crucial for BOut of life’s school of war: What does not destroy me, the re-evaluation of non-metazoan caspase homologues being makes me stronger.^ wrote the German philosopher involved in processes of programmed cell death. In this re- Friedrich Nietzsche in his book Twilight of the Idols or view, we analyse the structural diversity of enzymes contain- how to philosophize with a hammer. Even though ing the p20 domain, with focus on the orthocaspases, and reformatted to more common use, this phrase has been summarise recent advances in research of orthocaspases and used to describe the dual nature of caspase homologues metacaspases of cyanobacteria, algae and higher plants.
    [Show full text]
  • PRKCQ / PKC-Theta Antibody (Aa640-690) Rabbit Polyclonal Antibody Catalog # ALS16240
    10320 Camino Santa Fe, Suite G San Diego, CA 92121 Tel: 858.875.1900 Fax: 858.622.0609 PRKCQ / PKC-Theta Antibody (aa640-690) Rabbit Polyclonal Antibody Catalog # ALS16240 Specification PRKCQ / PKC-Theta Antibody (aa640-690) - Product Information Application WB, IHC Primary Accession Q04759 Reactivity Human, Mouse, Rat Host Rabbit Clonality Polyclonal Calculated MW 82kDa KDa PRKCQ / PKC-Theta Antibody (aa640-690) - Additional Information Gene ID 5588 Other Names Protein kinase C theta type, 2.7.11.13, Western blot of PKC (N670) pAb in extracts nPKC-theta, PRKCQ, PRKCT from A549 cells. Target/Specificity Human PKC Theta Reconstitution & Storage Store at 4°C short term. Aliquot and store at -20°C long term. Avoid freeze-thaw cycles. Precautions PRKCQ / PKC-Theta Antibody (aa640-690) is for research use only and not for use in diagnostic or therapeutic procedures. Anti-PRKCQ / PKC-Theta antibody IHC staining of human brain, cerebellum. PRKCQ / PKC-Theta Antibody (aa640-690) - Protein Information PRKCQ / PKC-Theta Antibody (aa640-690) - Name PRKCQ Background Synonyms PRKCT Calcium-independent, phospholipid- and diacylglycerol (DAG)-dependent Function serine/threonine-protein kinase that mediates Calcium-independent, phospholipid- and non- redundant functions in T-cell receptor diacylglycerol (DAG)- dependent (TCR) signaling, including T-cells activation, serine/threonine-protein kinase that proliferation, differentiation and survival, by mediates non-redundant functions in T-cell mediating activation of multiple transcription receptor (TCR) signaling, including T-cells factors such as NF-kappa-B, JUN, NFATC1 and activation, proliferation, differentiation and NFATC2. In TCR-CD3/CD28-co-stimulated Page 1/3 10320 Camino Santa Fe, Suite G San Diego, CA 92121 Tel: 858.875.1900 Fax: 858.622.0609 survival, by mediating activation of multiple T-cells, is required for the activation of transcription factors such as NF-kappa-B, NF-kappa-B and JUN, which in turn are JUN, NFATC1 and NFATC2.
    [Show full text]
  • Serine Proteases with Altered Sensitivity to Activity-Modulating
    (19) & (11) EP 2 045 321 A2 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 08.04.2009 Bulletin 2009/15 C12N 9/00 (2006.01) C12N 15/00 (2006.01) C12Q 1/37 (2006.01) (21) Application number: 09150549.5 (22) Date of filing: 26.05.2006 (84) Designated Contracting States: • Haupts, Ulrich AT BE BG CH CY CZ DE DK EE ES FI FR GB GR 51519 Odenthal (DE) HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI • Coco, Wayne SK TR 50737 Köln (DE) •Tebbe, Jan (30) Priority: 27.05.2005 EP 05104543 50733 Köln (DE) • Votsmeier, Christian (62) Document number(s) of the earlier application(s) in 50259 Pulheim (DE) accordance with Art. 76 EPC: • Scheidig, Andreas 06763303.2 / 1 883 696 50823 Köln (DE) (71) Applicant: Direvo Biotech AG (74) Representative: von Kreisler Selting Werner 50829 Köln (DE) Patentanwälte P.O. Box 10 22 41 (72) Inventors: 50462 Köln (DE) • Koltermann, André 82057 Icking (DE) Remarks: • Kettling, Ulrich This application was filed on 14-01-2009 as a 81477 München (DE) divisional application to the application mentioned under INID code 62. (54) Serine proteases with altered sensitivity to activity-modulating substances (57) The present invention provides variants of ser- screening of the library in the presence of one or several ine proteases of the S1 class with altered sensitivity to activity-modulating substances, selection of variants with one or more activity-modulating substances. A method altered sensitivity to one or several activity-modulating for the generation of such proteases is disclosed, com- substances and isolation of those polynucleotide se- prising the provision of a protease library encoding poly- quences that encode for the selected variants.
    [Show full text]
  • RSC Chemical Biology
    RSC Chemical Biology View Article Online PAPER View Journal | View Issue Phosphinate esters as novel warheads for activity-based probes targeting serine proteases† Cite this: RSC Chem. Biol., 2021, 2, 1285 Jan Pascal Kahler a and Steven H. L. Verhelst *ab Activity-based protein profiling enables the specific detection of the active fraction of an enzyme and is of particular use for the profiling of proteases. The technique relies on a mechanism-based reaction between Received 21st May 2021, small molecule activity-based probes (ABPs) with the active enzyme. Here we report a set of new ABPs for Accepted 7th July 2021 serine proteases, specifically neutrophil serine proteases. The probes contain a phenylphosphinate warhead DOI: 10.1039/d1cb00117e that mimics the P1 amino acid recognized by the primary recognition pocket of S1 family serine proteases. The warhead is easily synthesized from commercial starting materials and leads to potent probes which can rsc.li/rsc-chembio be used for fluorescent in-gel protease detection and fluorescent microscopy imaging experiments. Creative Commons Attribution-NonCommercial 3.0 Unported Licence. Introduction Serine proteases are the largest group of proteases. They use an active site serine residue for attack on the scissile peptide bond. Activity-based protein profiling (ABPP) is a powerful technique Many serine reactive electrophiles such as isocoumarins,13,14 that allows for profiling of the active fraction of a given enzyme. It benzoxazinones,15 phosphoramidates16 and oxolactams17 have has been particularly useful for the study of proteases, because been used as warhead for serine protease ABPs. Most applied these enzymes are tightly regulated by post-translational however, are a-aminoalkyl diphenyl phosphonates.18,19 Since these processes.1–3 ABPP relies on activity-based probes (ABPs), small phosphonates bind to the serine protease in a substrate-like molecules that react covalently with the active enzyme in a manner, substrate specificity information can directly be used to mechanism-based manner.
    [Show full text]
  • The UBE2L3 Ubiquitin Conjugating Enzyme: Interplay with Inflammasome Signalling and Bacterial Ubiquitin Ligases
    The UBE2L3 ubiquitin conjugating enzyme: interplay with inflammasome signalling and bacterial ubiquitin ligases Matthew James George Eldridge 2018 Imperial College London Department of Medicine Submitted to Imperial College London for the degree of Doctor of Philosophy 1 Abstract Inflammasome-controlled immune responses such as IL-1β release and pyroptosis play key roles in antimicrobial immunity and are heavily implicated in multiple hereditary autoimmune diseases. Despite extensive knowledge of the mechanisms regulating inflammasome activation, many downstream responses remain poorly understood or uncharacterised. The cysteine protease caspase-1 is the executor of inflammasome responses, therefore identifying and characterising its substrates is vital for better understanding of inflammasome-mediated effector mechanisms. Using unbiased proteomics, the Shenoy grouped identified the ubiquitin conjugating enzyme UBE2L3 as a target of caspase-1. In this work, I have confirmed UBE2L3 as an indirect target of caspase-1 and characterised its role in inflammasomes-mediated immune responses. I show that UBE2L3 functions in the negative regulation of cellular pro-IL-1 via the ubiquitin- proteasome system. Following inflammatory stimuli, UBE2L3 assists in the ubiquitylation and degradation of newly produced pro-IL-1. However, in response to caspase-1 activation, UBE2L3 is itself targeted for degradation by the proteasome in a caspase-1-dependent manner, thereby liberating an additional pool of IL-1 which may be processed and released. UBE2L3 therefore acts a molecular rheostat, conferring caspase-1 an additional level of control over this potent cytokine, ensuring that it is efficiently secreted only in appropriate circumstances. These findings on UBE2L3 have implications for IL-1- driven pathology in hereditary fever syndromes, and autoinflammatory conditions associated with UBE2L3 polymorphisms.
    [Show full text]
  • Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
    Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase
    [Show full text]
  • NF-B in Hematological Malignancies
    biomedicines Review NF-κB in Hematological Malignancies Véronique Imbert * and Jean-François Peyron Centre Méditerranéen de Médecine Moléculaire, INSERM U1065, Université Côte d’Azur, 06204 Nice, France; [email protected] * Correspondence: [email protected]; Tel.: +33-489-064-315 Academic Editor: Véronique Baud Received: 28 April 2017; Accepted: 26 May 2017; Published: 31 May 2017 Abstract: NF-κB (Nuclear Factor K-light-chain-enhancer of activated B cells) transcription factors are critical regulators of immunity, stress response, apoptosis, and differentiation. Molecular defects promoting the constitutive activation of canonical and non-canonical NF-κB signaling pathways contribute to many diseases, including cancer, diabetes, chronic inflammation, and autoimmunity. In the present review, we focus our attention on the mechanisms of NF-κB deregulation in hematological malignancies. Key positive regulators of NF-κB signaling can act as oncogenes that are often prone to chromosomal translocation, amplifications, or activating mutations. Negative regulators of NF-κB have tumor suppressor functions, and are frequently inactivated either by genomic deletions or point mutations. NF-κB activation in tumoral cells is also driven by the microenvironment or chronic signaling that does not rely on genetic alterations. Keywords: NF-κB; leukemia; lymphoma 1. Introduction The NF-κB family of transcription factors coordinates inflammatory responses, innate and adaptive immunity, cellular differentiation, proliferation, and survival in all multicellular organisms. The NF-κB system is tightly controlled at various levels, and deregulations of NF-κB homeostasis have been implicated in a wide range of diseases, ranging from inflammatory and immune disorders to cancer [1,2]. In particular, NF-κB is a key link between chronic inflammation and cancer transformation [3].
    [Show full text]
  • Efficient Analysis of Mouse Genome Sequences Reveal Many Nonsense Variants
    Efficient analysis of mouse genome sequences reveal many nonsense variants Sophie Steelanda,b,1, Steven Timmermansa,b,1, Sara Van Ryckeghema,b, Paco Hulpiaua,b, Yvan Saeysa,c, Marc Van Montagud,e,f,2, Roosmarijn E. Vandenbrouckea,b,3, and Claude Liberta,b,2,3 aInflammation Research Center, Flanders Institute for Biotechnology (VIB), 9052 Ghent, Belgium; bDepartment of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium; cDepartment of Internal Medicine, Ghent University, 9052 Ghent, Belgium; dDepartment of Plant Systems Biology, VIB, 9052 Ghent, Belgium; eDepartment of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; and fInternational Plant Biotechnology Outreach, VIB, Ghent, Belgium Contributed by Marc Van Montagu, March 30, 2016 (sent for review December 31, 2015; reviewed by Bruce Beutler, Stefano Bruscoli, Stefan Rose-John, and Klaus Schulze-Osthoff) Genetic polymorphisms in coding genes play an important role alive, archiving them, and distributing mutant strains to in- when using mouse inbred strains as research models. They have terested users (4). been shown to influence research results, explain phenotypical Since Clarence Little showed in the early 20th century that the differences between inbred strains, and increase the amount of principle of inbreeding also applies to mice, several hundred interesting gene variants present in the many available inbred inbred mouse strains have been generated (5). Some of these lines. SPRET/Ei is an inbred strain derived from Mus spretus that strains display specific phenotypes that are the result of a mutant has ∼1% sequence difference with the C57BL/6J reference ge- gene, and in several cases have formed the basis for identifying nome.
    [Show full text]
  • Phylogenetic Distribution and Diversity of Bacterial Pseudo-Orthocaspases Underline Their Putative Role in Photosynthesis
    http://www.diva-portal.org This is the published version of a paper published in Frontiers in Plant Science. Citation for the original published paper (version of record): Klemenčič, M., Asplund-Samuelsson, J., Dolinar, M., Funk, C. (2019) Phylogenetic Distribution and Diversity of Bacterial Pseudo-Orthocaspases Underline Their Putative Role in Photosynthesis Frontiers in Plant Science, 10: 293 https://doi.org/10.3389/fpls.2019.00293 Access to the published version may require subscription. N.B. When citing this work, cite the original published paper. Permanent link to this version: http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-157749 fpls-10-00293 March 12, 2019 Time: 19:11 # 1 ORIGINAL RESEARCH published: 14 March 2019 doi: 10.3389/fpls.2019.00293 Phylogenetic Distribution and Diversity of Bacterial Pseudo-Orthocaspases Underline Their Putative Role in Photosynthesis Marina Klemenciˇ cˇ 1,2, Johannes Asplund-Samuelsson3, Marko Dolinar2 and Christiane Funk1* 1 Department of Chemistry, Umeå University, Umeå, Sweden, 2 Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia, 3 Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Solna, Sweden Orthocaspases are prokaryotic caspase homologs – proteases, which cleave their substrates after positively charged residues using a conserved histidine – cysteine (HC) dyad situated in a catalytic p20 domain. However, in orthocaspases pseudo-variants have been identified, which instead of the catalytic HC residues contain tyrosine and Edited by: serine, respectively. The presence and distribution of these presumably proteolytically Mercedes Diaz-Mendoza, inactive p20-containing enzymes has until now escaped attention.
    [Show full text]