Estimating the Size of the Human Interactome SEE COMMENTARY

Total Page:16

File Type:pdf, Size:1020Kb

Estimating the Size of the Human Interactome SEE COMMENTARY Estimating the size of the human interactome SEE COMMENTARY Michael P. H. Stumpf†‡§, Thomas Thorne†, Eric de Silva†, Ronald Stewart†, Hyeong Jun An¶, Michael Lappe¶, and Carsten Wiuf§ʈ †Division of Molecular Biosciences, Imperial College London, Wolfson Building, London SW7 2AZ, United Kingdom; ‡Institute of Mathematical Sciences, Imperial College London, London SW7 2AZ, United Kingdom; ʈMax Planck Institute for Molecular Genetics, 14195 Berlin, Germany; and ¶Bioinformatics Research Center, University of Aarhus, 8000 Aarhus C, Denmark Edited by Burton H. Singer, Princeton University, Princeton, NJ, and approved February 19, 2008 (received for review August 27, 2007) After the completion of the human and other genome projects it of most systems biology data are increasingly being recognized emerged that the number of genes in organisms as diverse as fruit (11, 19) as important. flies, nematodes, and humans does not reflect our perception of There are, however, some properties of the true network that their relative complexity. Here, we provide reliable evidence that can be inferred even from subnet data, and here we show that the the size of protein interaction networks in different organisms total network size is one property for which this is the case. appears to correlate much better with their apparent biological Present protein-interaction datasets enable us to estimate the complexity. We develop a stable and powerful, yet simple, statis- size of the interactomes in different species by using graph tical procedure to estimate the size of the whole network from theoretical invariants. This is particularly interesting for species subnet data. This approach is then applied to a range of eukaryotic where more than one experimental dataset is available. Below we organisms for which extensive protein interaction data have been first describe a robust and very general estimator of network size collected and we estimate the number of interactions in humans to from partial network data that overcomes this problem. We then be Ϸ650,000. We find that the human interaction network is one apply it to available PIN data in a range of eukaryotic organisms. order of magnitude bigger than the Drosophila melanogaster In supporting information (SI) Text we demonstrate the power interactome and Ϸ3 times bigger than in Caenorhabditis elegans. of this approach by using extensive simulation studies. evolutionary systems biology ͉ network inference ͉ Estimating Interactome Size network sampling theory ͉ network evolution Here, we develop an approach for estimating the size of a EVOLUTION network from incomplete data. We will show below (and by using ne of the perhaps most surprising results of the genome- extensive simulations in SI Text) that for a given species estimates Osequencing projects was that the number of genes is much from different independent datasets—generated by different lower than had been expected and is, in fact, surprisingly similar methods such as yeast-two-hybrid and TAP tagging—yield es- for very different organisms (1, 2). For example, the nematode timates for the interactome size that are in excellent agreement. Caenorhabditis elegans appears to have a similar number of genes We are concerned with a true network, N, which has NN nodes APPLIED as humans, whereas rice and maize appear to have even more and MN edges. The sets of nodes and edges are given by VN and MATHEMATICS genes than humans. It was then quickly suggested that the EN, respectively; these define the graph representation of the biological complexity of organisms is not reflected merely by the true network: number of genes but by the number of physiologically relevant ϭ ͑ ͒ interactions (1, 3). In addition to alternative splice variants (4), GN VN, EN . [1] posttranslational processes (5), and other (e.g., genetic) factors ʕ influencing gene expression (6, 7), the structure of interactome We pick a subset of nodes VS VN and study properties of the is one of the crucial factors underlying the complexity of biological subgraph GS induced by the nodes in VS organisms. Here, we focus on the wealth of available protein G ϭ ͑V , E ͒, [2] interaction data and demonstrate that it is possible to arrive at a S S S reliable statistical estimate for the size of these interaction net- where the set of edges observed in the S is a subset of the total works. This approach is then used to assess the complexity of set of edges, ES ʕ EN. Our aim is to predict the number of protein interaction networks in different organisms from present interactions in the true network GN based on the available data incomplete and noisy protein interaction datasets. in the subnet, GS. There are now fairly extensive protein interaction network We assume that the network, GN, is generated according to (PIN) datasets in a number of species, including humans (8, 9). some (unknown) model characterized by a parameter (vector) ␪, These have been generated by a variety of experimental tech- and subsequently the observed network, GS is sampled from it. niques (as well as some in silico inferences). Although these Then techniques and the resulting data are (i) notoriously prone to false positives and negatives (10, 11), and (ii) result in highly ͑ ͒ ϭ ͸ ͑ ͉ ͒ ͑ ͒ P␪, p GS Pp GS GN P␪ GN , [3] idealized and averaged network structures (12), such interaction GNʖGS datasets are increasingly turning into useful tools for the analysis of the functional (e.g., ref. 13) and evolutionary properties (14) of biological systems. In particular, in Saccharomyces cerevisiae Author contributions: M.P.H.S., M.L., and C.W. designed research; M.P.H.S., T.T., E.d.S., we are beginning to have a fairly complete description of the M.L., and C.W. performed research; M.P.H.S., T.T., E.d.S., R.S., H.J.A., and C.W. analyzed protein interaction network that is accessible with current ex- data; and M.P.H.S., M.L., and C.W. wrote the paper. perimental technologies; the recent high-quality literature- The authors declare no conflict of interest. curated dataset of Reguly et al. (15) provides us with a dataset This article is a PNAS Direct Submission. that should be almost completely free from false positives. For See Commentary on page 6795. most other organisms, however, interaction data are still far from §To whom correspondence may be addressed. E-mail: [email protected] or complete and it has recently been shown that subnetworks, in [email protected]. general, have qualitatively different properties from the true This article contains supporting information online at www.pnas.org/cgi/content/full/ network (16–18). Although the importance of network-sampling 0708078105/DCSupplemental. properties had only been realized relatively recently, this aspect © 2008 by The National Academy of Sciences of the USA www.pnas.org͞cgi͞doi͞10.1073͞pnas.0708078105 PNAS ͉ May 13, 2008 ͉ vol. 105 ͉ no. 19 ͉ 6959–6964 Downloaded by guest on September 27, 2021 where it is assumed that the sampling is independent of the sampling of nodes is not too restrictive and should apply to many, network-generating model. The parameter p refers to a general in particular, high-throughput, experimental studies. sampling process, and not only independent node sampling. So far we have assumed that the number of ORFs, NN in an Furthermore, we assume the order NN of the network is known organism is known from genome surveys. Total genome size is, and allow nodes to be annotated with information not related to however, still not precisely known in most organisms. Uncer- the wiring of the network (e.g., GO terms or protein family tainty in the NN is, however, easily incorporated. Assume that classes). Consequently, the sum is over networks, GN, with NN the value NN is associated with an error or uncertainty ␧ (i.e., if (labeled) nodes only. For convenience, we take labeling infor- the genome contains N0 protein-coding genes of which NN are mation to be included in NN and NS (the order of GS). ␧ ϭ Ϫ ϭ Ϯ ␧ known, then (N0 NN)/N0. Then let NN : N0 (1 ) and If sampling only depends on the nodes in the network and not for ␧Շ0.1 we have on their connections, then Pp(GS͉GN) splits into a product of two terms, NS NS P˜ ϭ Ϸ ͑1 Ϯ␧͒ ϭ ͑1 Ϯ␧͒pˆ. [9] ͑ ͒ ϭ ͑ ͒ ͸ ͑ ͒ ͑ ͒ N0 NN P␪, p GS Qp NS q GS, GN P␪ GN , [4] ʖ GN GS Replacing pˆ in Eq. 8 with ˜p yields the error-corrected estimate for the true network size where Qp(NS) is a term denoting the probability of sampling the nodes in the observed PIN and q(GS, GN) denotes how many MS MS ways this can be done given the (labeled) nodes in GN—by ˜ ϭ Ϸ ͑ Ϯ ␧͒ MN 2 1 2 2 . [10] assumption, labeling of nodes is the same in all possible GNs. For p˜ pˆ example, if the nodes are unlabeled and have degree zero, then NN Thus, an uncertainty of ␧ in the number of nodes in the true q(GS, GN) ϭ ( ). If all nodes have degree one, a similar factor NS network results in an uncertainty of 2␧ for the number of edges can be derived based on the number of degree one (d1) and in the true network. degree zero (d0) nodes that are observed in the PIN: q(GS, GN) To assess the variability of the estimator we can construct is the number of ways one can choose d0 and d1 out of the NN/2 pairs of connected nodes in GN. If all nodes are labeled then approximate bootstrap confidence intervals (CI) (20).
Recommended publications
  • Dual Proteome-Scale Networks Reveal Cell-Specific Remodeling of the Human Interactome
    bioRxiv preprint doi: https://doi.org/10.1101/2020.01.19.905109; this version posted January 19, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Dual Proteome-scale Networks Reveal Cell-specific Remodeling of the Human Interactome Edward L. Huttlin1*, Raphael J. Bruckner1,3, Jose Navarrete-Perea1, Joe R. Cannon1,4, Kurt Baltier1,5, Fana Gebreab1, Melanie P. Gygi1, Alexandra Thornock1, Gabriela Zarraga1,6, Stanley Tam1,7, John Szpyt1, Alexandra Panov1, Hannah Parzen1,8, Sipei Fu1, Arvene Golbazi1, Eila Maenpaa1, Keegan Stricker1, Sanjukta Guha Thakurta1, Ramin Rad1, Joshua Pan2, David P. Nusinow1, Joao A. Paulo1, Devin K. Schweppe1, Laura Pontano Vaites1, J. Wade Harper1*, Steven P. Gygi1*# 1Department of Cell Biology, Harvard Medical School, Boston, MA, 02115, USA. 2Broad Institute, Cambridge, MA, 02142, USA. 3Present address: ICCB-Longwood Screening Facility, Harvard Medical School, Boston, MA, 02115, USA. 4Present address: Merck, West Point, PA, 19486, USA. 5Present address: IQ Proteomics, Cambridge, MA, 02139, USA. 6Present address: Vor Biopharma, Cambridge, MA, 02142, USA. 7Present address: Rubius Therapeutics, Cambridge, MA, 02139, USA. 8Present address: RPS North America, South Kingstown, RI, 02879, USA. *Correspondence: [email protected] (E.L.H.), [email protected] (J.W.H.), [email protected] (S.P.G.) #Lead Contact: [email protected] bioRxiv preprint doi: https://doi.org/10.1101/2020.01.19.905109; this version posted January 19, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder.
    [Show full text]
  • Protein Interaction Network Across Vast Evolutionary Distance
    An inter-species protein-protein interaction network across vast evolutionary distance The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Zhong, Q., S. J. Pevzner, T. Hao, Y. Wang, R. Mosca, J. Menche, M. Taipale, et al. “An Inter-Species Protein-Protein Interaction Network Across Vast Evolutionary Distance.” Molecular Systems Biology 12, no. 4 (April 22, 2016): 865–865. As Published http://dx.doi.org/10.15252/msb.20156484 Publisher EMBO Press Version Final published version Citable link http://hdl.handle.net/1721.1/103049 Terms of Use Creative Commons Attribution Detailed Terms http://creativecommons.org/licenses/by/4.0/ Published online: April 22, 2016 Article An inter-species protein–protein interaction network across vast evolutionary distance Quan Zhong1,2,3,†,****, Samuel J Pevzner1,2,4,5,†, Tong Hao1,2, Yang Wang1,2, Roberto Mosca6, Jörg Menche1,7, Mikko Taipale8, Murat Tasßan1,9,10,11, Changyu Fan1,2, Xinping Yang1,2, Patrick Haley1,2, Ryan R Murray1,2, Flora Mer1,2, Fana Gebreab1,2, Stanley Tam1,2, Andrew MacWilliams1,2, Amélie Dricot1,2, Patrick Reichert1,2, Balaji Santhanam1,2, Lila Ghamsari1,2, Michael A Calderwood1,2, Thomas Rolland1,2, Benoit Charloteaux1,2, Susan Lindquist8,12,13, Albert-László Barabási1,7,14, David E Hill1,2, Patrick Aloy6,15, Michael E Cusick1,2, Yu Xia1,16,***, Frederick P Roth1,9,10,11,17,** & Marc Vidal1,2,* Abstract proteomes beyond human–yeast homologs. Our data support evolutionary selection against biophysical interactions between In cellular systems, biophysical interactions between macro- proteins with little or no co-functionality.
    [Show full text]
  • A Proteome-Scale Map of the Human Interactome Network
    Resource A Proteome-Scale Map of the Human Interactome Network Thomas Rolland,1,2,19 Murat Tasxan,1,3,4,5,19 Benoit Charloteaux,1,2,19 Samuel J. Pevzner,1,2,6,7,19 Quan Zhong,1,2,8,19 Nidhi Sahni,1,2,19 Song Yi,1,2,19 Irma Lemmens,9 Celia Fontanillo,10 Roberto Mosca,11 Atanas Kamburov,1,2 Susan D. Ghiassian,1,12 Xinping Yang,1,2 Lila Ghamsari,1,2 Dawit Balcha,1,2 Bridget E. Begg,1,2 Pascal Braun,1,2 Marc Brehme,1,2 Martin P. Broly,1,2 Anne-Ruxandra Carvunis,1,2 Dan Convery-Zupan,1,2 Roser Corominas,13 Jasmin Coulombe-Huntington,1,14 Elizabeth Dann,1,2 Matija Dreze,1,2 Ame´ lie Dricot,1,2 Changyu Fan,1,2 Eric Franzosa,1,14 Fana Gebreab,1,2 Bryan J. Gutierrez,1,2 Madeleine F. Hardy,1,2 Mike Jin,1,2 Shuli Kang,13 Ruth Kiros,1,2 Guan Ning Lin,13 Katja Luck,1,2 Andrew MacWilliams,1,2 Jo¨ rg Menche,1,12 Ryan R. Murray,1,2 Alexandre Palagi,1,2 Matthew M. Poulin,1,2 Xavier Rambout,1,2,15 John Rasla,1,2 Patrick Reichert,1,2 Viviana Romero,1,2 Elien Ruyssinck,9 Julie M. Sahalie,1,2 Annemarie Scholz,1,2 Akash A. Shah,1,2 Amitabh Sharma,1,12 Yun Shen,1,2 Kerstin Spirohn,1,2 Stanley Tam,1,2 Alexander O. Tejeda,1,2 Shelly A. Trigg,1,2 Jean-Claude Twizere,1,2,15 Kerwin Vega,1,2 Jennifer Walsh,1,2 Michael E.
    [Show full text]
  • Large-Scale Analysis of Disease Pathways in the Human Interactome
    Large-scale analysis of disease pathways in the human interactome 1, 1, 1,2 Monica Agrawal ‡, Marinka Zitnik ‡, and Jure Leskovec 1Department of Computer Science, Stanford University, Stanford, CA, USA 2Chan Zuckerberg Biohub, San Francisco, CA, USA ‡Equal contribution; Email: {agrawalm, marinka, jure}@cs.stanford.edu Discovering disease pathways, which can be defined as sets of proteins associated with a given dis- ease, is an important problem that has the potential to provide clinically actionable insights for dis- ease diagnosis, prognosis, and treatment. Computational methods aid the discovery by relying on protein-protein interaction (PPI) networks. They start with a few known disease-associated proteins and aim to find the rest of the pathway by exploring the PPI network around the known disease pro- teins. However, the success of such methods has been limited, and failure cases have not been well understood. Here we study the PPI network structure of 519 disease pathways. We find that 90% of pathways do not correspond to single well-connected components in the PPI network. Instead, proteins associated with a single disease tend to form many separate connected components/regions in the network. We then evaluate state-of-the-art disease pathway discovery methods and show that their performance is especially poor on diseases with disconnected pathways. Thus, we conclude that network connectivity structure alone may not be sufficient for disease pathway discovery. However, we show that higher-order network structures, such as small subgraphs of the pathway, provide a promising direction for the development of new methods. Keywords: disease pathways, disease protein discovery, protein-protein interaction networks 1.
    [Show full text]
  • Protein Interaction Networks from Yeast to Human Peer Bork1,2, Lars J Jensen1, Christian Von Mering1, Arun K Ramani3, Insuk Lee3 and Edward M Marcotte3,4
    Protein interaction networks from yeast to human Peer Bork1,2, Lars J Jensen1, Christian von Mering1, Arun K Ramani3, Insuk Lee3 and Edward M Marcotte3,4 Protein interaction networks summarize large amounts of genes to various degrees were published in the same protein–protein interaction data, both from individual, small- period (e.g. localization data, double knockouts, etc.) scale experiments and from automated high-throughput and other sources, such as spotted microarrays, have been screens. The past year has seen a flood of new experimental used to extract interaction information [8]. In the light of data, especially on metazoans, as well as an increasing number these developments, several databases storing interaction of analyses designed to reveal aspects of network topology, data became very popular, derived at first mainly from modularity and evolution. As only minimal progress has been small-scale experiments (e.g. [9–12]) and increasingly made in mapping the human proteome using high-throughput becoming warehouses for large-scale assay data, while screens, the transfer of interaction information within and across novel databases continue to be developed [13]. species has become increasingly important. With more and more heterogeneous raw data becoming available, proper data This data collection phase was accompanied by intensive integration and quality control have become essential for reliable analysis and comparison of networks, particularly based protein network reconstruction, and will be especially important on the large protein interaction data sets mentioned for reconstructing the human protein interaction network. above. The networks were compared to each other, to known protein complexes, to functional annotation and Addresses to other types of high-throughput experimental data.
    [Show full text]
  • Comparison of Human Protein-Protein Interaction Maps
    Comparison of Human Protein-Protein Interaction Maps Matthias E. Futschik 1 , Gautam Chaurasia1,2 , Erich Wanker2 and Hanspeter Herzel1 1 Institute for Theoretical Biology, Charité, Humboldt-Universität and 2 Max-Delbrück-Centrum, Invalidenstrasse 43 10115 Berlin, Germany [email protected] Abstract: Large-scale mappings of protein-protein interactions have started to give us new views of the complex molecular mechanisms inside a cell. After initial projects to systematically map protein interactions in model organisms such as yeast, worm and fly, researchers have begun to focus on the mapping of the human interactome. To tackle this enormous challenge, different approaches have been proposed and pursued. While several large-scale human protein interaction maps have recently been published, their quality remains to be critically assessed. We present here a first comparative analysis of eight currentlyavailable large-scale maps with a total of over 10000 unique proteins and 57000 interactions included. They are based either on literature search, orthology or by yeast-two-hybrid assays. Comparison reveals only a small, but statistically significant overlap. More importantly, our analysis gives clear indications that all interaction maps suffer under selection and detection biases. These results have to be taken into account for future assembly of the human interactome. 1 Introduction Interactions between proteinsunderlie the vast majority of cellular processes. They are essential for a wide range of tasks and form a network of astonishing complexity. Until recently, our knowledge of this complex network was rather limited. The emergence of large scale protein-protein interaction maps has given us new possibilities to systematically survey and study the underlying biological system.
    [Show full text]
  • Dissecting the Human Protein-Protein Interaction Network Via
    OPEN Dissecting the Human Protein-Protein SUBJECT AREAS: Interaction Network via Phylogenetic PROTEIN-PROTEIN INTERACTION Decomposition NETWORKS NETWORK TOPOLOGY Cho-Yi Chen1, Andy Ho2, Hsin-Yuan Huang3, Hsueh-Fen Juan1,2 & Hsuan-Cheng Huang4 PHYLOGENY 1Genome and Systems Biology Degree Program, Department of Life Science, Institute of Molecular and Cellular Biology, 2Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei 10617, Taiwan, 3Taipei Municipal Received 4 Jianguo High School, Taipei 10066, Taiwan, Institute of Biomedical Informatics, Center for Systems and Synthetic Biology, 14 August 2014 National Yang-Ming University, Taipei 11221, Taiwan. Accepted 4 November 2014 The protein-protein interaction (PPI) network offers a conceptual framework for better understanding the Published functional organization of the proteome. However, the intricacy of network complexity complicates 21 November 2014 comprehensive analysis. Here, we adopted a phylogenic grouping method combined with force-directed graph simulation to decompose the human PPI network in a multi-dimensional manner. This network model enabled us to associate the network topological properties with evolutionary and biological implications. First, we found that ancient proteins occupy the core of the network, whereas young proteins Correspondence and tend to reside on the periphery. Second, the presence of age homophily suggests a possible selection pressure requests for materials may have acted on the duplication and divergence process during the PPI network evolution. Lastly, should be addressed to functional analysis revealed that each age group possesses high specificity of enriched biological processes and pathway engagements, which could correspond to their evolutionary roles in eukaryotic cells. More H.-F.J. (yukijuan@ntu. interestingly, the network landscape closely coincides with the subcellular localization of proteins.
    [Show full text]
  • Dynamic Rewiring of the Human Interactome by Interferon Signalling
    bioRxiv preprint doi: https://doi.org/10.1101/766808; this version posted September 12, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Dynamic rewiring of the human interactome by interferon signalling 1,2,3,4 1,3 1 2 Craig H. Kerr ,​ Michael A. Skinnider ,​ Angel M. Madero ,​ Daniel D.T. Andrews ,​ R. Greg ​ ​ ​ ​ 1 1 1 2 1,2 Stacey ,​ Queenie W.T. Chan ,​ Nikolay Stoynov ,​ Eric Jan ,​ Leonard J. Foster *​ ​ ​ ​ ​ ​ 1 ​ Michael Smith Laboratories, University of British Columbia, Vancouver BC, V6T 1Z4 2 ​ Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver BC, V6T 1Z3 3 ​ These authors contributed equally 4 ​ Current address: Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA. * Correspondence: [email protected] keywords: interferon, proteomics, interferon stimulated gene, innate immunity, protein correlation profiling, interactome, protein complexes 1 bioRxiv preprint doi: https://doi.org/10.1101/766808; this version posted September 12, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. ABSTRACT Background: The type I interferon (IFN) response is an ancient pathway that protects cells ​ against viral pathogens by inducing the transcription of hundreds of IFN-stimulated genes (ISGs). Transcriptomic and biochemical approaches have established comprehensive catalogues of ISGs across species and cell types, but their antiviral mechanisms remain incompletely characterized.
    [Show full text]
  • Integration of Molecular Interactome and Targeted Interaction Analysis To
    www.nature.com/scientificreports OPEN Integration of Molecular Interactome and Targeted Interaction Analysis to Identify a Received: 2 November 2017 Accepted: 20 August 2018 COPD Disease Network Module Published: xx xx xxxx Amitabh Sharma1,3,4,5, Maksim Kitsak4, Michael H. Cho 1,2,3, Asher Ameli1,10, Xiaobo Zhou1,3, Zhiqiang Jiang1, James D. Crapo6, Terri H. Beaty 7, Jörg Menche8, Per S. Bakke9, Marc Santolini 1,4,5 & Edwin K. Silverman1,2,3 The polygenic nature of complex diseases ofers potential opportunities to utilize network-based approaches that leverage the comprehensive set of protein-protein interactions (the human interactome) to identify new genes of interest and relevant biological pathways. However, the incompleteness of the current human interactome prevents it from reaching its full potential to extract network-based knowledge from gene discovery eforts, such as genome-wide association studies, for complex diseases like chronic obstructive pulmonary disease (COPD). Here, we provide a framework that integrates the existing human interactome information with experimental protein- protein interaction data for FAM13A, one of the most highly associated genetic loci to COPD, to fnd a more comprehensive disease network module. We identifed an initial disease network neighborhood by applying a random-walk method. Next, we developed a network-based closeness approach (CAB) that revealed 9 out of 96 FAM13A interacting partners identifed by afnity purifcation assays were signifcantly close to the initial network neighborhood. Moreover, compared to a similar method (local radiality), the CAB approach predicts low-degree genes as potential candidates. The candidates identifed by the network-based closeness approach were combined with the initial network neighborhood to build a comprehensive disease network module (163 genes) that was enriched with genes diferentially expressed between controls and COPD subjects in alveolar macrophages, lung tissue, sputum, blood, and bronchial brushing datasets.
    [Show full text]
  • Interactome Networks and Human Disease
    Leading Edge Review Interactome Networks and Human Disease Marc Vidal,1,2,* Michael E. Cusick,1,2 and Albert-La´ szlo´ Baraba´ si1,3,4,* 1Center for Cancer Systems Biology (CCSB) and Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA 2Department of Genetics, Harvard Medical School, Boston, MA 02115, USA 3Center for Complex Network Research (CCNR) and Departments of Physics, Biology and Computer Science, Northeastern University, Boston, MA 02115, USA 4Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA *Correspondence: [email protected] (M.V.), [email protected] (A.-L.B.) DOI 10.1016/j.cell.2011.02.016 Complex biological systems and cellular networks may underlie most genotype to phenotype relationships. Here, we review basic concepts in network biology, discussing different types of interactome networks and the insights that can come from analyzing them. We elaborate on why interactome networks are important to consider in biology, how they can be mapped and integrated with each other, what global properties are starting to emerge from interactome network models, and how these properties may relate to human disease. Introduction phenotypic associations, there would still be major problems Since the advent of molecular biology, considerable progress to fully understand and model human genetic variations and their has been made in the quest to understand the mechanisms impact on diseases. that underlie human disease, particularly for genetically inherited To understand why, consider the ‘‘one-gene/one-enzyme/ disorders. Genotype-phenotype relationships, as summarized in one-function’’ concept originally framed by Beadle and Tatum the Online Mendelian Inheritance in Man (OMIM) database (Am- (Beadle and Tatum, 1941), which holds that simple, linear berger et al., 2009), include mutations in more than 3000 human connections are expected between the genotype of an organism genes known to be associated with one or more of over 2000 and its phenotype.
    [Show full text]
  • Handbook of Systems Biology Concepts and Insights
    Chapter 3 Interactome Networks Anne-Ruxandra Carvunis1,2, Frederick P. Roth1,3, Michael A. Calderwood1,2, Michael E. Cusick1,2, Giulio Superti-Furga4 and Marc Vidal1,2 1Center for Cancer Systems Biology (CCSB) and Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA, 2Department of Genetics, Harvard Medical School, Boston, MA 02115, USA, 3Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto, Ontario M5S-3E1, Canada, & Samuel Lunenfeld Research Institute, Mt. Sinai Hospital, Toronto, Ontario M5G-1X5, Canada, 4Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria Chapter Outline Introduction 45 Predicting Gene Functions, Phenotypes and Disease Life Requires Systems 45 Associations 53 Cells as Interactome Networks 46 Assigning Functions to Individual Interactions, Protein Interactome Networks and GenotypeePhenotype Complexes and Network Motifs 54 Relationships 47 Towards Dynamic Interactomes 55 Mapping and Modeling Interactome Networks 47 Towards Cell-Type and Condition-Specific Towards a Reference ProteineProtein Interactome Map 48 Interactomes 55 Strategies for Large-Scale ProteineProtein Interactome Evolutionary Dynamics of ProteineProtein Interactome Mapping 48 Networks 56 Large-Scale Binary Interactome Mapping 49 Concluding Remarks 57 Large-Scale Co-Complex Interactome Mapping 50 Acknowledgements 58 Drawing Inferences from Interactome Networks 51 References 58 Refining and Extending Interactome Network Models 51 INTRODUCTION generations of scientists and attempt to design new thera- Life Requires Systems peutic strategies. The next question then should be: even if we fully What is Life? The answer to the question posed by understood each of these four basic requirements of Schro¨dinger in a short but incisive book published in 1944 biology, would we be anywhere near a complete under- remains elusive more than seven decades later.
    [Show full text]
  • The Human Interactome Knowledge Base
    HINT-KB: The Human Interactome Knowledge Base Konstantinos Theofilatos, Christos Dimitrakopoulos, Dimitrios Kleftogiannis, Charalampos Moschopoulos, Stergios Papadimitriou, Spiros Likothanassis, Seferina Mavroudi To cite this version: Konstantinos Theofilatos, Christos Dimitrakopoulos, Dimitrios Kleftogiannis, Charalampos Moschopoulos, Stergios Papadimitriou, et al.. HINT-KB: The Human Interactome Knowledge Base. 8th International Conference on Artificial Intelligence Applications and Innovations (AIAI), Sep 2012, Halkidiki, Greece. pp.612-621, 10.1007/978-3-642-33412-2_63. hal-01523049 HAL Id: hal-01523049 https://hal.archives-ouvertes.fr/hal-01523049 Submitted on 16 May 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License HINT-KB: The Human Interactome Knowledge Base Konstantinos Theofilatos1, Christos Dimitrakopoulos1, Dimitrios Kleftogiannis2, Charalampos Moschopoulos3, Stergios Papadimitriou4, Spiros Likothanassis1, Seferina Mavroudi1,5 1 Department of Computer Engineering
    [Show full text]