The Higgs Boson, the God Particle, and the Correlation Between Scientific and Religious Narratives
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Five Common Particles
The Five Common Particles The world around you consists of only three particles: protons, neutrons, and electrons. Protons and neutrons form the nuclei of atoms, and electrons glue everything together and create chemicals and materials. Along with the photon and the neutrino, these particles are essentially the only ones that exist in our solar system, because all the other subatomic particles have half-lives of typically 10-9 second or less, and vanish almost the instant they are created by nuclear reactions in the Sun, etc. Particles interact via the four fundamental forces of nature. Some basic properties of these forces are summarized below. (Other aspects of the fundamental forces are also discussed in the Summary of Particle Physics document on this web site.) Force Range Common Particles It Affects Conserved Quantity gravity infinite neutron, proton, electron, neutrino, photon mass-energy electromagnetic infinite proton, electron, photon charge -14 strong nuclear force ≈ 10 m neutron, proton baryon number -15 weak nuclear force ≈ 10 m neutron, proton, electron, neutrino lepton number Every particle in nature has specific values of all four of the conserved quantities associated with each force. The values for the five common particles are: Particle Rest Mass1 Charge2 Baryon # Lepton # proton 938.3 MeV/c2 +1 e +1 0 neutron 939.6 MeV/c2 0 +1 0 electron 0.511 MeV/c2 -1 e 0 +1 neutrino ≈ 1 eV/c2 0 0 +1 photon 0 eV/c2 0 0 0 1) MeV = mega-electron-volt = 106 eV. It is customary in particle physics to measure the mass of a particle in terms of how much energy it would represent if it were converted via E = mc2. -
Fundamentals of Particle Physics
Fundamentals of Par0cle Physics Particle Physics Masterclass Emmanuel Olaiya 1 The Universe u The universe is 15 billion years old u Around 150 billion galaxies (150,000,000,000) u Each galaxy has around 300 billion stars (300,000,000,000) u 150 billion x 300 billion stars (that is a lot of stars!) u That is a huge amount of material u That is an unimaginable amount of particles u How do we even begin to understand all of matter? 2 How many elementary particles does it take to describe the matter around us? 3 We can describe the material around us using just 3 particles . 3 Matter Particles +2/3 U Point like elementary particles that protons and neutrons are made from. Quarks Hence we can construct all nuclei using these two particles -1/3 d -1 Electrons orbit the nuclei and are help to e form molecules. These are also point like elementary particles Leptons We can build the world around us with these 3 particles. But how do they interact. To understand their interactions we have to introduce forces! Force carriers g1 g2 g3 g4 g5 g6 g7 g8 The gluon, of which there are 8 is the force carrier for nuclear forces Consider 2 forces: nuclear forces, and electromagnetism The photon, ie light is the force carrier when experiencing forces such and electricity and magnetism γ SOME FAMILAR THE ATOM PARTICLES ≈10-10m electron (-) 0.511 MeV A Fundamental (“pointlike”) Particle THE NUCLEUS proton (+) 938.3 MeV neutron (0) 939.6 MeV E=mc2. Einstein’s equation tells us mass and energy are equivalent Wave/Particle Duality (Quantum Mechanics) Einstein E -
Introduction to Particle Physics
SFB 676 – Projekt B2 Introduction to Particle Physics Christian Sander (Universität Hamburg) DESY Summer Student Lectures – Hamburg – 20th July '11 Outline ● Introduction ● History: From Democrit to Thomson ● The Standard Model ● Gauge Invariance ● The Higgs Mechanism ● Symmetries … Break ● Shortcomings of the Standard Model ● Physics Beyond the Standard Model ● Recent Results from the LHC ● Outlook Disclaimer: Very personal selection of topics and for sure many important things are left out! 20th July '11 Introduction to Particle Physics 2 20th July '11 Introduction to Particle PhysicsX Files: Season 2, Episode 233 … für Chester war das nur ein Weg das Geld für das eigentlich theoretische Zeugs aufzubringen, was ihn interessierte … die Erforschung Dunkler Materie, …ähm… Quantenpartikel, Neutrinos, Gluonen, Mesonen und Quarks. Subatomare Teilchen Die Geheimnisse des Universums! Theoretisch gesehen sind sie sogar die Bausteine der Wirklichkeit ! Aber niemand weiß, ob sie wirklich existieren !? 20th July '11 Introduction to Particle PhysicsX Files: Season 2, Episode 234 The First Particle Physicist? By convention ['nomos'] sweet is sweet, bitter is bitter, hot is hot, cold is cold, color is color; but in truth there are only atoms and the void. Democrit, * ~460 BC, †~360 BC in Abdera Hypothesis: ● Atoms have same constituents ● Atoms different in shape (assumption: geometrical shapes) ● Iron atoms are solid and strong with hooks that lock them into a solid ● Water atoms are smooth and slippery ● Salt atoms, because of their taste, are sharp and pointed ● Air atoms are light and whirling, pervading all other materials 20th July '11 Introduction to Particle Physics 5 Corpuscular Theory of Light Light consist out of particles (Newton et al.) ↕ Light is a wave (Huygens et al.) ● Mainly because of Newtons prestige, the corpuscle theory was widely accepted (more than 100 years) Sir Isaac Newton ● Failing to describe interference, diffraction, and *1643, †1727 polarization (e.g. -
Read About the Particle Nature of Matter
READING MATERIAL Read About the Particle Nature of Matter PARTICLES OF MATTER DEFINITION Matter is anything that has weight and takes up space. A particle is the smallest possible unit of matter. Understanding that matter is made of tiny particles too small to be seen can help us understand the behavior and properties of matter. To better understand how the 3 states of matter work…. LET’S BREAK IT DOWN! All matter is made of particles that are too small to be seen. Everything you can see and touch is made of matter. It is all the “stuff” in the universe. Things that are not made of matter include energy, and ideas like peace and love. Matter is made up of small particles that are too small to be seen, even with a powerful microscope. They are so small that you would have to put about 100,000 particles in a line to equal the width of a human hair! Page 1 The arrangement of particles determines the state of matter. Particles are arranged and move differently in each state of matter. Solids contain particles that are tightly packed, with very little space between particles. If an object can hold its own shape and is difficult to compress, it is a solid. Liquids contain particles that are more loosely packed than solids, but still closely packed compared to gases. Particles in liquids are able to slide past each other, or flow, to take the shape of their container. Particles are even more spread apart in gases. Gases will fill any container, but if they are not in a container, they will escape into the air. -
Theoretical and Experimental Aspects of the Higgs Mechanism in the Standard Model and Beyond Alessandra Edda Baas University of Massachusetts Amherst
University of Massachusetts Amherst ScholarWorks@UMass Amherst Masters Theses 1911 - February 2014 2010 Theoretical and Experimental Aspects of the Higgs Mechanism in the Standard Model and Beyond Alessandra Edda Baas University of Massachusetts Amherst Follow this and additional works at: https://scholarworks.umass.edu/theses Part of the Physics Commons Baas, Alessandra Edda, "Theoretical and Experimental Aspects of the Higgs Mechanism in the Standard Model and Beyond" (2010). Masters Theses 1911 - February 2014. 503. Retrieved from https://scholarworks.umass.edu/theses/503 This thesis is brought to you for free and open access by ScholarWorks@UMass Amherst. It has been accepted for inclusion in Masters Theses 1911 - February 2014 by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact [email protected]. THEORETICAL AND EXPERIMENTAL ASPECTS OF THE HIGGS MECHANISM IN THE STANDARD MODEL AND BEYOND A Thesis Presented by ALESSANDRA EDDA BAAS Submitted to the Graduate School of the University of Massachusetts Amherst in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE September 2010 Department of Physics © Copyright by Alessandra Edda Baas 2010 All Rights Reserved THEORETICAL AND EXPERIMENTAL ASPECTS OF THE HIGGS MECHANISM IN THE STANDARD MODEL AND BEYOND A Thesis Presented by ALESSANDRA EDDA BAAS Approved as to style and content by: Eugene Golowich, Chair Benjamin Brau, Member Donald Candela, Department Chair Department of Physics To my loving parents. ACKNOWLEDGMENTS Writing a Thesis is never possible without the help of many people. The greatest gratitude goes to my supervisor, Prof. Eugene Golowich who gave my the opportunity of working with him this year. -
Spontaneous Electroweak Symmetry Breaking
Arianna Borrelli Who broke electroweak symmetry? Who broke electroweak symmetry? This question may sound rather naive, yet the discourse about the “spontaneous” breaking of electroweak symmetry entails a reference to agency which finds implicit expression in the often repeated (and equally often criticized) statement that the particles of the Standard Model “acquire” their mass “thanks to” the Higgs boson. The implicit agency manifests itself in its most extreme form in the nickname happily bestowed on the Higgs boson in the popular press: “the God particle”. The construction of spontaneous symmetry breaking can be analysed as the interplay between different mathematical formalisms, phenomena of various nature and verbal statements connecting the whole and endowing it with physical meaning. One may argue that the latter, verbal component played a key role in the development of the notion of spontaneous symmetry breaking, spinning a narrative which allowed to close gaps in mathematical arguments and downplay the arbitrariness of analogies between phenomena. From this process emerged an ambiguous mathematical-physical notion which was to become the symbolic carrier of a “mechanism of mass generation”. In the papers quoted as the origin of spontaneous symmetry breaking Yoshiro Nambu and Giovanni Jona Lasinio used an analogy to super-conductive systems to interpret the masses of strongly interacting particles as expression of an exact, but hidden symmetry (N 1960, N/JL 1961). They did not speak of “symmetry breaking” - let alone a “spontaneous” one - but rather of the existence of “superconductor solutions” to the equations for particle self-energy. Jeffrey Goldstone (1961) reformulated their arguments in terms of an elementary scalar field with non-zero vacuum expectation value, but it was Marshall Baker and Sheldon Glashow (1962) who framed the issue as “spontaneous symmetry breaking”, attempting to explain mass values in terms of “stable self-generated solution” of quantum-field-theoretical equations. -
From Leon Lederman, the God Particle (Last Reading Continued)
18 From Leon Lederman, The God Particle (last reading continued) …. DEMOCRITUS: I have trouble with emptiness. How do I describe it? If it is truly nothing, then how can it exist? My hands touch your desk here. On the way to the desk top, my palm feels the gentle rush of air that fills the void between me and the desk's surface. Yet air cannot be the void itself, as Empedocles so ably pointed out. How can I imagine my atoms if I cannot feel the void in which they must move? And yet, if I want to somehow account for the world by atoms, I must first define something that seems to be undefinable because it is devoid of properties. LEDERMAN: So what did you do? DEMOCRITUS [laughing]: I decided not to worry. I a-voided the issue. LEDERMAN: Oi Vay! DEMOCRITUS: Sorry. Seriously, I solved the problem with my knife. LEDERMAN: Your imaginary knife that cuts cheese into atoms? DEMOCRITUS: No, a real knife, cutting, say, a real apple. The blade must find empty places where it can penetrate. LEDERMAN: What if the apple is composed of solid atoms, packed together with no space? DEMOCRITUS: Then it would be impenetrable, because atoms are impenetrable. No, all matter that we can see and feel is cuttable if you have a sharp enough blade. Therefore the void exists. But mostly I said to myself back then, and I believe it still, that one must not forever be stalled by logical impasses. We go on, we continue as if nothingness can be accepted. -
A Young Physicist's Guide to the Higgs Boson
A Young Physicist’s Guide to the Higgs Boson Tel Aviv University Future Scientists – CERN Tour Presented by Stephen Sekula Associate Professor of Experimental Particle Physics SMU, Dallas, TX Programme ● You have a problem in your theory: (why do you need the Higgs Particle?) ● How to Make a Higgs Particle (One-at-a-Time) ● How to See a Higgs Particle (Without fooling yourself too much) ● A View from the Shadows: What are the New Questions? (An Epilogue) Stephen J. Sekula - SMU 2/44 You Have a Problem in Your Theory Credit for the ideas/example in this section goes to Prof. Daniel Stolarski (Carleton University) The Usual Explanation Usual Statement: “You need the Higgs Particle to explain mass.” 2 F=ma F=G m1 m2 /r Most of the mass of matter lies in the nucleus of the atom, and most of the mass of the nucleus arises from “binding energy” - the strength of the force that holds particles together to form nuclei imparts mass-energy to the nucleus (ala E = mc2). Corrected Statement: “You need the Higgs Particle to explain fundamental mass.” (e.g. the electron’s mass) E2=m2 c4+ p2 c2→( p=0)→ E=mc2 Stephen J. Sekula - SMU 4/44 Yes, the Higgs is important for mass, but let’s try this... ● No doubt, the Higgs particle plays a role in fundamental mass (I will come back to this point) ● But, as students who’ve been exposed to introductory physics (mechanics, electricity and magnetism) and some modern physics topics (quantum mechanics and special relativity) you are more familiar with.. -
Furukawa's Technology Contributed to the Discovery of the Higgs Boson
Furukawa Here and There Special About the Furukawa’s technology Higgs boson contributed to the discovery It is an elementary particle, which is the smallest unit in nature. Modern of the Higgs boson physics considers that all phenomena n July 4, the discovery of the Higgs boson in the natural world can be explained called “God particle” received extensive in 17 elementary particles. Discovery of O century? coverage in the press. The European Council Sixteen of the 17 particles, including for Nuclear Research (Conseil Européen pour la What’s so great those that constitute substances about it? Recherche Nucléaire: CERN), headquartered in and those that transmit forces, had Geneva, Switzerland, announced the discovery of a already been discovered. Only the new particle that it deemed to be the Higgs boson, Higgs boson, which functions to which for many years has been the target of a search provide mass (weight) to substances, by physicists around the world. Furukawa Electric had remained unidentified. contributed significantly to what some are calling the discovery of the century. The Higgs boson is referred to as the “God particle” because it has a significant role in the formation of the universe and substances. This made it easier for The birth of the universe elementary particles with Speed mass to gather. Some of Elementary particle Elementary particle of I feel these particles stuck to one light! Higgs boson something another to form the origin of heavy atoms. This is how the Earth, all substances in the universe I see. and humankind are believed to have originated. It is said that if it were no Higgs boson, the human body would be torn apart in one billionth of a second. -
Introduction to Elementary Particle Physics
Introduction to Elementary Particle Physics Joachim Meyer DESY Lectures DESY Summer Student Program 2009 Preface ● This lecture is not a powerpoint show ● This lecture does not substitute an university course ● I know that your knowledge about the topic varies a lot ● So we have to make compromises in simplicity and depth ● Still I hope that all of you may profit somehow ● The viewgraphs shown are only for illustrations ● We will develop things together in discussion and at blackboard ● I hope there are lots of questions. I shall ask you a lot 2 Structures at different sizes Elementary Particle Physics 3 3 Fermion Generations Interactions through Gauge Boson Exchange This lecture is going to tell you something about HOW we arrived at this picture 4 Content of this lectures . Its only a sketch : Depending on your preknowledge we will go more or less in detail in the different subjects 5 6 WHY High Energies ? 7 The very basic minimum you have to know about Relativistic Kinematics 8 Which CM-energy do we reach at HERA ? 9 HEP 100 Years ago : Radioactive Decay Energy region : MeV =He−nucleus....=electron...= photon 10 Today : Some more particles : 11 The Particle Zoo I can't spare you this chapter. Quarks are nice to EXPLAIN observed phenomena. But, what we OBSERVE are particles like protons, muons, pions,.......... 12 'Artificial' Production of New Particles (Resonances): − p scattering 13 Particle classification Hadrons : strongly interacting Leptons : not Strongly interacting 14 All these particles are listed in the Particle Data Booklet -
In Search of the God Particle
Tomorrow - What Lies Beyond the Horizon The God Particle Weizmann Institute of Science by Eilam Gross In Search of the God Particle By Eilam Gross The extraordinary experiment being conducted in CERN (the European Organization for Nuclear Research), in Switzerland, aspires to bring us closer than ever to the moment of Creation – the Big Bang, when the elementary particles making up the Universe were created. Billions of dollars have been invested into this quest to find out where we come from and where we are going. About 14 billion years ago – 13.7 to be precise – the Universe was born. It emerged from a singular, energy-laden point in an event we know as the Big Bang. An updated Bible would begin with the verse: “In the beginning there was nothing. And God said: Let there be light. And there was a Big Bang, and there was space and there was time, and there was the space-time.” At the moment, no one knows what really happened during that initial infinitesimal fraction of a second of creation. We are quite certain though, that the immense energy of that moment gave rise to the conditions necessary for the creation of matter and forces, thus initiating a long process that eventually led to the existence of humans with the ability to apply our intelligence to deciphering the elements that are the building blocks of our own creation. In 1900, 108 years ago and almost 14 billion years after the Big Bang, a 76- year-old Lord William Thomson Kelvin stood in an auditorium filled to bursting in the British Royal Society and gave one of the most famous lectures in the history of physics. -
MIT at the Large Hadron Collider—Illuminating the High-Energy Frontier
Mit at the large hadron collider—Illuminating the high-energy frontier 40 ) roland | klute mit physics annual 2010 gunther roland and Markus Klute ver the last few decades, teams of physicists and engineers O all over the globe have worked on the components for one of the most complex machines ever built: the Large Hadron Collider (LHC) at the CERN laboratory in Geneva, Switzerland. Collaborations of thousands of scientists have assembled the giant particle detectors used to examine collisions of protons and nuclei at energies never before achieved in a labo- ratory. After initial tests proved successful in late 2009, the LHC physics program was launched in March 2010. Now the race is on to fulfill the LHC’s paradoxical mission: to complete the Stan- dard Model of particle physics by detecting its last missing piece, the Higgs boson, and to discover the building blocks of a more complete theory of nature to finally replace the Standard Model. The MIT team working on the Compact Muon Solenoid (CMS) experiment at the LHC stands at the forefront of this new era of particle and nuclear physics. The High Energy Frontier Our current understanding of the fundamental interactions of nature is encap- sulated in the Standard Model of particle physics. In this theory, the multitude of subatomic particles is explained in terms of just two kinds of basic building blocks: quarks, which form protons and neutrons, and leptons, including the electron and its heavier cousins. From the three basic interactions described by the Standard Model—the strong, electroweak and gravitational forces—arise much of our understanding of the world around us, from the formation of matter in the early universe, to the energy production in the Sun, and the stability of atoms and mit physics annual 2010 roland | klute ( 41 figure 1 A photograph of the interior, central molecules.